
The Real Problems of Backup

C. Linett
U.S. Bureau of the Census

F.O.B. #3, Room 1377
Suitland, MD 20746

S. Ranade
Infotech SA Inc.
P.O. Box 4343,

Silver Spring, MD 20904
infotech@digex.com

1.0 INTRODUCTION

Many organizations today operate a distributed networked computing environment and
one of the important problems in data management is to assure an orderly and safe
backup of data. The problem of data backup has been adequately addressed in the
mainframe world through good and reliable tools. But in the distributed computing
world, this problem is more complex and although there are a number of commercially
available network backup tools, none of these offer mainframe class safety, security and
disaster recovery capabilities. Some Unix vendors, at least, are aware that a gap exists
between the functions provided by their backup tools and the functions that are available
in the mainframe world and that are really necessary in the distributed world.

The goal of this paper is firstly to describe the functions and features of a good file
backup system for very large environment with millions of files. Secondly, its purpose is
to examine some current products to see how closely these products provide these
necessary (or highly desirable) functions and features. The paper suggests areas of work
which could be undertaken by Unix vendors to upgrade their products to offer mainframe
class backup functionality.

2.0 BACKGROUND / TERMINOLOGY

It is useful to briefly review the important terms used in describing storage and data
management. This is necessary because depending on the environment to which they are
applied (e.g. MVS, Unisys, VMS, Unix etc), some terms have conflicting meanings,
some have ambiguous meanings and some are meaningless.

a. Backup

"Backup" in the simplest case is a means of making a copy of a data object which is
resident on disk. Tape is often the most convenient and appropriate media for such a
copy, although any other media could be used. The original idea behind backup was to
retain a safe copy of the data in case a disk device failed. A related idea is that since disk

space was relatively expensive, a tape copy of the data allows the data to be removed or
truncated from disk as it could be reconstructed in its original condition from the tape
copy. It is important to see that these two ideas are very closely related and that in fact,
the second is simply a variation of the first. In the Unix world, this fact has been
overlooked with the result that the first idea is implemented by one set of software
(called "backup") and the second idea is implemented by another set of software (called
"hierarchical storage management."). Thus two copies of the same data can exist for the
same purposes ! There are several products which actually do this.

b. Full Backup

The term "full backup" applies to a complete copy of all data belonging to a given
system. The idea is that this full backup forms a baseline and that following a full backup
only files that have changed since this full backup need be backed up. This concept may
be valid in instances where the amount disk storage is small, but today, when machines
may well have hundreds of gigabytes or even Terabytes of disk storage, this is not
practical. When the number of files is very large, restoring files from a full backup is not
efficient. Using full backups, it is also not feasible to move (or re-create) data belonging
to one system to another system. Thus the concept of full backup as understood in Unix
and VAX/VMS systems must be abandoned as a satisfactory or viable backup concept for
large machines.

c. Incremental Backup

Incremental backup is taken to mean the backup of files that have changed since some
baseline backup. However, it should really mean a backup of files that either have no
backup or whose backup is not current. Many computer centers operate a weekly "full
backup" and a daily "incremental backup" which is quite inefficient for restoring files or
restoring the state of a system at a given time. What is needed (and what will be
explained below) is a continual backup of files that have no backup or files that have
changed since their last backup, with a record of all backup activity kept in a catalog
which can be searched quickly. This forms a "virtual full backup" of the entire system at
all times (see below). The concept of incremental backup as viewed in Unix and
VAX/VMS systems must also be abandoned as a satisfactory or viable backup concept for
large machines.

d. Catalog

A catalog is a data structure which contains information about files and their backups. It
is essential for the catalog to be a data structure that can be searched quickly, since large
backup systems may be managing millions of files. Specifically, the catalog must be
designed for quick searches and must contain sufficient metadata for complex selection
criteria. It is necessary to note that both these features are not available in Unix systems
and have to be provided in some way by the storage management application. In fact, the
usefulness, performance and limitations of Unix storage management applications can be

determined largely by the strategy which is adopted for implementing the catalog and its
search.

e. Virtual Full Backup

A virtual full backup is a combination of the catalog and historical catalog (see 4(d)
below) and uses their knowledge of where backup instances and deleted files (see below)
are located. These two databases contain sufficient information to reconstruct the system
to any point and at any level.

f. Hierarchical Storage Management

Hierarchical Storage Management (HSM) is a means to manage different storage devices
(e.g., disk and tape) such that a user sees the mix as a single large disk. Disk files that are
infrequently used are selected for migration. When a current verified copy exists on tape,
the disk files are truncated. The truncated version (inode, in the case of Unix systems) is
left on disk. Disk space is thus made available for other processes which need it. When
truncated files are required again, access to the inode causes a trap into the OS, resulting
in the activation of processes to copy the file back from tape to disk. Note that HSM is
really an operating system function, i.e., it requires OS support for file faults, although
the movement of data from disk to tape and tape to disk (variously termed "rollout",
"migration" etc. and "rollback", "staging" etc.) may be performed by privileged processes
running in user space. Note that the truncation step described above is not needed for
migration software such as UniTree which uses its own file system.

3. TYPES OF BACKUP

Given the various definitions above, it is useful to see how these concepts are applied in
different computing environments. Note that in all cases except (e), the backup solutions
available are not "mainframe class," i.e., they cannot efficiently support large numbers of
files nor can they assure the level of data integrity and safety which are necessary in most
large installations.

a. BSD Unix

UNIX itself provides three different back-up utility programs. "Dump and restore"
allows a complete backup of the entire system; and "tar" and "cpio" each allow specific
files to be backed up to tape. None of these UNIX utilities can verify the data on a tape,
nor can they read past an error on a bad tape. They all have very limited features for
partial restorations. As a result of these shortcomings, various commercial backup
software has been developed.

In BSD Unix Systems, tar is a utility which sometimes is used for backup, but it suffers
from several drawbacks. Among these are a 100-character limit on pathnames, no
facilities for incremental backup, and no facilities for writing to multiple tape volumes.

Nevertheless, some System V UNIX systems use tar for interchange with BSD Unix
machines.

b. System V Unix

System V Unix backup tools are more limited - for example, a snapshot restore is not
possible. Volcopy is intended to be similar to the BSD's dump, but is not quite as
flexible. As a result, the faster BSD filesystem and dump have been ported to the System
V environment. In fact, the BSD filesystem format is standard with System V.1. volcopy
and, therefore, the System V.3 filesystem may be gradually phased out.

With the above backup utilities, Unix system administrators generally use a two step
procedure for backup. At some point, a full backup is performed to save the current state
of the system. The systems administrator or operator manually records the backup details
in a log. The system may be taken off-line for such a full backup, causing inconvenience.
This procedure takes a long time which compounds the inconvenience.

Therefore, more frequently, incremental backups are performed. Some sites do this once
a day. With incremental backup, restore operations can take a long time and the number
of incremental backup tapes required can become excessive. A periodic full backup,
perhaps once weekly or once monthly, is performed to avoid this.

Restoring files is not a simple process. The administrator must manually determine which
backup contains the file to be recovered by mounting and searching the backups. This is
so labor-intensive that most sites recover individual lost files in exceptional
circumstances only; more often, they only recover destroyed disks or filesystems.

c. VAX/VMS

In the VAX/VMS environment backup tools have been traditionally provided by DEC,
although there is other commercial software such as Backup.unet which performs similar
functions. DEC's backup software handles backups on a per disk, per machine basis. It
uses the full backup/incremental backup method described above.

d. Unix Network Backup

In many cases, Unix network backup amounts to script files which use the Unix backup
utilities described above to backup networked machines. The time, labor and
maintenance cost of this is often unacceptably high. Moreover, recovery of lost files
requires explicit action by the system operator. This is because there is no online index of
backup files. One of the standard Unix tools (discussed above, e.g. dump) is used to copy
backup files to a large disk on a file server. Sometimes dump is used to write files
directly to a remote tape drive.

There are now a number of commercial products which automate network backup.
Special software is installed on client nodes and on a server node. The control of the

backup process lies in the server. A system operator usually sets certain backup
parameters (e.g. schedule, file classes etc) after which the backup for all clients on the
network runs automatically.

e. Census Unisys

The backup system developed at the US Bureau of the Census provides backup of the
main compute server (Unisys) and also backup of client machines (PC and VAX). The
server backup software implements many of the features described below. The client
backup software implements almost all of the features described below. This system is
what is commonly called "mainframe class" meaning that it is designed to supports
millions of files, it operates efficiently, includes the HSM function as part of its backup
method and provides very high data integrity and safety.

This system has been developed over many years and incorporates many lessons learnt
from actual experience. In this paper, this system is used as the basis for a model of a
good file backup system. It is to be hoped that Unix vendors will eventually offer similar
capabilities.

4. A GOOD BACKUP SYSTEM

This Section summarizes some characteristics necessary for a good file backup system.
These apply also to a hierarchical storage management system. Indeed, they should be
integrated. The core of each one is to create and verify copies of each file from which
the file may be reconstructed or reloaded, if necessary.

a. Basic Concepts

The following concepts developed from many years' experience, form the basis of a good
backup system for very large environments.

• All backups should be of files/directories. All backups should be incremental: a full
image backup is not a useful concept for a very large system. Note that the first
"incremental" backup of a system will find that all files need backing up, but it should be
the only such, and is still an incremental backup. An incremental backup scheme is one
that picks files for backup that have one of two characteristics : (a) they have no backup,
or (b) their backup is not current in that it does not reflect what is currently on the disk.

• An HSM system should perform its rollout function using the current validated backup.
A separate copy of the file or separate pools of tape for backup and HSM are undesirable

• Each backup, even an outdated one or one for a file subsequently deleted, is assumed to
have some potential use for recovery. The removal of a backup instance from the backup
system should therefore be done only when necessary. "Necessary" means either that the
backup is defective (unreadable) or that the tape on which it resides is to be released or

reused. In the latter case, the determination of the backups to be purged should be
governed by user-configurable purge rules.

b. Operation

It is essential for the backup system to be fully automatic since instances such as the
following may arise :

- Suppose that a system with 10 million files loses 250,000 files through some disaster. It
is not feasible to require any manual determination of which files to restore.

- In a large backup system there will be thousands of tape reels. It is not acceptable to
have to manually keep track of which reels (say) contain what and/or which may be
compacted or written upon at any given moment.

- The large number of backup /restore/delete etc. operations should not result in an
impossibly large tape pool. In other words, the backup tape pool should be automatically
kept in a state of equilibrium. This implies a fixed-size pool of tapes, platters, or
whatever. These would be automatically compacted according to configurable criteria to
maintain the pool size. Without compacting, equilibrium can generally not be achieved
with any reasonable pool size (relative to the size of the file system). The system should
maintain an awareness of what media (which reels, etc.) may be used for writing, and
choose them automatically when necessary.

c. Database (Current Catalog)

The backup system should have an associated database of files and their backups. This
should have an entry (made in real time) for each file creation, deletion, first
modification after backup, and backup.

The database should also be designed with care. Individual file queries should not take
excessive time to complete. Of course the database also should be designed for integrity.
Snapshots of it (or of some subset sufficient to reconstruct it) should taken fairly
frequently so that the database can be rebuilt from one of them, even if the original
hardware is no longer there.

There should be a facility to traverse (or select from) the backup database and perform
file maintenance actions on each file in an arbitrarily selected subset of files and/or
backups. It should be possible to specify any of a generous assortment of standard
actions, as well as to flexibly create macros for custom actions. "Arbitrarily selected"
means that you should be able to specify a test to be applied to each entry. The basic
boolean, integer, and string functions available to express this test should be extensible to
specify searches of any reasonable complexity.

The standard actions to perform on each selected file should include such things as
changing owners, deleting, various listings, making a backup, reverting to an earlier
backup, marking as referenced (or modified), truncating, etc.

d. Historical Database

The backup system should also have associated with it, a separate, historical database. It
is important to keep a historical audit trail database of file deletions giving, at least,
filename, file creation date, deletion time, who deleted it, reconstruction, damage
detection etc. Note that the file creation date is necessary to uniquely identify the file
since there may be multiple deleted instances of this filename. The historical database
can be used for purposes such as : ensuring that overtly deleted files are not
reconstructed ; identifying the user/process which deleted files (by file) ; analyzing the
birth/death patterns of data (to help in improving the management of disks and file
systems). This database also gives the capability to check the consistency of the current
catalog.

e. Data Integrity

Data integrity is paramount. There should be provision for the self-contained verification
of backups. Self-contained implies that the original files are not necessary for the
verification: it could even by done on a different, compatible machine. There should be
a configuration parameter to specify that multiple copies be made of the backups for
vaulting and/or to provide additional assurance. Extra backup copies should be
integrated into the system gracefully: if, when restoring a file with more than one
backup copy, one backup cannot read, then the system should automatically attempt the
restoration from the next copy, etc.

The backup format should be designed with care. There must be enough "file header"
information for each backup to insure that even if the file is deleted from the system
entirely, it can be reliably reconstructed from that backup. There must be enough
"check" data to allow self-contained verification of the backup.

5. BACKUP/HSM PRODUCTS

From the preceding discussion it is clear that the viability of a good backup system for a
large machine hinges on the structure of the databases discussed above. It is essential for
the main database or catalog to be a data structure that can be searched quickly, since
large systems may have millions of files. Specifically, the catalog must be designed for
quick searches and must contain sufficient metadata for complex selection criteria.

It is necessary to note that both these features are available in mainframe operating
systems (e.g. MVS) and are not available in Unix. In Unix systems these features have
to be provided in some way by the storage management application. In fact, the
usefulness, limitations and performance of Unix storage management applications can be

determined largely by the strategy which is adopted for implementing the catalog and for
its search.

What are the prospects of such a file backup system being made available with a Unix
system ? To answer this question, it is necessary to look at the types of file and storage
management software that is currently available with Unix systems. Note that in the
following discussion, only large Unix systems are considered since these are the systems
that are closest in capacity and functionality to mainframe systems.

In general, there are three types of data about files. The first, which is dependent upon
application, and is user defined, is data about the contents of files. This we will call User
Metadata. For the present, this type of metadata is not relevant o our discussion and will
be ignored. The second is file system data or Posix data which we will call File System
Metadata. The third is data about storage locations, tapes, libraries etc. for files and this
we will call Storage Management Metadata.

In essence, the problem of backup boils down to the strategies which are used to store,
access and manipulate these metadata. The choice of strategy decides what can and
cannot be provided and how efficiently the resulting system will work. To see how this is
so, note that the discussion above really focused on the following main items :

a. the types of metadata that should be stored for files

b. the security and safety of this metadata

c. the performance implications of the method used to store metadata

d. the functional implications of the method used to storage metadata

The software products which come closest to providing the features discussed in Section
4 are FileServ from EMASS, UniTree from UniTree Inc. There is another class of HSM
products for small to mid-range Unix machines (e.g. AMASS, EpochServ, Polycenter
HSM etc) but these have been implemented on smaller machines and are not suited to the
kind of large environment discussed in this paper.

A. EMASS (FileServ)

The EMASS FileServ HSM software as implemented on the Convex C-Series machines
uses an Ingres database to keep some of the file system metadata and also for some of the
storage management metadata. The use of a database allows varied queries to search for
files and also leads to features such as the "Dataclass" in which files may be grouped
together.

One of the problems of this approach is that a change to the database entry for a file,
results in a call out to the host operating system, since, to maintain consistency, the
corresponding OS file system data must also be updated - i.e. both the OS file system

metadata and the Ingres metadata must be consistent. Another problem is that a
commercial database such as Ingres is not able to perform efficiently when the number of
files is very large.

B. UniTree Inc (UniTree)

The UniTree HSM software is used at many large data centers. The most common
platform is the Convex C-Series, although there are production versions running on
Amdahl and SGI Challenge machines. UniTree was developed especially to overcome
the storage management limitations of Unix systems. UniTree uses its own file system
and its own catalog. It does not use a commercial database and has its own algorithms for
searching through its catalog. It is possible that with an alternative name server, catalog
design and search capability, UniTree could be modified to provide most of the features
described in Section 4.

6. CONCLUSIONS

This paper has discussed what a file backup is, what it is for and its relationship to
hierarchical storage management. Based on experience in developing a backup system
for a large machine handling millions of files, the characteristics of a good backup
system are defined. The inadequacies of Unix systems to provide an adequate backup
capability for large machines are pointed out. Two products which provide HSM for
Unix systems are discussed and their shortcomings for providing reliable backup for very
large systems are shown.

7. REFERENCES

1. FileServ Technical Description, EMASS Inc., Garland, TX, September 1994.

2. UniTree Technical Manual, Openvision Inc., Pleasanton, CA, October 1994.

3. IBM ADSTAR ADSM Reference Manual, IBM SSD, San Jose, CA, October 1994.

4. The Mass Storage Report '95 Infotech SA Inc., Silver Spring, MD, Jan 1995

