
1

Derived Virtual Devices: A Secure Distributed File System
Mechanism1

Rodney Van Meter, Steve Hotz, Gregory Finn
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292
{rdv,hotz,finn}@isi.edu

 310-822-1511

Abstract

This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism
used by the Netstation Project to provide secure shared access to network-attached
peripherals distributed in an untrusted network environment. DVDs improve Input/Output
efficiency by allowing user processes to perform I/O operations directly from devices
without intermediate transfer through the controlling operating system kernel. The security
enforced at the device through the DVD mechanism includes resource boundary checking,
user authentication, and restricted operations, e.g., read-only access. To illustrate the
application of DVDs, we present the interactions between a network-attached disk and a file
system designed to exploit the DVD abstraction. We further discuss third-party transfer as a
mechanism intended to provide for efficient data transfer in a typical NAP environment.
We show how DVDs facilitate third-party transfer, and provide the security required in a
more open network environment.

1. Introduction

A network attached peripheral (NAP) is a device that communicates with the external world
via a network interface, rather than a bus. System buses limit the sharing of devices and do
not scale well in bandwidth, distance or number of devices. Communication via a local area
network (LAN) provides flexibility in system design and avoids the problems of shared-
bus communication, while allowing us to exploit the ever-increasing aggregate bandwidth
provided by high-speed networks. These advantages are changing the way computer
system architectures are defined [1], and we see NAPs becoming a significant component
of new storage systems [2,3] and new multimedia architectures [4,5].

1 This research was sponsored by the Advanced Research Projects Agency under Contract No. DABT63-93-
C-0062. Views and conclusions contained in this report are the authors' and should not be interpreted as
representing the official opinion or policies, either expressed or implied, of ARPA, the U.S. Government,
or any person or agency connected with them.

2

 However, components of a system built around a LAN cannot depend on the tight
coupling and simplifying assumptions provided by a bus-based architecture. The boundary
between the "inside" and "outside" of a system grows fuzzier, and the inherent level of
trust that can be assumed among components of the system must decrease. Many
current NAP system designs simply treat the LAN like a different type of bus, but do not
address this added "open-ness" dimension and the consequent security issues. This may
prove problematic unless the type and sources of network traffic are limited to prevent
misuse of the NAPs.

 The Netstation Project is explicitly addressing the problems inherent in using NAPs in an
open network environment. A Netstation is a heterogeneous distributed system comprised
of NAPs brought together as a single system operating across a network. One of our
primary goals is to support multiple Netstations made up of components connected via a
single, shared LAN. The requirement to allow individual devices to be shared by multiple
Netstation systems results in additional complexity. Moreover, we have chosen to support
IP connectivity of these devices, to allow Netstations to be configured across LAN
boundaries. Each of these goals introduces issues of safety and security.

This paper presents derived virtual devices (DVDs) as the mechanism used by the
Netstation Project to provide secure shared access to network-attached peripherals
distributed in an untrusted network en- vironment. The security enforced at the device
through the DVD mechanism includes resource boundary checking, user authentication,
and operational restriction, e.g. read-only access. Yet, DVDs enable efficiency by allowing
user processes to perform I/O transfers directly from devices without intermediate transfer
of data through the controlling operating system kernel. DVDs also support nested or
recursive granting of access to the device, allowing file and window systems to run
recursively.

The remainder of this paper is organized as follows. Section 2 presents an overview of the
Netstation Project and its architecture to provide context for the discussion of DVDs.
Section 3 describes the DVD abstraction, command interfaces for management and access,
and security mechanisms in detail. In section 4, we illustrate the use of DVDs by presenting
the interactions between a network-attached disk and a file system designed to exploit the
DVD abstraction. Section 5 shows how DVDs can facilitate third-party transfer for
efficient data transfer between NAPs. Sections 7 through 9 discuss related work, the
current state of our implementation, and our conclusions.

2. Netstation Environment

The Netstation Project [6] evolved from research on the Atomic LAN [7], a 640Mbps
point-to-point switched LAN developed at ISI from parallel computing chips designed by
Chuck Seitz and his group at Caltech2. The idea behind Netstation is to substitute a gigabit
network in place of a workstation bus, similar to the efforts of the DAN [4] and
ViewStation [5] groups. Devices such as disks, cameras, displays, and low-bandwidth
input concentrators are connected to processing nodes via the LAN. Figure 1 shows
a typical hardware configuration.

2 The Atomic LAN has become a commercial product of Myricom known as Myrinet.

3

cross-
bar cross-

bar
CPU/Memory

CPU/Memory

RAM Disk

Hi-Def
Display

magnetic
disk

magnetic
disk

keyboard/mouse

to LAN/WAN

camera

Figure 1: Netstation Architecture

The primary advantage of a Netstation is allowing high-bandwidth devices to
communicate directly, alleviating the shared-bus bottleneck. An example application
would be the transfer of video data directly from an incoming network port to a network-
attached display device, without passing through the main processor or the cpu/memory
bus. A second potential advantage is the flexibility afforded by dynamically configuring
workstation components from a shared pool of resources.

The Netstation architecture includes (a) two related device abstractions (Network Virtual
Devices and Derived Virtual Devices) which provide for the required system
functionality, and (b) the management information and protocols needed to access and
control the networked devices. The Network Virtual Device abstraction is used for higher
level functions such as resource location and naming. Derived Virtual Devices are lower-
level abstractions composed of two components: (1) some portion of an NVD resource (an
object), and (2) an execution context which provides a functional interface
(methods). A concise description of Netstation architectural components and their
interactions is given below.

2. 1 Network Virtual Devices

A Network Virtual Device (NVD) is a named physical device resource that is attached
to the network. An NVD is the object granularity for device naming, resource location, and
management within a Netstation system. One or more NVDs may be housed in a chassis

4

along with a network media interface and sufficient processing power to provide and
manage the interface that is presented on the network. Each NVD is managed
individually (i.e. it has a name and a description in a device management database), even
though multiple devices may reside at the same network interface3.

We have chosen to use Internet Domain Names [8] to identify NVDs on the network. The
DNS can then provide the mapping from device name to the address of the network
interface where the device resides. Given the Internet domain name (and address) of the
device, a client that desires to use the device sends requests to a well-known NVD
management port.

The functions of system configuration and resource location are built on top of the NVD
abstraction. In the simplest case, resource location can simply be obtaining a pre-
configured device name. To configure a file system to use a particular NVD disk, the
domain name of the NVD would be sufficient to identify the resource. For example,
"sd0a.disk1.isi.edu" would replace "/dev/sd0a" in a file system mount table. In the more
complex case of dynamically finding available resources, space, the resource location
library routines return NVD domain names. This scheme is modular and flexible as
different resource location mechanisms can be used depending on the needs of the
particular system that requires device resources.

An important point to note is that data-related commands (e.g. READ) cannot be issued to
an NVD. Instead, NVDs accept control commands that create and manage a set of abstract
devices intended to support data I/O. These abstract devices are referred to as Derived
Virtual Devices.

2. 2 Derived Virtual Devices

A Derived Virtual Device (DVD) is an abstraction of a physical device that is
comprised of (a) all or some part of an NVD's resources, and (b) a set of functions that
provide access to, and control of, the device resources. DVDs are created (and destroyed)
dynamically, and each is accessed through a port number that is unique for the lifetime of
the DVD. This port number also serves as the identifier for the DVD resource; the
Netstation system does not maintain a persistent DVD identifier similar to NVD domain
names4.

DVDs enforce the bounds checking and operational restrictions required for safe shared
access, providing lower-level functionality than the naming and management functions
based at the NVD level.

DVDs can be derived from the resources of an NVD, or from the resources of a parent
DVD. In the former case, the default information maintained about the NVD is sufficient to

3 Requests sent to an interface will contain the name of the desired device in order to multiplex between
different devices available via the interface.

4 Services built on top of DVDs may retain persistent DVD information including an identifier for some
portion of its resources.

5

specify the derived device mapping. In the latter case, the user/owner of the parent DVD
may be offering a more complex, "value added" abstraction based on its DVD (e.g. a file
system based on a DVD representing a set of blocks from a disk NVD). Creating a DVD in
this case requires that the owner explicitly specify the portions of its DVD to be shared, and
the required mapping into the derived DVD.

Section 3 discusses DVD functions in more detail.

2. 3 Device Command and Access

We chose RPC as the communication abstraction since it models the request-response
nature of bus-based device interactions. Use of RPC implies that the NVD presents one (or
more) procedural interface(s) to client applications. We distinguish between the following
two types of RPCs:

• DVD Management Procedures (DMPs) are sent to NVDs to control and
manage device access through the creation and maintenance of DVDs (e.g.
create_DVD() and install_DVD_map()).

• DVD Command Sets (DCSs) provide an execution context for each DVD
which allows safe shared access to device resources (e.g. readblock() and
writepixel()).

Authenticated RPC is used to avoid unauthorized device access, where the type/level of
authentication can be configured locally and varies according to device type and RPC
procedure.

2. 4 NVD Management

Netstation systems are tied together with a local database that defines the available
NVDs and DVDs. This database is known as the Network Virtual Device
Manager (NVDM). The NVDM contains information as follows:

• NVD entries comprised of attribute-value pairs that describe characteristics of
the available devices (e.g. NVDname: sd0a.disk1.isi.edu, NVDtype: disk,
NVDblock cnt: 65536).

• DVD entries that associate (1) an NVD resource, (2) a subset of the DVD
Command Set for the NVD resource, (3) an access control list to specify users
allowed to create the described DVD, and (4) an indication of the required level
of user authentication.

Multiple DVD entries may exist for each NVD to grant different access privileges to each
system user. An NVD definition language defines the permissible NVD attribute-value
pairs, and includes an enumeration of the DVD command set universe.

Users of Netstation devices consult this database to locate devices that can meet required
specifications. Each NVD must consult this database to obtain configuration and access
control information for the DVDs it will support.

6

3. Derived Virtual Devices

A derived virtual device (DVD) is an abstraction of a physical device that can be viewed as
a set of resources and an execution context at the device. The execution context enforces
the desired constraints associated with the device5. Clients of a device see a virtual device,
which provides a set of services such as nonvolatile storage of blocks (a disk drive DVD)
or display of pixels (a frame buffer DVD). This virtual device is mapped to real physical
resources by processing resources at the NVD (i.e. a device controller).

DVDs are created by any entity with access to device resources. We use the term derived to
indicate that the device is constructed from an already existing grouping of resources. The
original resource is referred to as the parent, and the new DVD as the child. The parent
resource can either be an NVD or another DVD. In either case, the access rights granted to
a child must be a subset of the parent's access rights; this constrains both (a) the set of
resources accessible, and (b) the operations that may be performed on the device. Note that
NVDs are strictly a set of resources, and do not have associated data-access procedures.
Hence, in the case of a parent NVD, the constraints placed on the Device Command Set
must be obtained from the configuration information maintained by the local Netstation
management database (i.e. the NVDM).

The owner of a virtual device grants access to others by creating a mapping within the set
of resources it owns, sending that mapping to the virtual device to create a new virtual
device, granting client access to the DVD, and informing its client of how to communicate
with the new virtual device.

The new, secondary client is then allowed to communicate directly with the device (via the
new DVD), without the intervention of the granting server. The key to ensuring that the
secondary client does not overstep its newly-acquired authority to execute commands at the
device is that the device enforces the constraints of the new DVD. These restrictions are
implemented by creating a customized set of procedures, parameterized with the particular
DVD limitations and lacking the restricted operations.

DVDs can be nested; any client that has access to a DVD can create a child of that DVD.
Although the focus is the use of DVDs for mapping files, once the client has access to the
DVD it may assign any meaning to the blocks it chooses. Because a DVD presents the
same interface as its parent, it is possible to run systems in a recursive fashion; file systems
can be built on DVDs created by other instances of the file system, as in stackable filing
[10], or window systems can be run on virtual displays that are actually windows on larger
virtual displays, much like Plan 9's 8-1/2 [11]. For example, nesting is also used when the
file server grants access to a user process, which can then grant access to other devices to
facilitate third-party transfer, as described in section 5.

5 DVDs are related to the concept of virtual store as defined in the Open Storage Systems Interconnection
(OSSI) model [9]. Differences are noted in section 7.

7

Section 2.3 introduced the two types of DVD RPCs: DVD Management Procedures and
DVD Command Sets. The following sections discuss these interfaces in more detail.

3. 1 DVD Management Procedures

We have defined a protocol which describes the full functionality of a DVD. It is a set of
commands used for controlling DVDs which we collectively call the DVD Management
Procedures (DMP). These are the commands sent to NVDs which manipulate the DVDs
themselves, rather than perform actual I/O operations.

The create_DVD() command is the most critical of these procedures. To fully specify
DVD creation requires all of the following information:

• An ID of the user that is to be granted access to the new DVD.

• A set of resources. This includes an identifiable resource (either an NVD or
existing DVD), and a specification of the resource subset to be accessible by the
new DVD.

• A (possibly trivial) mapping from the new DVD address space (e.g. block
numbers) into the physical resources.

• The subset of DVD Command Procedures that the user is permitted to use (e.g.
cannot use write function).

• Ranges for parameters values for each DVD RPC to enforce constraints.

• Authentication level/type required for each DVD RPC.

All of this information is required so that the DVD creator can establish access constraints
on the DVD.

Other commands allow the creator to modify the operating environment of the DVD. For
example, it must be possible to dynamically increase the size of a child DVD which
represents a file mapping (install_DVD_map()). This is superior to the simpler
alternative approach where the DVD must be destroyed and recreated, forcing the client to
reconnect.

The creator must also be able to determine (normally at child DVD destruction time) certain
information about the usage of the child DVD. For example, it may be necessary to receive
a list of the blocks that were written to the child DVD, a feature necessary for effective
implementation of write before read (described in section 4.4).

Examples of semantic constraints that DVD creators must be able to specify include address
remapping and limits and access control features such as read only, write before read and
append only (for tape), and restrictions on management operations such as modification of
NVD owner lists.

The semantic flexibility provided means that it is possible to define new commands, which
might be useful for compression, encryption, storage allocation, parity computation for

8

distributed RAID [12,13,14], and "composite" virtual devices (striping for disks or tapes,
treating multiple displays as a single large display, etc.).

Our prototype DVD creation mechanism is based on Scheme [15]. The DVD creator
downloads Scheme code at create time, specifying a Scheme function to be executed
before and after the execution of each command at the NVD, to adjust argument values
(block addresses, etc.) and determine if permissions would be violated by executing the
command. Note that use of such a language in a non-prototype environment would raise
security concerns that must be addressed. In principle, any of the currently proposed
"safe" languages (Java, Safe-Tcl, Penguin, etc.) could be used; for ease of implementation
we chose Scheme.

3. 2 DVD Command Sets

DVDs provide a set of "data-related" or "I/O-related" commands that can be executed. We
refer to these as the DVD Command Sets (DCSs). The interface provided is of course
device-specific, and the same device may in fact present several levels of interface. A disk
drive, for example, may present a lower-level block-oriented interface, such as the Small
Computer Systems Interface (SCSI) or Intelligent Peripherals Interface (IPI), or a higher-
level file-oriented interface such as NFS. A display may present a simplified pixel-oriented
interface, or a high-level interface that includes windowing functionality, font management,
etc., as X Windows does. In general, Netstation devices provide lower-level, device-
oriented interfaces. The choice of interface for RPCs executed at the DVD for data I/O
is, to a certain extent, orthogonal to the DMP.

As an example, the RPCs appropriate for a disk drive patterned on a SCSI interface
include:

• data operations: READ, WRITE, ERASE, COPY, VERIFY

• block management: FORMAT UNIT, REASSIGN BLOCKS, READ
DEFECT DATA, READ CAPACITY, error level control, etc.

• buffer management: write caching policy, replacement algorithm, full/empty
ratios for initiating data transfer, etc.

• physical control: TEST UNIT READY, START/STOP UNIT (spin up
and spin down, eject), and PREVENT/ALLOW MEDIUM REMOVAL (for
removable drives), etc.

In the normal SCSI model, READ returns data to the original requestor, and third-party
copy is a complex variant of the COPY command. In Netstation, DVDs simplify addressing
of data blocks, allowing commands such as READ to simply and nearly transparently
become third-party transfers. Third-party transfers are discussed in Section 5.

9

3. 3 Security

The havoc that can be wreaked on a disk drive by misuse of commands such as FORMAT
greatly exceeds that of TEST UNIT READY. Thus, the level of authentication and
privilege required to execute commands differs.

The level of security required to execute specific RPCs is established at DVD creation. Two
factors, the level of authentication and the level of integrity, can be specified independently
for each of the two parts of an RPC, the RPC control block and the data. The two parts are
controlled separately because they transit the network separately, and may even have
different destinations, as in third-party transfer. The large size of most data segments,
compared to the RPC control block, also makes it desirable to allow data to be transferred
without compute-intensive operations, such as encryption.

Several levels of authentication are provided. Execution of some commands requires no
authentication. Others may use known weak methods such as host source address, which
has the two major flaws of being spoofable and not unequivocally identifying who at a
particular node issued the RPC. The examples in this paper assume that the Kerberos
authentication system is used, which we expect to be a common mode of operation.

The integrity of the data transferred can also be selected. Some RPC control or data blocks
may be protected only by the network's built-in mechanisms, such as checksumming,
which can protect the data against accidental corruption in the network but not malicious
tampering, while others require that the integrity of data be assured (perhaps via a one-way
hash), a common choice for the RPC command block. Still others may require that all data
be protected from modification. Management functions (such as the creation of new child
DVDs) typically require the highest possible protection.

4. A DVD File System

DVDs can be used as an enabling technology in file systems. We refer to our file
manager as STORM (STORage Manager). In this section, we detail several system
operations, including booting a device, booting the file system itself, reading a file, and
extending a file for writing.

Note that transport-level network overhead is not included in these diagrams. As these
messages are typically sent reliably, additional packets for connection setup and control
may be required. However, these message sequences do include some infrequent
operations such as acquisition of an authentication key; such sequences will typically not
have to be executed for every operation.

4. 1 Booting a Device

When a Netstation device boots, it must configure itself, including determining who is
allowed to access it. Some of this information must be retrieved from the device's NVDM.
The device's built-in configuration must be adequate to allow it to find and communicate
securely with its NVDM. The information the device starts with (stored in nonvolatile RAM
or otherwise statically configured) includes the identifier of its NVDM and a secret key it
shares with Kerberos. Because this secret key will unequivocally authenticate the Kerberos
server, which will authenticate the NVDM, it is not necessary to know the locations of the

10

Kerberos server and the NVDM; the locations may determined dynamically, perhaps by a
multicast on the local network. The steps involved are, taking a disk as an example (see
figure 2):

1. The disk authenticates itself to Kerberos.

2. The disk receives a Kerberos ticket to access the Ticket Granting Server (TGS).

3. The disk requests a ticket to access its NVDM.

4. The disk receives the ticket.

5. The disk requests its DVD configuration and Access Control List (ACL) from its
NVDM.

6. The NVDM sends configuration info to disk.

Kerb TGS

NVDM

Disk
NVD

2

43

1

6 5

Figure 2: Booting a Disk

In our simple example, the disk receives an ACL indicating that STORM is the only user
allowed, and it has unlimited access to the entire disk.

4. 2 Booting STORM

Booting STORM requires the following steps (see figure 3):

 STORM authenticates, asks for DVD

1. STORM must authenticate itself to Kerberos, the authentication server.

2. STORM receives a Kerberos ticket to access the Ticket Granting Server (TGS).

3. STORM requests a ticket to access the disk.

11

4. TGS sends STORM the ticket, which contains, among other information, a
session key for STORM and the disk to share.

5. STORM requests access to the disk NVD. This is a create_DVD() request.
In the simple case of the disk containing only a file system managed by STORM,
this request will be for unlimited access to the entire disk.

6. The disk checks the permissions, creates the DVD, and returns the DVD
identifier to STORM. Setup is now complete, and STORM is free to access the disk
NVD, subject to the constraints imposed by the DVD definition.

 Data transfer

7. STORM requests a read of the file system superblock.

8. Data is returned.

9. STORM requests a read of the block containing the file system root directory's
inode.

10. Data is returned.

11. STORM requests a read of the block(s) containing the root directory.

12. Data is returned.

Kerb TGS

NVDM

Disk
NVD

STORM

rdv

1 2

3
4

5,7,9,11

6,8,10,12

Figure 3: Booting STORM

12

Note that near the end of the sequence, once the DVD has been established, data requests
and responses are processed with a minimum of messages. This is typical of DVD
operations; a large number of control messages are used to establish safe conditions for
high-speed data transfer. This will be most effective when large amounts of data are to be
transferred or many requests executed.

0 1 2 3 4 5 6 7

Parent DVD (real disk NVD)

0 1 2

Child DVD (a single mapped file)

Figure 4: Using a New DVD for a File Mapping

4. 3 Reading a File

When an application program opens an existing file, the request is transmitted to STORM.
STORM, as the owner of the DVD holding the entire file system, creates a child DVD (with
an access list specifying the new user) that includes only the blocks that are part of the file,
and returns a DVD identifier (port number) to the new DVD. Figure 4 shows a newly-
created DVD that maps a simple three-block file.

Figure 5 shows the steps involved in opening a file through STORM:

1-4. rdv authenticates himself to Kerberos and acquires a ticket to access STORM.
This is analogous to steps 1-4 of booting STORM.

 Establish DVD for rdv

5. rdv sends a file open request to STORM.

6. STORM determines that the best way to handle this request is to create a DVD
for rdv at the disk drive, so it sends a create_DVD() command to the disk NVD.
This command, detailed in section 3.1, contains information about who the DVD is
for as well as what access is being permitted.

7. The disk ACKs the DVD create with the appropriate information.

8. STORM bundles the DVD identifier into a package and sends it to rdv. STORM
may have to include extra information for the file system library code being

13

executed by rdv, such as what operations require the cooperation of STORM,
how to handle partial blocks, what to do about EOF, etc. DVD setup is now
complete.

 rdv gets a ticket

9. rdv, who has not previously accessed the disk, requests a ticket for this purpose.
If subsequent file opens access the same disk, this step will not have to be
executed.
10. TGS returns the ticket.

 Data transfer

11. rdv sends his first data request to the disk NVD.

12. The disk NVD responds with the data.

13. rdv sends his second data request to the disk NVD.

14. The disk NVD responds with the data.

Kerb TGS

NVDM

Disk
NVD

STORM

rdv

1 2

5

6

7

4,103,9

8

12,14

11,13

Figure 5: Opening a STORM File

The use of DVD file systems is most efficient for applications in which the data transfer
phase is the primary performance bottleneck. The process of opening a file should happen
only rarely compared to the number of read/write operations to be performed on the file. If
that is not the case (e.g., an application that opens many small files), a normal file system
RPC is likely to be more efficient. A storage manager can maintain file-size information to
recognize small file requests. Then, rather than establishing a DVD, it can retrieve data and
forwards it to the client similar to a conventional NFS interaction.

14

0 1 2 3 4 5 6 7

Parent DVD (real disk NVD)

0 1 2

Child DVD (a single mapped file)

3 4

Write Before Read blocks

Figure 6: Write Before Read DVD for a File Mapping

4. 4 Write Before Read

An optimization we have developed in conjunction with DVDs is write before read (WBR).
It allows servers to grant access to resources containing sensitive data, without disclosing
that data, and without requiring explicit, expensive erase operations.

In a traditional kernel-based system, new blocks are allocated to a user's file when writes
are made to the file, or, depending on the FS implementation, when the file's size is
extended but not all of the blocks are written. These unwritten blocks cannot be read until
they have been written, because they may have once been allocated to a different (now
deleted) file containing someone else's private data. This constraint is enforced by the
kernel and file system. The safest solution is of course to erase the blocks explicitly before
granting access, however this has a large negative performance impact. Thus, the concept
of write before read comes into play.

The DVD abstraction allows STORM to create a DVD representing a file, and tailor the
DVD Command Set so the WRITE procedure is parameterized to enforce the WBR
restriction. STORM simply provides (as an optional argument to a create DVD RPC) a list
of blocks to be written before they are read.

Figure 6 shows the same file from figure 4, extended two blocks, presumably as a result of
a client request to read or write past the end of the physical file allocation. The server that
lengthened the file (the owner of the child DVD) marked the two new blocks as WBR,
since it knows that those blocks may contain data from having previously been used as part
of another file.

When a child DVD is destroyed, the write-first list must be reconciled with its parent. This
is executed at the parent DVD. The owner of the parent DVD can request notification of the
destruction of the child DVD, and along with it an accounting of blocks that remain
unwritten, data which it can use when creating its next child DVD.

15

5. DVD Third-Party Transfer

Third-party transfer is a mechanism that specifies movement of data, where the party
requesting the transfer is neither the source nor the destination of the data. This is a
common mechanism in NAP systems that provides support for efficient data transfer
between devices, without a copy through the controlling entity.

In this section, we show how DVDs support third-party transfer by presenting an example
transfer from a disk drive to a display DVD.

In a Netstation, third-party transfer differs from a primary transfer only in that the locus of
control is different; the mechanics of the transfers are the same. It does, however, result in
an increase in the number of messages transferred across the network.

One DVD can transfer data to another. This can be done by creating two DVDs, one for the
source and one for the destination, that each linearize the area to be transferred, creating a
virtual mapping window in a fashion similar to the Parallel Transport Protocol (PTP) [16].
As with PTP, the mapping to create the virtual mapping window is done at the storage
server, rather than at the device. However, using DVDs, this mapping is then
communicated to the devices in the form of the creation of child DVDs. The mapping is
then enforced by the child DVDs themselves.

Using a DVD as the destination has the advantage that improper behavior by the source of
the data cannot corrupt data at the sink. Giving the source device unlimited access to the
destination can allow overwriting or erasing of data if the source misbehaves due to
programming errors, concurrency conflicts, or malicious misuse of the source. An
important point is that the destination device does not have to trust the source, only the
storage server from whom it receives the mapping it enforces. This helps limit the damage
that can be caused by security breaches at the devices, though the storage server itself
remains the ultimate key to overall system security.

5. 1 "Push" Transfer

Figure 7 shows the operations necessary to initiate one type of third-party transfer,
"pushing" data from a disk drive to a display. This figures assumes (1) rdv has already
opened the file on the disk as detailed in section 4.3, and (2) the display has already booted
and retrieved configuration information as explained in section 4.1). From this point, the
steps in establishing the connection are:

1-2. rdv gets a ticket to talk to the display.

3. rdv sends a create_DVD() request to the display, requesting write access to
the whole screen for himself.

4. The display ACKs the create with the appropriate information.

5. rdv sends a create_DVD() command to the display, giving the disk NVD
write access to a rectangular region of the screen, and mapping it so that (0,0) for
that DVD maps to the upper left hand corner of the rectangle. This simplifies the
disk's access to the display.

16

6. The display ACKs the create with the appropriate information.

7. rdv sends a third party copy command to the disk DVD he has access to,
requesting that the disk drive send data to the display. This first request includes the
ticket and DVD identification information the disk needs to access the display, but
that information does not need to be transferred for subsequent requests.

8-9. The disk has not accessed the display, so it gets a ticket from TGS.

10. The disk sends data to the display.

11. The display ACKs the command to the disk.

12. The disk ACKs the command to rdv.

Note that subsequent requests can execute much more quickly, since the DVD state is
preserved; this eliminates steps 3, 4, 5, and 6. Note also that interactions with Kerberos
and TGS may be eliminated for subsequent setups if valid tickets are still held. Caching the
ticket eliminates steps 1, 2, 8, and 9, leaving a eight-step process instead of twelve.
Additional requests from rdv for data transfer result in four messages:

13. rdv requests the disk drive to transfer data.

14. The disk drive sends the data to the display.

15. The display ACKs the command to the disk drive.

16. The disk drive ACKs the command to rdv.

This is the bare minimum of messages possible. STORM has not had to be involved at all
in this child DVD create or the individual I/O operations, because rdv is granting access to
resources he already has access to.

Note that this is asymmetric; the disk drive has access to the display, but not vice-versa,
because no DVD allowing the display to access the disk drive has been set up.

17

display

rdv

Kerb TGS

NVDM

Disk
NVD

STORM

3,5

4,6

8

9 2 1

7,13

10,1411,15
12,16

Figure 7: Third Party "Push" Transfer

5. 2 "Pull" Transfer

The previous example was shown as a "push" transfer, with the data source initiating the
transfer. An equivalent transfer can be set up in the opposite direction, with the display
sending READ commands to the disk drive rather than the disk drive sending WRITE
commands to the display. This we refer to as a "pull" transfer.

The choice of whether to use a push or pull transfer can be made based on the relative
capabilities of the two nodes. If rdv's latency to the two devices is significantly different,
the choice can be made to reduce the total time for the four messages necessary for each
transfer. A push transfer would be appropriate if rdv has low latency to the disk drive and
high latency to the display, and a pull would be the correct choice in the opposite case.

6. Implementation Issues

The client of a DVD (for example, a user process) accesses the DVD as if it were a regular
block-oriented device. Library code would implement read() and write()
transparently to application code, thus preserving the investment in software development.
A relink may be required, however.

This library code will run entirely in user mode; once the mapping of the file has been done
and the DVD created by the device's owner, no further communication with the owner (the
storage manager) is required. Reads and writes are done via user-level RPCs directly to the
DVD. If the network code runs in the user's context as well (as is done on some high-
performance systems), file I/O may be executed entirely without leaving the context of the
application. This can be especially useful on systems that provide low latencies on RPCs.

18

The library read and write code maintains some structures similar to those normally handled
by the kernel file system, such as the EOF marker, which must be returned to the true file
system at file close (or process termination) time.

The ability to execute file I/O without the intervention of another process or kernel may be
especially useful on distributed systems or on multicomputers, where the file system
manager may not be local to the client's node. This allows separation of the operations for
actually executing I/O from those for managing disk space, directory structures, etc., which
may be centralized or distributed without regard to where the I/O must be conducted.

This limited-functionality library will also result in less memory use at the compute nodes.
On massively parallel processors (MPPs), for example, the memory savings of not running
the full file system code locally on each of a thousand nodes can result in savings of tens to
hundreds of megabytes of RAM.

When the process attempts to write past the end of the existing block allocation,
the library code recognizes this, and communicates a request to the file manager to extend
the file. The file manager then allocates additional data blocks and communicates an
updated file mapping to the child DVD. Should the application (either deliberately or
through a mistake in the library code) attempt to read or write past the end of the child
DVD, an error is returned. See section 4.4 for more details.

7. Related Work

The projects most similar to the basic concept of Netstation are MIT's ViewStation [5] and
Cambridge's Desk Area Network (DAN) [4]. Both projects are ATM-specific, and
concentrate more on local-area traffic, with careful distinctions between the "inside" and
"outside" of the system, whereas Netstation is fully Internet-accessible and has no
system boundary.

As already discussed, DVDs have much in common with virtual stores from the IEEE Open
Systems Storage Interconnect model [9,17]. DVDs differ from virtual stores in several
respects. DVDs do not support composite devices, while a virtual store may represent
striping across more than one disk, for example. However, DVDs provide more
semantic flexibility, in that the owner of a device (or DVD) is allowed to grant any arbitrary
subset of its own capabilities (including management functions) to its children when
creating DVDs, while virtual store is limited to a data mapping of storage devices.
Moreover, although the focus of this paper is on DVD use in file stores, DVDs are more
general and may be used for other network attached peripherals such as displays.

Numerous projects have proposed giving the disk node more autonomy, as part of parallel
file systems [18,19] or to execute their own space allocation [20,21]. DVDs, with their
flexibility and programmability, provide a platform which could be used for similar
purposes.

8. Status and Future Work

Much remains to be implemented before Netstation can be considered complete.
The network-attached display hardware is complete, and programming of it nearly

19

so. An implementation of the X Window System using the display, with a prototype
implementation of the DVD definition mechanism, is complete. A prototype software
version of the keyboard device is under way. Design of the hardware for the camera is
under way.

STORM itself, and the user library that accesses it, are in the early stages of
implementation. Early goals for the implementation include the ability to use third-party
transfer to move data to and from the display, via DVDs. The details of the API for file-
related and non-file I/O are still in development. The Kerberos authentication system has
not yet been incorporated into the system.

Future research includes defining a composition function so that multiple devices can
behave as a single virtual device. As mentioned above, DVDs are typically derived from a
single device, however it is desirable to provide a higher-level abstraction to create
composite devices.

9. Conclusion

We have shown the design of a device abstraction, derived virtual devices, which provides
the efficiency of low-level device access while maintaining many of the protections of
higher-level abstractions such as files. We have described a file system design based on
DVDs which supports third-party transfers from device to device and allows direct access
to the devices by clients at all levels. Derived virtual devices also recurse to allow clients to
safely grant access to subsets of their resources to their clients.

References

[1] Rodney Van Meter. A brief survey of current work on network attached peripherals
(extended abstract). ACM Operating Systems Review, pages 63-70, January 1996.
Full version available on the web at http://www.isi.edu/~rdv/nap-research/index.html.

[2] R. W. Watson and R. A. Coyne. The parallel I/O architecture of the high-performance
storage system (HPSS). In Proc. Fourteenth IEEE Symposium on Mass Storage Systems,
pages 27-44. IEEE, September 1995.

[3] Randy H. Katz. High-performance network and channel based storage. Proc. IEEE,
90(8):1238-1261, August 1992.

[4] P. Barham, M. Hayter, D. McAuley, and I. Pratt. Devices on the desk area network. J .
Selected Areas in Communications, 13(4):722-732, May 1995.

[5] Henry H. Houh, Joel F. Adam, Michael Ismert, Christopher J. Lindblad, and David L.
Tennenhouse. The VuNet desk area network: Architecture, implementation and
experience. J. Selected Areas in Communications, 13:710-721, May 1995.

[6] Greg Finn. An integration of network communication with workstation
architecture. ACM Computer Communication Review, October 1991. Available on line
at ftp://venera.isi.edu/atomic-doc/ATOMIC.Netstation.ps or http://www.isi.edu/netstation.

20

[7] R. Felderman, A. DeSchon, D. Cohen, and G. Finn. ATOMIC: A high speed local
communication architecture. J. High Speed Networks, 3(1):1-29, 1994.

[8] P. V. Mockapetris. Domain names - concepts and facilities. RFC 1034, USC
Information Sciences Institute, November 1987.

[9] IEEE P1244. Reference Model for Open Storage Systems Interconnection - Mass
Storage System Reference Model Version 5, September 1994.

[10] John Heidemann and Gerald Popek. Performance of cache coherence in stackable
filing. In Proceedingd of the 15th Symposium on Operating Systems Principles, pages
110-127. ACM, December 1995.

[11] Rob Pike. 8-1/2, the plan 9 window system. In Proc. Summer 1991 USENIX
Conf., Nashville, June 1991.

[12] John H. Hartman and John K. Ousterhout. The zebra striped network file system.
ACM Transactions on Computer Systems, 13(3):274-310, August 1995.

[13] Pei Cao, Swee Boo Lim, Shivakumar Venkataraman, and John Wilkes. The
TickerTAIP parallel RAID architecture. In Proc. 20th Annual International Symposium on
Computer Architecture, pages 52-63, May 1993.

[14] Darrell D. E. Long, Bruce R. Montague, and Luis-Felipe Cabrera. Swift/RAID: A
distributed RAID system. Computing Systems, 7(3):333-359, 1994.

[15] William Clinger and Jonathan Rees (editors). Revised^4 Report on the Algorithmic
Language Scheme, November 1991.

[16] Lawrence Berdahl. Parallel transport protocol proposal. Lawrence Livermore
National Labs, January 3, 1995. Draft. ftp://svr4.nersc.gov/pub/Pio-1-3-95.ps.

[17] IEEE P1244. Virtual Storage Architecture Guide, March 1995.

[18] Peter C. Dibble and Michael L. Scott. Beyond striping: The Bridge multiprocessor
file system. Computer Architecture News, 19(5), September 1989.

[19] David Kotz and Nils Nieuwejaar. Flexibility and performance of parallel file
systems. ACM Operating Systems Review, 30(2):63-73, April 1996.

[20] Robert M. English and Alexander A. Stepanov. Loge: A self-organizing disk
controller. In Proc. Winter '92 USENIX, pages 237-251, January 1992.

[21] Garth Gibson. Secure distributed and parallel file systems based on network-attached
autonomous disk drives. White paper, September 1995.

