
67

A Global Distributed Storage Architecture

Dr. Nemo M. Lionikis
Michael F. Shields
Department of Defense

9800 Savage Road
Fort Meade, MD 20755

nemo@romulus.ncsc.mil
mfs@romulus.ncsc.mil

Tel: 301-688-9509
Fax: 301-688-9599

I. Introduction

NSA architects and planners have come to realize that to gain the maximum benefit from,
and keep pace with, emerging technologies, we must move to a radically different comput-
ing architecture. The compute complex of the future will be a distributed heterogeneous
environment, where, to a much greater extent than today, network-based services are
invoked to obtain resources. Among the rewards of implementing the services-based view
are that it insulates the user from much of the complexity of our multi-platform, networked,
computer and storage environment and hides its diverse underlying implementation details.
In this paper, we will describe one of the fundamental services being built in our
envisioned infrastructure; a global, distributed archive with near-real-time access
characteristics. Our approach for adapting mass storage services to this infrastructure will
become clear as the service is discussed.

II. High Level Architecture

As a world-wide organization, NSAÕs storage and retrieval services must provide for rapid,
efficient, and user-driven data access from any node in our organization. Storage services
must be accessible yet secure, scalable, reliable, cost effective, and manageable. The
technologies used to implement storage must be commercial-off-the-shelf (COTS)
wherever possible and the user interface to these services must be clear and simple.
Moreover, a key requirement of the services is that they must support the notion of near-
real-time access to data.

Because traditional file-based solutions, with their induced latency, are inadequate to meet
the near real-time processing requirements being levied today by our users, we are
developing the Byte Stream Storage and Transfer Service. The user sees the Byte Stream
Storage and Transfer Service as a globally distributed archive with near-real-time access.
The service is intended as a mechanism that allows a user to access and manipulate data
streams. It is a critical feature of the stream service that while a producer is creating a
stream at one location, a consumer, possibly at a geographically remote location, can begin

68

to access the producerÕs data. One of our design goals is that no matter where users are
located, a consumer can begin accessing data within seconds of its creation.

One of the most radical aspects of the proposed stream service is the assumption of all
storage management by the service. There is no concept of an ÒarchivedÓ stream. Once
data has been written into the service, the user has one, and only one, view of it. The user
sees Òa streamÓ, not Òa local disk copyÓ or Òan archived copyÓ, each with its own interface
involving different commands and even operator intervention to gain access. No
knowledge of data location is required on the part of a user. No special commands to
access storage are required. No special commands to transfer data to the processing system
are required. No thought, beyond initial system configuration, is given to availability of
space. No application code is required to handle file boundaries and file names for a stream
of data. These mechanisms are created once and for all in the service and then applied
consistently to every stream. Users must only know the name of the stream they wish to
access and the service will find and deliver the data.

A user-level application that processes live, non-burst signals should be able to work with a
data abstraction that models the "stream-orientedÓ nature of these signals. The notion of a
Byte Stream Storage and Transfer Service was devised to support such a data abstraction.
A by-product of adopting the stream data abstraction is that it supports the notion of near-
real-time processing of live data quite naturally. When moving a byte stream, we do not
assume that the entire stream is present or, in fact, that the entire stream even exists yet.
We cannot think in terms of transferring the entire stream to a specified host and processing
it. Rather, we are constantly transferring bytes of the stream as they are created. The
concept of a service that moves and stores streams is not apriori necessary, but its
advantages are huge. One cannot overstate the value of a single, universally accepted
abstraction for a byte stream, captured in a stream service. Not having such a service
requires producing distinct, possibly incompatible, file-based solutions for each new
production data flow, with all of the attendant naming, storage, movement, administration,
accounting, and maintenance issues that the new solutions would demand.

Internally, the byte-stream service is a set of geographically distributed relay/storage hubs
(Figure 1), that cooperate with each other and with interface software running within a
stream consumer or producer process, to accomplish the movement and storage of data.
The hubs are connected via a network and control software within the hubs communicates
via standard protocols (TCP/IP or UDP/IP). Hubs are logical entities that may consist of
several systems. A stream might reside within a single hub or be distributed among multi-
ple hubs. Multiple copies of pieces of the stream may exist in different hubs. A consumer
will receive a copy from the nearest hub. There are no coherency issues because a stream
can be written only once (archive semantics). There are, however, issues of deleting extra
copies when they become old or inactive and the stream service must institute policies to
manage this. In general, one copy will be labeled for retention and all other copies will be
considered cached and can be deleted.

69

Small
Site Small

Site

Large Hub

Mid-size
HubHigh

Hub
Performance

Mid-size
Hub

Small
Hub

Small
Hub

Small
Hub

Small
Hub

HPC Cache

HPCÕs

Main Site
Large
Site

Small
Hub

Figure 1: High Level Architecture of the Global Archive

Small
Hub

Small
SiteSmall

Hub

The stream service interface will mimic the POSIX system call I/O interface, with common
UNIX extension, using the C-language binding. There are at least two compelling reasons
for doing this. First, the POSIX system call interface has been used in countless settings
and has proven its versatility. It is safe to assume that the interface will support both
current and future requirements. Second, developers are already familiar with the interface,
so, learning to use the stream service should not be an onerous task. Having said this, it
must be pointed out that the stream service interface will be a mixture of file and network
semantics. This is because it is desirable to allow a developer to use such calls as creat(),
open(), close(), read(), write(), and lseek() from the file domain. It is also necessary,
though, to provide the capabilities of select() from the network domain in order to support
the abstraction of a near-real-time stream. The actual interface will consist of a library of
subroutines containing at least yopen(), ycreat(), yclose(), yread(), ywrite(), ylseek(), and
yselect().
Figures 2 and 3 provide simple examples of how these routines can be used to read or write
a stream. To read, a user application will open a stream, referring to it by a name. The
application then seeks to the position of interest and repeatedly reads and processes data.

70

When done, the application will close the stream. Writing a stream will be a similar
sequence of calls (open, repeated writes, and close). Both of the code segments are
extremely simple and dramatically illustrate the virtues of the stream service. Note that
there is no reference to location, no concern about file boundary conditions, no concern
about storage. There is also no notion of whether the data is being obtained from storage
or from a live source. The program only requires a name to access the stream. All of the
general problems of movement and storage are handled transparently. It should be noted,
again, that one assumption of the stream service is that, once created, a stream cannot be
edited. In order to modify a stream, it must be read, processed, and a new stream created
for the resultant output.

stream_id sid;

char* buffer[MAX];

int bytes_read;

sid = yopen(Òstream_nameÓ, YO_RDONLY);

ylseek(sid, POSITION, YSEEK_SET);

while ((bytes_read = yread(sid, buffer, MAX)) != ERROR) {

/* Process the bytes read from the stream */

}

yclose(sid)

stream_id sid;

char* buffer[MAX];

int bytes_written;

sid = yopen(Òstream_nameÓ, YO_CREAT | YO_WRONLY);

while (NOTDONE) {

/* Get data and perform processing */

bytes_written = ywrite(sid, buffer, MAX);

}

yclose(sid)

Figure 2: Reading a byte stream

Figure 3: Creating and writing a byte stream

When a user process wishes to write a stream, it begins by calling yopen. Internally, the
service interface software establishes communications with its local hub (Figure 4). When
writing begins, an agent is started on the hub and is connected to the interface software in
the user process. Data then passes through the interface to the agent on the hub which

71

caches the data on disk. As the cache fills, data may be moved by the service to storage
systems within the hub for short-term retention. At this point a stream (potentially, but not
necessarily, live) is being captured and stored. Note that storage is not a direct concern of
the user process.

User System

Storage

Central Hub

Data Writer

Interface

Storage

Data Reader

Interface

Data Reader

Interface

User System
User System

Remote Hub

I/O Agent

Platforms
Managed by

Stream
Service

Figure 4: Data Flow Examples

I/O Agent I/O Agent
I/O Agent I/O Agent

When a user process wishes to read a stream, it begins by calling yopen, and, once again,
the service interface software establishes communication with its local hub. When yread is
called, the local hub determines if the desired data is present. If not, the hub finds a remote
hub that has the desired data, and requests a transfer from the remote hub to the local hub.
Now, with data present in the local hub, a connection is established from an agent in the
hub to the interface software in the user process, and data is forwarded. As the data arrives
from a remote hub, it is cached in the local hub. As the cache fills, data moves to a storage
system for retention. Note that the reading process may or may not be receiving live data,
and is unaware and unconcerned as to whether the data originated at a local or a remote
location. In fact, all storage details are hidden from the user.

A near-real-time flow is established when a stream is being produced at the same time that it
is being consumed. Should a communication outage occur between hubs, data will not be
lost because the hub that is local to the stream producer will continue to cache and store
data. Of course, a network outage between the producing system and its local hub will

72

cause a data loss if the buffering capability of the producing system is exceeded.
Consumers and producers can run on the storage platform. In this case, the network will
be circumvented and we expect to observe reading and writing at very near disk speeds.

One of the great advantages of the service described here is that accessing stored data is
exactly the same as accessing live data. It is the responsibility of the local hub to discover
where pieces of a stream are stored. If a stream has been moved from cache to storage, the
hub will ensure that it is drawn into cache again with forwarding identical to the near-real-
time case.

It is common to associate related information with a byte stream. A follow-on
development, the Annotated Stream Service, built on top of the Byte Stream Storage and
Transfer Service, supports this notion. An annotated stream consists of several byte
streams, one being a data stream and the remainder being annotation streams. The
Annotated Stream Service provides a mechanism for a stream writer to associate
annotations with specific points in a data stream. For a stream reader, the service
synchronizes the reading of the annotations with the reading of the data. The internal form
of an annotation is chosen by the application developer. The service merely provides a
framework for the association, storage, and synchronized delivery of the data and the
annotations. As with the byte stream service, all of this is done while still preserving a
simple Òopen, close, read, writeÓ interface.

III. Storage Strategy

Guiding Principles: NSA has adopted a COTS, to the maximum extent possible,
approach to any Mass Storage requirement. As a direct result of this policy, we have care-
fully approached the global distributed storage architecture steered by previous work in
developing a scalable set of disk and tape components, subsystems and systems matched to
specific requirements. Significant consideration is given to performance, functionality, and
cost, with a keen eye on system level reliability. To the maximum extent possible, we
strive to achieve vendor independence and network connectivity; wherever possible, we
desire data sharing and products which facilitate technology insertion. Finally, remote
monitoring is key to overall system viability.

Product Considerations:

Disk Storage: For both large and small nodes the disk subsystems are almost always
specified to be RAID devices. While the majority of the current set of disk subsystems are

73

SCSI-2 F/W, our high-end nodes will require fibrechannel speeds. The ability to remote
the arrays beyond todayÕs cable limits greatly enhances our physical layout potential. In
addition, the ability to connect large arrays to multiple servers enhances our reliability,
shareability, and control. NSA has relied heavily on shared network disk arrays within our
supercomputer complexes and has urged industry to develop products of this class. To
achieve the desired performance and flexibility for the individual nodes of this architecture,
extremely large network RAID arrays are a must. The disk arrays must be platform
independent, reducing reliance on any single vendor.

Robotic Tape Storage: Our larger nodes require robotic tape libraries which range
from tens of terabytes up to multiple petabytes. They are sized to match specific user needs
from a performance, capacity, and user access perspective. We envision each node to have
multiple tape libraries, matched to the specific type of stream data. Our goal is to make our
distributed library infrastructure transparent to the user. While certain data types lend
themselves to very large capacity libraries, others do not. As such, our experience with the
current set of storage management software offerings forces us to adopt a multiple library
strategy. The majority of todayÕs products use commercial relational database management
system (RDBMS) products to manage the files stored in the libraries and this artifact must
be accommodated in the overall architecture. Most of the products evaluated to date are
limited to the tens of millions of files. Large files (>150 MB) are ideally suited to high
performance helical drives which can deliver petabyte class individual libraries. However,
small file (15 MB) mass storage libraries will outpace the RDBMSÕ ability to scale to the
100 million file mark. Because the stream service controls file creation, large files should
be the norm. While these numbers are not exact for todayÕs storage software offerings,
they are representative of the challenge that system architects face in designing a multi-node
hub. The vendor community can deliver hardware that easily scales into the multiple
petabyte range today; however, the storage software lacks the maturity, performance, and
ability to service this class of system. Although the smaller nodes are disk only, they will
still require high-performance robotic tape backup systems.

Storage Software: There are two common cross vendor categories of storage software
in wide use today at NSA, Hierarchical Storage Management (HSM) and Virtual File
System (VFS) software. Of the two, the latter is most widely used. HSMs classically are
major computer systems (processors, disk, robotic tape) that are network connected to
multiple client systems. Both VFS and HSM are primarily skewed towards the operational
paradigm of store with infrequent retrieves. While performance is dependent on multiple
factors and is highly dependent upon the network connectivity, VFS systems generally
deliver higher performance than HSMs. VFSs today use large UNIX servers with RAID
arrays and manage 7-40 TB robotic tape libraries. They too are network connected to
multiple client systems, but do not possess the full range of archive functionality of the
HSM. However, they interact with almost any client and provide a file system view to that
client; hence they are very easy to install and are widely used by a diverse population due to
their simple interface. To support the distributed storage architecture, our large node will
be based on multiple VFS storage systems. Emerging multimedia software products easily

74

embrace this technology which further enhances its role in our infrastructure. Finally, the
multiple library approach facilitates technology insertion for the physical components that
make up the storage library allowing for the migration of data to be performed as a
background job as older drive technology is retired.

MetaData: The most difficult element of the storage system is the metadata system. With
multiple, disparate libraries connected to the large node, and several nodes in a hub within
the archive, transparent access by a diverse population is facilitated by this critical element.
Its importance has been recognized by the Mass Storage Community as evidenced by the
IEEE sponsoring a yearly MetaData Conference. The ability to manage hundreds of
millions to billions of files can only be done by a carefully designed metadata system.
NSA has taken the approach of a distributed metadata system for its scientific processing
complex; however, to scale to the numbers of files needed for the future, significant
breakthroughs are needed. Suffice it to say, that the integration and use of metadata and its
storage will need to be accomplished. Scalability here is fundamental to the success of this
endeavor. This paper will not address metadata.

IV. Initial Development Plans

The architecture discussed above will be implemented incrementally. The intent of the
initial configuration is to present users with the first view of the stream service/ distributed
archive and validate the concepts contained in the architecture.

Near Term Plans: Initially, a single-system, mid-sized hub will be built. The hub will
employ a medium performance UNIX server with tens to hundreds of gigabytes of disk
cache and a single robotic tape library. The storage software will be Virtual File System
based. The hub will run early increments of the stream service software and will be used to
validate many of the concepts of the architecture. After the first hub has been built and
tested, a second, large, two-system hub will be built. The hub will consist of two identical
high-end UNIX servers, each with a large size RAID disk array and one or more robotic
tape libraries. Both high-end and medium performance/capacity libraries may be employed
and, again, the storage software will be Virtual File System based. The systems will have
multiple network connections of differing performance levels (FDDI, ATM, and Ethernet).
The two-system hub will run a follow-on increment of the stream service that manages the
multiple storage platforms. Inter-hub data transfers will be based on a static policy. A mix
of user workstations which mirror the current infrastructure will complete the near term test
configuration (Figure 5). Using this configuration, we intend to evaluate the user
interface, desired functionality, initial scalability, overall reliability, as well as subsystem,
software, and system reliability. We will focus on the adequacy of the specific
technologies chosen, calibrate performance choke points and scalability considerations. As
a result of our analyses, the overall architecture will be modified, if necessary, and the
lessons learned will be incoporated into our long term plans.

75

Figure 5: Complete Near Term Test

ETHERNET FDDI AGENCY LANATM

Work
Stations

STK WolfCreek

AML/E
w/ NTP

AML/E
w/ NTP

SGI w/Clarion
RAID Disk Array

RAID Disk Array
SGI w/Clarion

Large

Mid-Size

AML/J
w/ NTP

 SGI w/ Clariion
 RAID Disk Array

Hub

Hub

 w/D3

Longer Term Plans: While this area is highly dependent upon the prior phase and its
success, several features are already slated for implemention in the longer term. Among
these are:

- Inclusion of a wide area network (WAN) connected hub
- Inclusion of bandwidth management and flow control between hubs across the
 WAN
- Increasing the numbers/scales of hubs and MSS libraries
- Evaluation of metadata system approaches and their scalability

Other areas under consideration, even though they are merely Òon the drawing boardÓ,
include:

- Expansion of the server area to include Massively Parallel Processors (MPPs)
- Inclusion of Web-based user access
- Inclusion of MultiMedia into the test set

76

V. Conclusions

In summary, this paper has been an attempt to present a brief overview of the architecture
for a global distributed archive with near-real-time access characteristics and the strategy for
use of mass storage systems within that architecture. The instantiation of the architecture is
clearly a long term project that must be approached incrementally. As such, it is vital that
the interface to the archive be implemented early on and that the archive be expanded and
improved transparently to early users, behind this interface. Although we would not
minimize the challenge of the long term development, we hope that the tremendous benefits
to be gained by building such an archive are evident from this brief exposition.

