
 Evaluating the Effect of Online Data Compression on the Disk
Cache of a Mass Storage System

 Odysseas I. Pentakalos and Yelena Yesha
 Computer Science Department

 University of Maryland Baltimore County
 Baltimore, Maryland 21228

 and
 Center of Excellence in Space Data and Information Sciences

 Goddard Space Flight Center
 Greenbelt, Maryland 20771

 A trace driven simulation of the disk
cache of a mass storage system was used to
evaluate the effect of an online
compression algorithm on various
performance measures. Traces from the
system at NASA’s Center for
Computational Sciences were used to run
the simulation and disk cache hit ratios,
number of files and bytes migrating to
tertiary storage were measured. The
measurements were performed for both an
LRU and a size based migration algorithm.
In addition to seeing the effect of online
data compression on the disk cache
performance measure, the simulation
provided insight into thecharacteristics of
the interactive references, suggesting that
hint based prefetching algorithms are the
only alternative for any future
improvements to the disk cache hit ratio.

I. Introduction

Mass storage systems are used in
research environments for storing data
generated by scientific simulations and
satellite observations in amounts on the
order of terabytes. The cost of storage
devices of that capacity is still very high
while the rate of increase in disk space
requirements by the users grows
continuously. This problem is especially
evident in scientific research centers where

enormous amounts of data are generated
on a daily basis which must be archived so
that they can be analyzed at a later time
[1],[2].

In this study the actual system
under consideration is the Unitree Mass
Storage System (UMSS) used at NASA’s
Center for Computational Sciences
(NCCS). The system administrators are
experiencing a situation where they
constantly need to purchase additional
storage devices which are filled to capacity
in a decreasing amount of time. The main
resource whose utilization must be
optimized in this case is storage capacity.
Removing the redundancy in the data
stored in the file system, by inserting an
online compression/decompression module,
is one method of increasing the effective
capacity of the system without the addition
of expensive hardware devices.

After considering various
alternative locations in the system at which
the compression algorithm could be placed
we determined that the user interface
would be the best choice. Some of the
advantages of placing compression at the
user interface are: a) does not impose an
additional load on the storage servers CPU,
b) reduces the amount of data that flows

through the network, and c) does not
require modifications to the Unitree code.

To evaluate the performance of
compression on the specific data stored at
NCCS, the ftp clients were modified to
implement Ziv-Lempel and LZW
compression transparently [3],[4],[5].
Sequential and pipelined implementations
were tested against two sets of files and the
performance of each implementation was
compared based on file compression ratio
and compression rate. An earlier paper
describes the implementations and the
results in detail [6].

In this study we examine the effect of
compression on the disk cache of the mass
storage system. A simulation is used to
determine the effect of compressing data on
the hit-ratio of the disk cache, the number
of migrations of files from the disk cache to
robotic storage, and the total number of
bytes migrating to robotic storage. We also
look at two different migration algorithms
and their effect on the hit ratio and the file
migrations.

Section II gives a description of the system
under consideration and reviews
terminology that will be used throughout
the rest of the paper. Section III describes
the simulation used in this study. Section
IV describes the simulations performed and
analyzes the results. Section V concludes
the paper and discusses future work.

II. System Overview

The UMSS is a hierarchical mass storage
management system which runs as a
centralized application program on top of
the Unix operating system and manages a
hierarchical mass storage file system. The
specific installation offers three levels in the

storage hierarchy. Figure 1 shows the
typical storage pyramid provided by most
hierarchical mass storage systems.At the
higher level it provides a disk array, with a
total capacity of 150 Gbs, which serves
mainly as a cache for the lower levels. The
second level has a capacity of 4.8 terabytes
provided by four near-line robotic tape
storage units. The third level is the off-line
storage vault which has the slowest transfer
rate serving as the long-term repository.

Fig.1 Hierachical Storage Pyramid

Users access files stored in the UMSS
using the ftp protocol from their local
workstations via a local area network. In
addition to the ftp protocol, UMSS also
provides an NFS interface to the file system
but due to performance and security
reasons the NFS protocol is not used by
many installations including the one at
NCCS. The UMSS was designed in a
modular fashion in order to make possible
its distribution over multiple host machines.
Figure 2 shows a block diagram of the
UMSS components [7].

Each of the components shown in
figure 2 is represented by one or more
independent daemon processes and is
responsible for certain tasks.

Fig 2. UMSS Block Diagram
The ‘‘Name Server’’ resolves string file
names used by the users, into unique
integer identifiers, used internally by all the
other components of the UMSS. The
‘‘Disk Server’’ keeps track of the files
stored in the disk cache, providing the view
of a Unix file system to the user. The
‘‘Disk Mover’’ is responsible for all
transfers to and from the disk cache. The
‘‘Migration Server’’ controls the migration
of files from the disk cache to lower levels
in the disk hierarchy to ensure that the disk
cache always has sufficient free space to
operate efficiently. The ‘‘Tape Server’’
keeps track of the files stored in the tape
storage units whether online or off-line.
The ‘‘Tape Mover’’ performs all file
transfers to and from a tape device. The
physical device manager is responsible for
managing the tape mounts, scheduling them
in an order which maximizes the utilization
of the system resources. Finally, the
‘‘Physical Volume Repository’’ is
responsible for mounting and dismounting
both automated online and off-line storage
physical volumes [8]. Any files retrieved
from the UMSS are first placed in the disk

cache, if they are not already there, and
then are transferred to the user. Likewise,
any files stored into the UMSS are first
stored in the disk cache and then they are
moved to a lower level of the hierarchy
through migration.

In an earlier paper we investigated the
effectiveness of an online data compression
algorithm placed at the user interface of a
mass storage system [6]. For a sequential
implementation the following inequality
describes the trade-off in time of
compressing the data online.

S

R

S

R

S r

R

R R

r

R

R r R

t c

c

t

t c

c

t

t c c

> +
−

> +
−

<

()1

1 1 1
(1)

where S is the size of the file, Rt is the file
transfer rate, Rc is the compression rate
and rc is the compression ratio normalized
to the range [0,1]. The left hand side is the
time it takes to transfer the file without
compression and the left side with
compression. If the compression rate of the
compression algorithm used is faster than
the transfer rate of the network between
the client and the server then the embedded
compression increases the effective
capacity of the storage server at no
additional cost. Note that by cost here we
mean the amount of time it takes to store a
file into the mass storage system. If this
inequality does not hold, the online
compression algorithm increases the
effective capacity of the system at the
expense of added time when storing the
file. The above inequality applies only to
the sequential implementation. Assuming
that the communication time between the
parent and child processes is negligible we
can derive a similar relation for the

pipelined implementation as shown in
inequality 2.

S

R

S

R

S r

Rt c

c

t

>
−

max{ ,
()

}
1

(2)

The total time of the pipeline is bounded by
the maximum of each of its components.
Which of the two components prevails will
depend on the particular client making the
request and on the network topology. If the
client is connected locally relative to the
server but is a slow machine then the
compression component will prevail
whereas on a fast machine which is a few
hops from the server the transmission
component will prevail.

III. Disk Cache Simulation

A trace-driven simulation of the disk cache
was used to ascertain the effect on the hit
ratio and on the migration of files caused
by file compression and migration
algorithm. A discrete event simulator was
developed using the ftp request traces to
drive the simulation.The disk cache size
was varied from 150GB, which is the actual
disk cache size at the NCCS site, to
250GB. Initially the cache was assumed to
be empty. The disk cache was represented
by a doubly linked list of structures which
described each file entry. The information
stored for each file were a unique file
identifier, the file size, a timestamp of the
time the file entered the disk cache, and an
indicator of whether the file is stored in the
disk cache or in the lower levels of the
hierarchy.

Put requests were placed in the disk cache.
If the file already resided in the cache or
lower in the hierarchy the operation was
processed as an update, ensuring that only
one copy of the file existed in the entire
mass storage system. For get requests, if

the file existed in the disk cache then the
request was considered a hit. If the file
existed lower in the hierarchy it was staged
in the disk cache. If the file requested did
not exist in the hierarchy, it was processed
as if it was in the lower levels of the
hierarchy and a new entry was created for
the file in the disk cache.

Migration in simulated time was performed
using a high water mark as in the UCFM. If
the amount of free space in the cache went
below the high water mark of 75 the total
disk cache capacity, files were migrated to
the lower levels of the hierarchy to create
more space. Two different migration
algorithms were tested. The first one, was
LRU based, selecting files to migrate which
had resided in the cache the longest without
being referenced. The second algorithm
was based on the file size, migrating larger
files first.

Since it would be impractical to collect the
compression ratios for each of the files in
the mass storage system each simulation
run used a fixed compression ratio. The
simulation was run for various compression
ratios ranging from 0% to 60%
compression.

IV. Results

The ftp interactive request logs for a period
of three months were used to run the
simulation. The total number of references
in that three month period was
approximately 106,000. The references
from the first two months were used for
bringing the disk cache to a warm state.
Then the number of hits, the hit ratio, the
number of files migrating to tertiary
storage, and the total number of bytes
migrated were measured for fixed values of
compression ratio.The simulation was run

also for two different migration algorithms.
The first migration algorithm, which
selected files to migrate if they had resided
on the disk cache the longest without being
referenced, will be referred to as the LRU
based algorithm. The second algorithm
which selected files to migrate based on
their file size will be referred to as the Size
based algorithm. The hit ratio was
computed as the number of hits per day
over the number of get requests on that
specific day.

One important observation that was made
about the reference patterns used in this
mass storage system was that the requests
do not exhibit significant temporal locality.
Users do not tend to re-use their files very
frequently as in a typical file system. This
implies that this specific mass storage
system is used more as an archive than as a
typical file system. Since the working set of
the get request stream continuously
changes, only low hit ratios are possible
regardless of size increases to the disk
cache.

In order to be able to compare the hit ratios
measured with some sort of an optimal hit
ratio we run the simulation on the same
trace data setting the compression ratio to a
value very close to zero. This allowed all
the files to fit within the disk cache,
imitating a disk cache of an enormous size,
generating no migrations. This experiment
was used to generate the optimal (OPT)
disk cache hit ratios. The same method was
used to compute the hit ratio of this cache
as in the other cases. Table I summarizes
the effect of compression on the number of
hits for each of the experiments. The table
is divided in three major column groups for
each of the migration algorithms. The first
column group shows the results for the
LRU based migration algorithm, the second

column group for the Size based migration
algorithm, and the last column shows the
results for the OPT disk cache. The first
two column groups consist of three
columns, one for each of three different
compression ratios attempted. Comparing
the results from the two migration
algorithms against the results under OPT
we see that the number of hits for both
algorithms are very close to the optimal.
Compression does not affect the hit ratio
very much and this is because the disk
cache is large enough to support the hits in
the reference patterns. It should be noted
that the LRU based algorithm exhibits the
inclusion property as expected since the
number of hits is non-decreasing with
increases in the disk cache size. On the
other hand, the size based algorithm in
certain cases decreases with a larger
effective disk cache size.

The hit ratios were also plotted in figure 3
for various compression ratios. The plot on
the top shows the hit ratio variation with
respect to the compression ratio for the size
based migration algorithm and the bottom
plot shows the variation for the LRU based
migration algorithm. It is apparent from
these figures that size based migration
provides higher hit ratios than the LRU
based algorithm. The variation in
compression ratio does not have significant
effect on the hit ratio and the reason for
this is the same as discussed in the previous
paragraph. This implies that adding
additional disks to the disk cache will not
have any effect on the hit ratio based on the
references analyzed. Also any further effort
in improving the hit ratio by varying the
migration algorithm will not generate any
significant improvement on the hit ratio.
The only possible method of increasing the
hit ratio would be to develop a prefetching

LRU Based Size Based
rc 0.0 0.2 0.4 0.0 0.2 0.4 OPT

1 285 285 286 285 286 286 286
2 87 87 87 104 104 104 105
3 186 186 186 186 186 186 202
4 342 342 342 343 343 343 352
5 235 241 242 435 435 435 493
6 1086 1087 1088 1089 1088 1087 1130
7 1323 1323 1323 1500 1500 1500 1698
8 143 143 143 145 145 145 153
9 60 60 60 63 63 61 63

10 250 250 250 248 248 248 252
11 321 321 321 317 317 318 324
12 422 422 422 434 434 434 464
13 371 371 371 354 355 355 409
14 376 381 381 376 376 377 436
15 1249 1249 1251 1244 1243 1244 1256

algorithm that is based on hints provided by
the user.

Fig. 3. Hit-Ratio versus Compression
Ratio

The second part of the simulation analysis
focused on the migrations. Since migration
involves the use of tape drives from the
robotic silos it is an expensive operation.
Thus, reducing the number of migrations or
the total number of bytes migrating to the
tape will improve the mass storage system’s
performance. Figure 4 shows the number of
files migrating versus compression ratio for
the two migration algorithms. The LRU
based algorithm maintains a consistent
number of migrations and tends to smooth
the migration operations over time. It
appears that the effect of file compression
is minimal. Looking at the peaks in the
LRU based algorithm it appears that
compression simply shifts the migration
effects but does not reduce their number.
The size based migration algorithm
decreases significantly the number of
migrations but it has the negative effect of
generating on certain days tremendous
migration traffic. Analyzing the file sizes
for both get and put requests we found that
the mean file size of files stored in the
storage system is an order of magnitude
larger than the mean file size of files

retrieved. Since the size based algorithm
removes larger files first, eventually it runs
out of large files and it has to remove a
huge number of small files to free space in
the disk cache.

Fig. 4. Number of Migrations versus
Compression Ratio

Figure 5 shows the number of bytes
migrating to robotic storage for various
compression ratios. It is apparent that for
both migration algorithms the higher
compression ratio provides significant
reduction in the number of bytes that need
to migrate. The size based migration
algorithm provides better performance
throughout the simulation period. The time
it takes the system to process a migration
involves an overhead time and a data
transfer time. The overhead time consists of
mounting the tape on a tape drive, a seek
time to place the tape drive heads at the
proper location, a rewind time after the
data have been written, and an unmount
time. Reducing the number of migrations

from the disk cache affects the overhead
time while reducing the number of bytes
migrating to robotic storage reduces the
data transfer time.

V. Conclusion

We evaluated the performance of an online
compression algorithm on the disk cache of
a mass storage system. A trace driven
simulation of the disk cache was used for
the evaluation. The traces used to drive the
simulator were collected from the ftp logs
of the system. The simulation was
configured to match the disk space and
migration algorithm of the system at
NCCS. The effect of compression was
simulated by uniformly reducing the file
size of the get and put requests. Various
compression ratios were used in the
simulation. The simulation also evaluated
two different migration algorithms,
specifically an LRU based and a size based
algorithm.

One important observation that was made
about the references at this mass storage

system was that the working set
continuously changes. This implies that the
disk cache hit ratio cannot be improved
significantly by increasing the disk cache
size since get operations are usually to files
that were stored in the mass storage system
a very long time in the past. This effect was
evident by comparing the two migration
algorithms against a disk cache which was
large enough to store all files stored during
the three month evaluation period. As a
result both algorithms attained hit ratios
very close to the optimal hit ratios of the
huge cache. Comparing the two migration
algorithms we found that the size based
algorithm decreases the total number of
bytes migrating to tertiary storage at the
expense of causing occasional peaks in the
number of files migrating. Both algorithms
were not affected by the compression ratio
due to the fact that the disk cache is of
large enough size to cover the intereference
pattern of the requests.

Future work will focus on evaluating
various prefetching algorithms.The current
simulation suggested that only the use of
user hints and an appropriate prefetching
algorithm can improve the hit ratio of this
system. The use of transparent informed
prefetching could be applied to improve the
hit ratio of the disk cache by exploiting
application level hints about future file
accesses [9]. Another area of future
research is the implementation and
evaluation of migration algorithms based
on a combination of file size and cache
residency time as described in [10],[11].
This simulation analysis showed that size
based migration reduces the number of
bytes that migrate to tertiary storage but
occasionally it produces a large number of
migration loads. By using a migration
algorithm based on the space time product
we expect that the migration peaks will

disappear, while maintaining the lower
number of bytes migrating.

Acknowledgements

We would like to thank Adina Tarshish,
Ellen Salmon and George Rumney from
NASA’s Center for Computational Sciences
at Goddard Space Flight Center for
providing the ftp traces and the NCCS file
set used for testing our ideas.

REFERENCES

[1] Randy H. Katz, Thomas E. Anderson,
John K. Ousterhout, and David A.
Patterson, ‘‘Robo-line Storage: Low
Latency, High Capacity Storage Systems
over Geographically Distributed
Networks’’, Tech. Rep. UCB/S2K-91-3,
University of California, Berkeley, March
1994.

[2] Ethan L. Miller and Randy H. Katz,
‘‘An Analysis of File Migration in a Unix
Supercomputing Environment’’,Tech. Rep.
UCB/CSD-92-712, University of
California, Berkeley, March 1993.

[3] J. Ziv and A. Lempel, ‘‘A Universal
Algorithm for Sequential Data
Compression’’, IEEE Transactions on
Information Theory, vol. 23, no. 3, pp.
337-343, 1977.

[4] Debra A. Lelewer and Daniel S.
Hirschberg, ‘‘Data Compression’’, ACM
Computing Surveys, vol. 19, no. 3, pp.
261-296, September 1987.
[5] Terry A. Welch, ‘‘A Technique for
High-Performance Data Compression’’,
IEEE Computer, vol. 17, no. 6, pp. 8-19,
June 1984.

[6] Odysseas I. Pentakalos and Yelena
Yesha, ‘‘Online Data Compression for

Mass Storage File Systems’’, Tech. Rep.
TR-CS-95-05, University of Maryland
Baltimore County, July 1994.

[7] Adina Tarshish and Ellen Salmon,‘‘The
Growth of the Unitree Mass Storage
System at the NASA Center for
Computational Sciences’’, 3rd NASA
GSFC Conference on Mass Storage
Systems and Technologies, College Park,
Maryland, October 1993, pp. 19-21.

[8] Convex Computer Corporation,
Unitree++ System Administration Guide,
First Edition, Convex Press, Richardson,
Texas, 1993.

[9] Hugo R. Patterson, Garth A. Gibson,
and M. Satyanarayanan, ‘‘A Status Report
on Research in Transparent Informed
Prefetching’’, Operating Systems Review,
vol. 27, no. 2, pp. 21-34, April 1993.

[10] Alan Jay Smith, ‘‘Analysis of Long
Term File Reference Patterns for
Application to File Migration Algorithms’’,
IEEE Transactions on Software
Engineering, vol. SE-7, no. 4, pp. 403-417,
July 1981.

[11] Alan Jay Smith, ‘‘Long Term File
Migration: Development and Evaluation of
Algorithms’’, Communications of the ACM,
vol. 24, no. 8, pp. 521-532, August 1981.

