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Abstract

NASA missions, both for earth science and for space science, collect huge amounts of
data, and the rate at which data is being gathered is increasing. For example, the EOSDIS
project is expected to collect petabytes per year. In addition, these archives are being made
available to remote users over the Internet. The ability to manage the growth of the size
and request activity of scienti�c archives depends on an understanding of the of the access
patterns of scienti�c users.

The National Space Science Data Center (NSSDC) of NASA Goddard Space Flight
Center has run their on-line mass storage archive of space data, the National Data Archive
and Distribution Service (NDADS), since November 1991. A large world-wide space research
community makes use of NSSDC, requesting more than 20,000 �les per month. Since the
initiation of their service, they have maintained log �les which record all accesses the archive.

In this report, we present an analysis of the NDADS log �les. We analyze the log �les,
and discuss several issues, including caching, reference patterns, clustering, and system
loading.

1 Introduction

On-line scienti�c archives are an increasingly important tool for performing data-intensive re-
search. Building a large-scale archive is an expensive proposition, however, and system resources
need to be carefully managed. To date, there has been little published research that studies the
performance of on-line scienti�c archives.

The National Space Science Data Center (NSSDC) of NASA Goddard Space Flight Center has
run their on-line mass storage archive of space data, the National Data Archive and Distribution
Service (NDADS), since November 1991. A large world-wide space research community makes
use of NSSDC, requesting more than 350,000 �les in 1994. Since the initiation of their service,
they have maintained log �les which record all accesses to the archive.

In this paper, we present an analysis of access patterns to the NDADS. These analyses are
based on the information contained in the log �les. We discuss several aspects of system
performance, including the performance of several caching algorithms on the recorded request
stream, and the e�ectiveness of the data clustering used by NDADS. We show that the request
for a �le are bursty, and that user requests are bursty. Finally, we present an analysis of the
system load.

Several studies on the reference patterns to mass storage systems have been published. Smith
[12] analyzes �le migration patterns in hierarchical storage management system. This analysis
was used to design several HSM caching algorithms [13]. Lawrie, Randal, and Burton [7]
compare the performance of several �le caching algorithms. Miller and Katz have made two
studies on the I/O pattern of supercomputer applications. In [9], they �nd that much of the
I/O activity in a supercomputer system is due to checkpointing, and thus is very bursty. They
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make the observation that much of the data that is written is never subsequently read, or is only
read once. In [10], they analyze �le migration activity. They �nd a bursty reference pattern,
both in system load and in references to a �le. Additional studies have been made by Jensen
and Reed [5], Strange [14], Arnold and Nelson [1], Ewing and Peskin [3], Henderson and Poston
[4], Tarshish and Salmon [15], and by Thanhardt and Harano [16]. However, all of these studies
apply to supercomputer environments, which can be expected to have access patterns di�erent
from those of a scienti�c archive.

1.1 Log Files

The National Space Science Data Center is the primary archive for all space data collected by
NASA. The NSSDC distributes its data using a variety of methods and media. For example,
one can request photographs, CD-ROMs and tapes from the NSSDC. Manually �lling orders
for data is labor intensive and hence expensive. In addition, service is slow. To reduce data
distribution costs and to improve service to the user community, the NSSDC created the National
Data Archive and Distribution Service to store electronic images and data, and serve the data
electronically.

The archive consists of a two jukeboxes storing WORM magneto-optic disks, one with a
capacity of 334 GB, the other with a capacity of 858 GB. A user submits a request by naming
a project, and the �les of the project. Request submission is most often done by email, but
can also be done using a program on the host computer, and through a new World Wide Web
service. NDADS will fetch the requested �les from nearline storage, place the requested �les on
magnetic disk, then notify the user that the �les are available for transfer via ftp (alternatively,
the �les can be ftp'ed automatically). More information about NDADS can be found by sending
an email message to archives@nssdc.gsfc.nasa.gov with a subject line of \help".

A user speci�es the �les of interest by naming them explicitly. In general, specifying �les by
predicate matching is not possible (although this capability is being developed).

NDADS is an evolving system, and log �le collection is part of the evolution. Version 1
logs were recorded between November, 1991 and December, 1993. These logs record the
�les requested, the start and stop times of request service, and the name of the requester.
Unfortunately, these log �les do not include the �le sizes or the name of the media from which
the �le was fetched. These log �les were intended to aid in monitoring and debugging the
system, not for performance modeling. Many of the de�ciencies of the version 1 logs were �xed
in version 2. The version 2.1 and 2.2 logs were collected between January, 1994 to mid-July,
1994. These logs include �le size and media name information, permitting a much more detailed
analysis. Version 2.3 logs start in mid-July, 1994 and are still being collected at the time of this
writing (January 1995). These logs include information about ingest as well as request activity.

2 Caching

When a user requests a �le, the �le is fetched from tertiary storage into secondary storage and
made available to the requester. The �le typically has a minimum residency requirement (three
days in NDADS) to give the requester time to access the �le. The archive systems needs to
have enough disk storage to satisfy the minimum residency requirement.

While the �le is disk-resident, a second request for the �le can be satis�ed without fetching
the �le from tertiary storage. These cache hits can reduce the load on the tertiary storage
system, and also improve response times.



A large body of caching literature exists when all cached objects are of the same size. The
Least Recently Used (LRU) replacement algorithm is widely recognized as having good perfor-
mance in practice, although statistical algorithms with better performance have been proposed
recently [6, 11].

Caching objects of widely varying sizes is somewhat more complicated, and has not received
the same amount of attention. If one wants to minimize the number of cache misses, then it
is much better to choose large �les than small �les for replacement, because removing large
�les frees up more space. The optimal replacement algorithm for variable size objects, with
respect to cache misses, is the GOPT algorithm [2]: Let F be the set of cached �les, and for
�le f 2 F , let Nf be the time until the next reference to f and let Sf be the size of f . Choose
for replacement the f 0 2 F whose product Nf 0 � Sf 0 is the largest.

The GOPT algorithm cannot be implemented (because it requires knowledge of future events),
but it can be approximated. The Space-Time Working Set (STWS) algorithm [13] approximates
GOPT be substituting Pf , the time since the last reference to f , for Nf .

While STWS can be implemented, it also requires a great deal of computation. For this
reason, STWS is often approximated by what we call the STbin algorithm [8]: A �le is put into
a bin based on its size. The �les in a bin are sorted in a list using LRU. To choose a �le for
replacement, look at the �le at the tail of each bin and compute its Pf � Sf product. Choose
for replacement the �le with the largest space-time product.

In our caching analysis, we use the LRU, STWS, and STbin algorithms. We assume a
disk block size of 1024 bytes, and set a limit on the number of disk blocks that are available
for caching. We trigger replacement when fetching a new �le will cause the space limit to
be exceeded, and we remove �les until the space limit will not be exceeded. For the STbin
algorithm, bin i holds �les that use between 2i and 2i+1 � 1 blocks.

We execute the caching algorithms on traces generated from the 1994 log �les (which have
size information attached). We divide the logs into three month periods, to make the logs large
enough to capture the steady-state hit rates, but also indicate changes in the access patterns.

The hit rate information is summarized in Table 1. The STWS and STbin algorithms have
much better performance than the LRU algorithm. The STbin algorithm usually has performance
comparable to that to the STWS algorithm, and sometimes has better performance. One
surprising result is the high hit rate (up to 50%) that is possible with a moderate sized (5 Gb)
cache. Given the nature of the archived data, hit rates were expected to be much lower.

When a �le is fetched from tertiary storage, it remains on magnetic disk for at least three
days. For a comparison, we present the disk storage requirements and the hit rates if an 3-day
residency is observed, in Table 2. As the table shows, considerable more than 5 Gb of disk
storage is required to satisfy the minimum residency requirement.

The resources required to fetch a �le depend on the size of the �le. For this reason, STWS is
suboptimal is practice. Most vendors allow the user to tune the caching algorithm to reduce the
penalty paid by very large �les. A common technique is to assign to each �le a weight computed
as Pf � S

c
f for a constant c � 1. In Table 3, we list the number of bytes transferred by each

of the caching algorithms. LRU generally transfers the fewest bytes, closely followed by STWS.
In these log �les, STbin requires the transfer of many bytes (STWS transfers fewer bytes than
STbin because it has a lower miss rate).

2.1 File Access Pattern Analysis

The success of caching depends on the access patterns. In this section we examine some aspects
of the access patterns.



Disk Blocks Hit Rate Hit Rate
(1k bytes) LRU STWS STbin LRU STWS STbin

January, 1994 - March 1994 April, 1994 - June 1994

1048576 .144 .234 .195 .155 .235 .189

2097152 .243 .314 .267 .202 .313 .194

3145728 .288 .341 .337 .272 .362 .286

4194304 .309 .355 .349 .292 .423 .448

5242880 .320 .364 .360 .304 .471 .500

July, 1994 - September 1994 October, 1994 - December 1994

1048576 .173 .270 .205 .127 .215 .198

2097152 .248 .308 .259 .155 .243 .222

3145728 .271 .328 .309 .181 .266 .245

4194304 .302 .340 .340 .219 .291 .256

5242880 .327 .366 .377 .252 .311 .287

Table 1: Hit rates for di�erent cache replacement algorithms.

1/94 - 3/94 4/94 - 6/94 7/94 - 9/94 10/94 - 12/94

hit rate .175 .183 .193 .129

Storage 7.2 Gb 8.4 Gb 14.0 Gb 11.0 Gb

Table 2: Disk storage and hit rates for 3-day residency.

Hit Rate Hit Rate
Disk Blocks LRU STWS STbin LRU STWS STbin

January, 1994 - March 1994 April, 1994 - June 1994

1048576 35.0 Gb 34.9 36.7 43.2 43.4 44.8

2097152 30.1 32.1 34.9 41.2 41.1 44.6

3145728 29.1 30.8 31.8 39.1 39.6 42.6

4194304 28.4 29.8 30.7 38.0 38.1 38.8

5242880 27.8 29.1 29.9 37.2 36.6 36.6

July, 1994 - September 1994 October, 1994 - December 1994

1048576 56.7 57.7 61.0 35.4 35.9 37.3

2097152 52.7 55.1 59.6 32.7 34.8 36.2

3145728 50.1 53.3 57.9 31.7 33.5 35.2

4194304 47.4 52.2 55.8 29.2 31.6 34.3

5242880 46.3 50.0 52.7 28.3 29.8 32.1

Table 3: Disk blocks moved for di�erent cache replacement algorithms.



Jan. - March April - June July - Sept. Oct. - Dec.
Year total unique total unique total unique total unique

1992 12806 73% 28899 61% 41296 67% 53253 65%

1993 47046 66 31513 69 49058 65 26106 61

1994 77415 62 92325 45 113594 55 74606 67

Table 4: Total and unique references (in percentage) to NDADS.

days between access

frequency

0 5 10 15 20 25 30 35 40 45 50 55 60+
0

0.05

0.1

0.15

0.2

File inter-reference time

Figure 1: Distribution of �le inter-reference times.

The number of possible cache hits depends on the number of duplicate references in the
reference stream. In Table 4, we show the number of references and the number of unique
references by three month period. The 1994 data shows that the STWS and STbin algorithm
are getting close to the best possible hit rates.

The e�ectiveness of caching also depends on the average time between references to a �le (the
inter-reference time). In Figure 1, we plot the distribution of inter-reference times during 1994.
To generate this plot, we scanned through all �le accesses and searched for repeat accesses.
Whenever a repeated reference was found, we incremented a histogram based on the number of
days since the last reference. The plot shows that most repeat references occur shortly after an
initial access, but that the inter-reference time distribution has a long tail. The average number
of days between an access to a �le, given that the �le is accessed at least twice in 1994, is 27.5
days. There is a sharp peak at 3 days that does not �t well with the curve. We speculate that
this is a side e�ect of the three-day residence period (users re-submit their request when they
�nd that the �les have been removed from disk storage area).

The e�ectiveness of STWS also depends on the distribution of �le sizes. In Figure 2, we plot
the distribution of sizes of the �les accessed in 1994. The average size of a �le accessed in 1994
is 560 Kbytes. Because of the wide range of sizes, we created the histogram by binning on the
base two logarithm of the �le size. Most of the �les accessed in this archive are between 128



Log file size (in kilobytes)

frequency

0 1 2 3 4 5 6 7 8 9 10 11121314 15 16 1718 19+
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of accesses vs. file size

Figure 2: Distribution of �le sizes.

Number of users

year Jan. - March April - June July - Sept. Oct. - Dec.

1992 153 185 230 300

1993 430 552 677 607

1994 678 689 692 670

Table 5: Growth in the user population.

Kbytes and 1Mbyte in size. Few �les larger than 2 Mbytes are accessed, but this number does
not go to zero. Figure 3 shows the �le access rate weighted by the �le size. When we examine
the number of bytes moved, �les larger than 2 Mbytes account for a signi�cant fraction of the
system activity.

Finally, we look at the rate at which �les of di�erent sizes are re-accessed. In Figure 4, we
plot the percentage of �le accesses which are repeat accesses, binned on �le size. This plot
shows that small �les (except for the very smallest) have a low re-access rate, and that the very
large �les have a high re-access rate. If the cost of transferring large �les is signi�cant, then
STWS is a distinctly suboptimal caching policy. Because STWS strongly discriminates against
very large �les, it will often incur the cost of their transfer.

3 User Access Analysis

A model of request to the archive depends on the users of the system. In the accumulated log
�les, we have notices that the user population is growing. We �rst note that the user population
is growing, as is indicated by Table 5.

Most users make only a few requests to the archive. Figure 5 plots a histogram of the
percentage of users that make di�erent numbers of requests to the archive in a single month.
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Figure 3: Distribution of �le sizes, weighted by number of blocks.
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Figure 4: Probability of re-referenceing a �le, by �le size.
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Figure 5: Requests per user.

This plot also shows that there is a moderate size core of users who make make requests. The
top ten heaviest users make an average of 30 to 50 requests per month.

Finally, we plot the time between requests from a user in Figure 6. This plot shows that user
activity is very bursty, as more than 80% of repeat requests occur within 3 days of the previous
request.

We found that a large fraction of repeat requests for a �le are due to the user that previously
requested the �le. The fraction of repeat request due to the same user is plotted in Figure 7,
binned on the number of days since the last reference.

4 Clustering

The e�ciency of a tertiary storage system depends in large part on how well the data in the
archive is clustered with respect to the average request. The throughput of a drive in the tertiary
storage device is zero while new platters are being loaded, or while the drive is seeking the �le
on the media. If the �les of a single request are scattered throughout many media, and at widely
varying locations in the media, the throughput of the tertiary storage device will be much lower
than its potential.

The NDADS system is built over WORM storage, which has short seek times. Therefore, the
most expensive overhead occurs when a new platter has to be loaded to fetch a �le. Also, the
1994 log �les contain the platter on which each �le is stored, but not the tracks on the platter.

Files in NDADS are divided into projects (i.e., the satellite that generated the images con-
tained in the �le). An optical platter contains �les for only one project, (but a project may be
spread over many platters) to simplify the management of the platters. This policy actually aids
in clustering, because all �les in a request must be from the same project. If a project generates
enough data to require several platters, the �les are assigned to the platters in a way that is
hoped to reduce the number of platters that must be accessed to satisfy a typical access. This
method of placement depends on the project and the expected type of access.

For every user request, we collected the number of �les requested and the number of platters
needed to satisfy the request. We found that the NDADS clustering of �les onto platters is
e�ective, as the average request asks for about 27 �les, spread across about 2 platters. The
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Figure 6: Time between repeat requests from a user.
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Figure 8: Scatter plot of platters per request vs. �les per request. The data is was collected

between July and September 1994.

number of platters required to satisfy a request is not correlated with the number of �les in the
request. This property is illustrated in Figure 8, which is a scatter plot of the number of platters
to satisfy a request versus the number of �les in the request. The data in this plot is taken from
the period July 1994 to September 1994, but is typical of the total data. Most of the points in
the plot are close to either the X or Y axis. The shape of the plot indicates that the clustering is
appropriate for most requests, but a small fraction of the requests require a completely di�erent
clustering pattern (as is to be expected).

We also noted that some platters are accessed much more frequently than others. In Figure 9,
we plot the number of platters that have di�erent numbers of references. The plot shows that
many of the platters receive only a few references, but that the distribution has a long tail.
Eighty four of the platters are very hot, serving more than 500 �les during 1994. The hottest
platter served 112646 �les.

5 System load

We computed the system load by summing up the number of seconds required to service all
request submitted during a period of time, then dividing by the number of seconds of the
observed period. We plot the system load per month for 1993, 1993, and 1994 in Figure 10.
While the month to month load shows great variability, the load per month does not follow a
pattern that is strongly adhered to in all three years of the observation. However, we can note
that there is a usage peak in March-April, another in July-August, and low demand in January.

We next plot the system load per day of the week in Figure 11. Here, we can �nd a strong
trend, that people tend to submit requests on weekdays instead of weekends.

Finally, we plot the system load per hour of the day. We again see that people tend to submit
requests during normal working hours. The strong peak in load during (Greenbelt) working
hours also indicated that most users of NDADS work in the western hemisphere. We note that
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a survey of the email addresses of user requests shows international use of NDADS.
We have also recorded the system load due to ingest. Ingest contributes about .16 to the

system load, and shows a pattern that varies in time that is similar to that of �le requests.

6 Conclusions

We have studied the access characteristics of the access requests to the National Data Archive
and Distribution Service (NDADS) of the National Space Science Data Center (NSSDC), of
NASA's Goddard Space Flight Center. Much of NASA's electronic science data is available on
through the NDADS archive. The log �les present an opportunity to understand the access
patters of requests to scienti�c archives.

We can make the following observations about the user request pattern:

� Caching can be e�ective. 59.4% of all �les requested in 1994 had been requested previously
in 1994. High hit rates (30% to 50%) can be achieved by using a space-time working set
algorithm.

{ Many of the repeat requests are due to the same user. The high proportion of
short-term repeat requests from the same user indicates some users are uncertain of
whether their request was received. The high proportion of long-term repeat request
from the same user indicates that NDADS is being used as a substitute for local
storage.

{ While very large �les constitute a small proportion of the total number of requests,
they constitute a moderately large proportion of all bytes fetched from tertiary stor-
age. Very large �les tend to have a high repeat access rate. These two facts indicate
that a caching algorithm should not discriminate too strongly against large �les.

{ Access to a �le is bursty. A large proportion of repeat accesses occur within 4 days
of the previous access. The distribution of the time to the next access also has a
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long tail. These two facts suggest that a model of �le access rates should have
steady-state component and a bursty component triggered by an access.

� User request patterns tend to be very bursty. This fact combined with the high proportion
of repeat requests that are due to the same user explains some of the bursty nature of �le
accesses.

� Access to NDADS tends to follow normal working hours. There is an increase of activity
preceding important scienti�c events.

� The user community grew rapidly during the �rst year of operation, then grew at a slower
pace during 1993 and 1994. The intensity of use by each user grew from 1993 to 1994.

� File access shows a great deal of clustering.

{ Most requests are satis�ed by a few one or two platters. There is little correlation
between the number of �les requested and the number of platters required to service
the request.

{ Clustering is important for performance. Although the average system utilization is
low, the system load increases signi�cantly during working hours and during certain
months. If the time required to service a request doubled, NDADS would have
di�culty in meeting peak demand.

{ Some data volumes are much more popular than others. During 1994, there were
84 very hot platters (i.e., served more than 500 �les) and 28 very cold platters (i.e.,
served 1-10 �les).
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