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Abstract

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC)
has been operational for more than two years.  Its mission is to support existing and pre-
Earth Observing System (EOS) Earth science datasets, facilitate the scientific research,
and test Earth Observing System Data and Information System (EOSDIS) concepts.
Over 550,000 files and documents have been archived, and more than six Terabytes have
been distributed to the scientific community.

Information about user request and file access patterns, and their impact on system
loading, is needed to optimize current operations and to plan for future archives (i.e.,
EOS-AM1). To facilitate the management of  daily activities, the GSFC DAAC has
developed a data base system to track correspondence, requests, ingestion and
distribution.  In addition, several log files which record transactions on Unitree are
maintained and periodically examined.  

This study identifies some of the users' requests and file access patterns at the GSFC
DAAC during 1995. The analysis is limited to the subset of orders for which the data
files are under the control of the Hierarchical Storage Management (HSM) Unitree. For
example, orders on pre-mastered CD-ROMs, which account for a substantial proportion
of the total volume of data distributed, were excluded because they are not managed by
Unitree.  The results show that most of the data volume ordered was for two data
products.  The volume was also mostly made up of level 3 and 4 data and most of the
volume was distributed on 8mm and 4 mm tapes.  In addition, most of the volume ordered
was for deliveries in North America although there was a significant world-wide use.
There was a wide range of request sizes in terms of volume and number of files ordered.  
On an average  78.6 files were ordered per request.   Using the data managed by Unitree,
several caching algorithms have been evaluated for both hit rate and the overhead ("cost")
associated with the movement of data from near-line devices to disks.  The algorithm
called LRU/2 bin was found to be the best for this workload, but the STbin algorithm also
worked well.

                                                
1 Theodore Johnson is supported by a grant from NASA, #10-77556.
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Introduction

On-line scientific archives are playing an increasingly important role in data-intensive
research.  These archives hide the internal physical  organization of the data and
automatically migrate files between near-line and on-line (disk) devices, making data more
easily accessible.  However, building such a large-scale archive can be an expensive
proposition and system resources need to be carefully managed. To date, there has been
little published research that studies the performance of on-line scientific archives.

The EOSDIS archive is expected to have an ingest rate of Terabytes per day when fully
operational.  This data will be available on-line for browse, order, and distribution.
Careful planning is needed to handle the very large volume of data, the very large number
of files, and the expected high user demands.  Many studies have been made to predict
archive use, based on surveys of the expected users (for example, see the studies at
[ESDIS]).  However, little empirical evidence has been collected.

In this paper, we first study some of the user-request patterns and their impact on the on
the overall system loading.  Rather than examining all orders submitted at GSFC DAAC
in 1995, a subset has been selected that has direct impact on the archive controlled by
Unitree and the robotic devices. Not all data are stored under Unitree.  For example, some
data was received on 8-mm tape and never ingested into Unitree because of the substantial
effort required.  Orders for these tapes are usually simple tape copies and are conducted
"off-line" and do not affect Unitree.  To satisfy  some of the GSFC DAAC users, a large
farm of disks has been installed where data can be retrieved via anonymous ftp.  These
anonymous ftp orders, off-line orders, as well as CD-ROM requests are not used in the
analysis.

There will also be presented an analysis of the GSFC DAAC Oracle data base that
contains information on the orders and the files requested, as well as the Unitree log files
that provides some insight on the mounts and stages operations. Based on the statistics
gathered in the analyses, we discuss issues related to the user request and file access
patterns, caching, clustering, migration, and system loading.  Because the user access
pattern is related in part to the data set accessed and because of rapidly changing
technology,  we do not claim that all future archives will have experiences similar to that
of the GSFC DAAC. However, we feel that this study will provide insight into the nature
of user access to on-line archives. We make comparisons to a previous study of the
NSSDC NDADS archive (see [Jo95]) to point out similarities and differences.

Previous Work

Several studies on the reference patterns to mass storage systems have been published.
Smith [Sm81d] analyzes file migration patterns in hierarchical storage management
system.  This analysis was used to design several HSM caching algorithms [Sm81c].
Lawrie, Randal, and Burton [LRB82] compare the performance of several file caching
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algorithms. Miller and Katz have made two studies on the I/O pattern of supercomputer
applications.  In [MK91], they find that much of the I/O activity in a supercomputer
system is due to checkpointing, and thus is very bursty.  They make the observation that
much of the data that is written is never subsequently read, or is only read once. In
[MK93], they analyze file migration activity. They find a bursty reference pattern, both
in system load and in references to a file.  Additional studies have been made by Jensen
and Reed [JR91], Strange [Str92], Arnold and Nelson [AN88], Ewing and Peskin [EP82],
Henderson and Poston [HP89], Tarshish and Salmon [TS93], and by Thanhardt and
Harano [TH88]. However, all of these studies apply to supercomputer environments,
which can be expected to have access patterns different from those of a scientific archive.

The access patterns to the NASA National Space Science Data Center's  on-line archive,
NDADS, is studied in [Jo95].  However, there are many qualitative and quantitative
differences between the NDADS archive and the GSFC Version 0 DAAC. We make
comparisons whenever possible between results in this report and the results of [Jo95].

Access and Distribution Methods

The GSFC DAAC receives data from science projects such as Sea-viewing Wide Field-of-
view Sensor (SeawiFS), Coastal Zone Color Scanner (CZCS), Total Ozone Mapping
Spectrometer (TOMS), Pathfinder AVHRR (Advanced Very High Resolution
Radiometer) Land (PAL), Tiros Operational Spectrometer (TOVS), DAO (Data
Assimilation Office), and Upper Atmospheric Research Satellite (UARS).  These data are
stored in a Mountain Gate Automated tape library system (RSS-600) using VHS tapes
and an 1803 Cygnet jukebox using 12" WORM optical media. By submitting requests to
the HSM (Unitree), the data can be retrieved to disks and made available to users.

In 1995, there were several ways by which a user could order data. A Graphic User
Interface (GUI) based on X-windows,  allowed a user to browse, select and order
products.  A Character  User Interface (ChUI) was also available for users with VT100
terminals, but this interface has more limited capabilities.  Orders could also be submitted
by calling the GSFC DAAC, or by sending a fax,  letter or  email.

Orders can be filled by sending the data copied to tape (8-mm, 4-mm, 9 track) to the users
or by transferring the requested data to a distribution staging area where the user has
several days to ftp the files to her own machine.  A size limit has been placed on the
volume of data that can be transferred via ftp requests because of limited resources (disk
space and network).   Because of the high overhead associated with the retrieval of small
files from the tertiary storage system, some specific datasets are also kept on a large farm
of disks (200 GB) and are accessible via anonymous ftp.  Some data sets of high demand
have also been pre-mastered on CD-ROM for easy and quick distribution.  As this study
is intended to illuminate the nature of on-line access to tertiary-storage based archives, we
limit the set of requests that we analyze to only those that access Unitree. In particular,
we exclude requests for pre-mastered CD-ROMS, and accesses to anonymous ftp data,
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and internally generated requests. Internally generated requests includes testing, and do
not reflect the nature of on-line user access.

The GSFC Version 0 DAAC uses several avenues to distribute data.  There are two types
of distribution orders: random orders and standing orders.  The standing orders are
requests by users for some or all of the data as it is being received at the DAAC.  The
random orders are interactive requests for data that has been previously archived and is
available for order.

Log Files and Databases

To identify some of the characteristics of the  requests, we examine the GSFC DAAC
Oracle data base, which contains information on the files and orders.  The requests
studied are only for external users of the GSFC DAAC and therefore do not include the
test requests  processed in 1995. The time of the requests used in this study corresponds
to the time when the orders were submitted to the GSFC DAAC and may not be
correlated with the time for processing and shipping.  To analyze some of the system
load, we examine the Unitree log files.

Aggregated User Analysis

In this section, we analyze user requests by aggregating requests according to an
interesting classification.  In particular we are trying to identify some  patterns in the
orders in terms of volume, number of files per request, products, data level, interfaces
selected, and geographical locations of users.

In Figure 1, we aggregate user requests by month and data product. A data product is one
of the 7 categories: ACRIM, DAO, PAL, CZCS, TOMS, TOVS, and UARS.  A given
data product can have multiple data sets (e.g. one per data level).  The analysis shows
that most data volume is for one or two data products (DAO and Pathfinder AVHRR
Land (PAL) data). Figure 1 also shows that the volume ordered varies greatly between
months.  The result is consistent with observations of NDADS.  Different data products
have different average file sizes, so reporting volume alone tends to bias our results
towards favoring data products with large files.  For a comparison, we plot the number of
files ordered each month by data product, in Figure 2.  
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Volume ordered per month, 1995
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Figure 1.  User volume ordered aggregated by data product.

Files ordered per month, 1995
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Figure 2.  Files ordered aggregated by data product.

Next, we analyze requests according to data level (e.g. Level 1-4). The data that is
ingested into the archive is in a variety of higher level data sets.  Level 1 data is satellite
data with corrections, while higher level data is binned and aggregated.  Because of the
processing, there is more volume in the lower level products (L1-2) than in the higher
level products (L3-4).  Figure 3 aggregates user volume by month and data level. As
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expected most of the volume of requested data is for Level 3 data, and there is a
substantial interest in Level 4 data.

Figure 4 aggregates volume ordered by month and by interface method. A substantial
percentage of the total volume requested was from the Character User Interface (ChUI).
The volume of standing orders is also important. Files that belong to standing orders are
transferred to a distribution staging area soon after being ingested.  This method of
distribution reduces the load imposed on Unitree because the standing orders files are
processed before the data is migrated to the near-line devices.

Volume ordered per month, 1995
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Figure 3.  User volume ordered aggregated by data level.
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Volume ordered per month, 1995 (by interface)
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Figure 4.  User volume ordered aggregated by interface and month.

In Figure 5 and Figure 6, we aggregate the volume ordered by interface and by hour of the
day and day of the week, respectively.  The volume ordered shows the typical pattern --
most requests are made during normal working hours. These results are consistent with
observations of NDADS, although more requests are made to NDADS during weekends,
and few requests are made to NDADS during early morning hours.

Volume ordered by hour, 1995 (by interface)
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Figure 5.  User volume ordered aggregated by interface and hour.
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Volume ordered by day, 1995 (by interface)
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Figure 6.  User volume ordered aggregated by interface and hour of the day.

The requested data can be distributed  either electronically (via ftp) or on one of several
different tape media. Figure 7 aggregates user requests by distribution media and by week
of the year.  Most data is distributed by creating 4-MM or 8-MM tapes. There is almost
no request for 9-track tapes. The volume of ftp requests accounts for only a small portion
of the data distribution.  We should point out that, due to resource constraints (network
and disk space), a limit has been placed on the volume of data that can be distributed via
ftp for a given request.

Volume ordered per week, 1995
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Figure 7.  User volume ordered aggregated by media of distribution.
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Finally, we plot the volume of data requested by different regions of the world in Figure 8.
While most of the request volume came from North America, there is significant world-
wide use of the DAAC.

Volume ordered per month, 1995
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Figure 8.  User volume ordered  aggregated by region.

User Analysis

In this section, we analyze request size and user activity. The database records for every
file accessed; the file size, the data set that the file is a member of (a refinement of data
product), and a unique request ID.  From this information, we can reconstruct the size of
a request. In Figure 9, we plot the volume per request, in Figure 10, we plot the files per
request. Figure 9 and Figure 10 are plotted on a log scale because of the very large range of
request sizes. The wide range of request sizes suggests that request servicing should be
aware of the size of the request and handle it accordingly.

Data in a data product can be divided into data sets, based on the type of the data (i.e.,
different levels, different sensors, etc.). In Figure 11, we plot the number of data sets
requested per order. The number of files per request and the number of data sets per
request are not correlated, as is shown in Figure 12. The average request in 1995 accessed
78.6 files and 1.6 data sets. These results show that most requests are clustered by the
data set, with the implication that archive media should store files of a single data set.
These results are consistent with our study of the NDADS archive.
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Volume per unique request id, 1995 (sorted)
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Figure 9.  Volume per unique request id.

Files per unique request id, 1995 (sorted)
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Figure 10.  Files per unique request id.
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Data sets per unique request id, 1995 (sorted)
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Figure 11.  Data sets ordered per unique request id.
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Figure 12.  Files vs. data sets in a request.

We can also aggregate requested files based on the user ID. In Figure 13, we plot the
number of files requested per unique user, in sorted order, and in Figure 14, we plot the
volume requested per unique user in 1995.  The curve is non-linear even when plotted on
a logarithmic chart.  We found that the top 20 users (of 442) requested 47% of all files
and 70% of the data volume. We note that top 20 users, rated by files requested, is not
the same as the top 20 users rated by volume requested. However, the correlation
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between files requested and volume requested is strong (the intersection between the two
top-20 sets contains 12 members).  A scatter plot of volume requested vs. files requested
is shown in Figure 15. These results are consistent with our study of the NDADS
archive.
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Figure 13.  Files per unique user.
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Figure 14.  Volume per unique user.
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volume vs. files per user
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Figure 15.  Scatter plot of volume ordered and files ordered per user.

Caching

When a user requests a file,  the file is first searched in the on-line disk space.  If the file is
not located on the cache it is then fetched from tertiary storage into secondary storage and
made available to the requester.  The file typically has a minimum residency requirement
to give the requester time to access the file.     While the file is disk-resident, a second
request for the file can be satisfied without fetching the file from tertiary storage. These
cache hits can reduce the load on the tertiary storage system, and also improve response
times.  Fetching a file from the tertiary storage requires a tape to be picked by a robotic
device, mounted, the file searched on the tape and then read.  All this can take minutes
before the file is ready to be read.

The archive systems should have enough disk storage to satisfy the minimum residency
requirement.  However, files referenced within the minimum residency may be deleted if
the cache runs out of space. In this case, using a FIFO algorithm the oldest files are
deleted first.  The buffer might run out of disk space necessary to satisfy minimum
residency due to a high request load, or due to a high ingest load (i.e., the ingested files
must be stored on-line until they can be migrated to tertiary storage). Although the ingest
load can interfere with the cache, we do not consider it in this study.  However, the
relative performance of the algorithms will be the same with or without the ingest load.

If the cached files are large (an average size of 12.8 Mbytes in this study), then the time
to transfer referenced files not in the cache can be very long.  We compute the cost of
servicing a reference string to be the weighted sum of the number of cache misses and the
number of bytes transferred.  In these studies, we assumed that transferring 10 Mbytes is
equal to the cost of a cache miss (The time to load a media is much larger than the transfer
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time, but this cost is amortized over all files loaded from the media). Let costf be the cost
of transferring file f from the archive to on-line storage, and let Sf be the size of file f.
Then, the (normalized) value of costf  is:

costf  = 1 + Sf  / 10 Mbytes

We can evaluate the benefit of using a cache by looking at the hit rate of the cache, or by
looking at the cost reduction of the cache.  The cost reduction is the reduction of load on
tertiary storage caused by the cache.  More formally, let the reference string (i.e., the
sequence of requests that pass though the cache) be r=(f1, f2, ..., fm). Let Miss(fi) have the
value 1 if fi was not in the cache when it was referenced, and 0 if it was in the cache. Then,
the cost of processing the reference string when using a cache, cost(cache) is:

cost(cache) = Σfi ∈ r costfi * Miss(fi)

Let cost(tot) be the cost of servicing r when no cache is used (i.e., Miss(fi)=1 for every fi).
Then the fraction of cost saved by using the cache is:

fraction  of  cost  saved = 1-cost(cache)/cost(tot)

A large body of caching literature exists when all cached objects are of the same size. The
Least Recently Used (LRU) replacement algorithm is widely recognized as having good
performance in practice. Caching objects of widely varying sizes is somewhat more
complicated. If one wants to minimize the number of cache misses, then it is much better
to choose large files than small files for replacement, because removing large files frees up
more space. Let the set of files in the cache be F. The general scheme is to assign to each
file f in F a weight, weightf, and chose for replacement the file with the largest weight.
Note that many files might need to be replaced on a cache miss.

The optimal replacement algorithm for variable size objects, with respect to cache misses,
is the GOPT algorithm [DS78]: For file f∈F, let Nf be the time until the next reference to f
and let Sf be the size of f.  Set weightf = Nf * Sf, and choose for replacement the file f' in F
such that weightf' is the largest.

The GOPT algorithm cannot be implemented (because it requires knowledge of future
events), but it can be approximated.  The Space-Time Working Set (STWS) algorithm
[Sm81c] approximates GOPT by substituting Pf the time since the last reference to f, for
Nf.

While STWS can be implemented, it also requires a great deal of computation.  For this
reason, STWS is often approximated by what we call the STbin algorithm [Mi94]: A file
is put into a bin based on its size. The files in a bin are sorted in a list using LRU. To
choose a file for replacement, look at the file at the tail of each bin and compute its weight
to be Pf * Sf.  Choose for replacement the file with the largest weight.

The STbin algorithm does not account for the cost of transferring files, and may
discriminate too strongly against large files.  We examined two algorithms that modify the
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weight function to account for transfer costs. Let costf be cost incurred if file f must be
loaded.  The Costbin algorithm computes the weight of file f to be Pf * Sf / costf , where
costf is defined above. Alternatively, we can use a non-linear function. The Alphabin
algorithm computes the weight of file f to be Pf * Sf

α , where α is a real number. Note that
setting α=0 gives LRU and setting α=1 gives STbin.

Another method for incorporating size and last-reference time into victim selection is to
take a weighted sum.  Let Ks be the size factor and let Kt be the time factor. Then, choose
for replacement the file with the smallest weight Ks * Sf + Kf * Pf.  Since the file weight is
computed by a sum, we call the algorithm the SUM algorithm. It is used by several HSM
products.

Recent work in caching algorithms has produced statistical caching algorithms [OOW93].
The LRU/2 algorithm chooses for replacement the object whose penultimate reference
(instead of most recent reference) is the furthest in the past. We adapt LRU/2 to file
caching by maintaining the bins in the ST-bin algorithm by LRU/2 instead of LRU.  We
call the new algorithm LRU/2-bin.

HSM systems typically use a ``watermark'' technique to manage their staging disk. When
the staging disk space utilization exceeds a high watermark, files in the staging area are
migrated into tertiary storage until the staging disk utilization reaches a low watermark.
The motivation for the watermark technique is to write back dirty files in a single burst,
thus improving efficiency by exploiting write locality. The archive that we study contains
read-only files, so the watermarks should be set has high as possible for maximum
efficiency.

The minimum residence period is implemented by partitioning the cache into the regular
cache and the minimum residence cache. When a file is referenced, it is placed in the
minimum residency cache, where it remains until the minimum residence period has
passed. After the minimum residence period, the file is placed in the regular cache.
Normally, files in the minimum residence cache are not selected for replacement.
However, if the minimum residence cache size exceeds the total cache size, the oldest files
in the minimum period cache are chosen for replacement.

In our caching analysis, we assume a disk block size of 1024 bytes, and set a limit on the
number of disk blocks that are available for caching. We trigger replacement when fetching
a new file will cause the space limit to be exceeded, and we remove files until the space
limit will not be exceeded.  For the STbin and LRU/2-bin algorithms, bin i holds files that
use between 2i and 2i+1-1 blocks.  We set the minimum residency period to 1 day. We
retrieved from the database a listing of all files requested in 19952, and sorted the list of
time of reference to create the reference string for our cache simulators. We report both
the hit rate and the reduction in cost due to running a aching algorithm with a particular
cache size.

                                                
2 Subject to the restrictions listed in Section 1.2
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We first test the STbin variants.  In Figure 16, we plot the cost reduction as we vary α
for different cache sizes.  The best setting of α is approximately 1/2. However, the
improvement over STbin is not large. Next, we compare Costbin against STbin in Figure
17. While Costbin has better performance than STbin, the difference is not large.

Cost reduction vs. alpha (STbin variant)
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Figure 16.  Finding the best value of α for alphabin.

Cost reduction vs. cache size
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Figure 17.  Comparison of Costbin to STbin.

In Figure 18 we plot the fraction of cost saved for the LRU, LRU/2, SUM, and STbin
algorithms algorithms as we increase the cache size from 5 Gbytes to 60 Gbytes, and in
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Figure 19 we plot the hit rate. The results show that the STbin and the LRU/2-bin
algorithms are significantly better than LRU, and somewhat better than the SUM
algorithm. The LRU/2-bin algorithm had somewhat better performance than the STbin
algorithm. We note that STbin requires less CPU time for execution than either the LRU/2
or the SUM algorithm, and the SUM algorithm requires careful tuning.

The results show that caching can be effective in reducing the load on the tertiary storage
device, in spite of the highly random nature of requests to an on-line archive.  The GSFC
Version 0 DAAC currently uses a 60 Gbyte distribution cache.  Simulation results
indicate that this size cache can provide a hit rate and cost savings of about 25%.  The
Unitree logs indicate that the internal Unitree cache (32 Gbyte) had an additional hit rate
of  15.6%.
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Figure 18.  Cache algorithm comparison (cost reduction).
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Hit rate vs. cache size
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Figure 19.  Cache algorithm comparison (hit rate).

We ran another experiment to determine the effect of changing the minimum residence
period.  Figure 20 shows the cost reduction of the STbin algorithm as the minimum
residence period is varied from 10 minutes to 2 days.  We varied the cache size between
10 and 60 Gbytes.  Increasing the minimum residence time decreases the cost reduction,
but the effect is small.

Hit rate vs. minimum residency (Stbin)
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Figure 20.  Effect of changing the minimum residence time.

   File Access Pattern Analysis
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The success of caching depends upon the file access patterns. In this section we examine
some aspects of the access patterns. These results also have implications for archive
design.

Most files are accessed only a few times, limiting the maximum cache hit rate. Figure 21
plots distribution of the number of times a file was referenced in 1995. The fact that so
most files are referenced once limits the performance of statistical caching algorithms,
such as LRU/2-bin. We note further that only 12% of the 550,000 files in the archive
were requested during 1995. This result is consistent with observations of the NDADS
archive.
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Figure 21.  Distribution of the number of references to a file in 1995.

The effectiveness of caching also depends upon the average time between references to a
file (the inter-reference time). In Figure 22 we plot the distribution of inter-reference
times during 1995. To generate this plot, we scanned through all file accesses and searched
for repeat accesses.  Whenever a repeated reference was found, we incremented a
histogram based on the number of days since the last reference. The plot shows that most
repeat references occur shortly after an initial access, but that the inter-reference time
distribution has a long tail.  The rise at the end of the tail represents all repeat references
with an inter-reference time of 186 days or larger. The average number of days between an
access to a file, given that the file is accessed at least twice in 1995 is 46.1 days. This
result is essentially consistent with observations of the NDADS archive, which has an
average interreference time of 27.6 days. Both archives show a peak in the inter-reference
time near 0 days, and at 1 and 2 months after the previous reference. However, these
characteristics are stronger in the NDADS references.  For both archives, the inter-
reference time distribution has a long tail (i.e., represented by the point at ``185+'').
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We found that many of the repeat references are due to the same user requesting a file for
a second time.   This is shown in Figure 23, which plots the fraction of repeat requests that
are due to the same user, by time since last request. In total, 15.4% of the repeat
references in 1995 are due to the same user as had submitted the previous reference. By
contrast, 57% of the repeat references to NDADS are due to the same user.  One
explanation for this difference is that most requests to the GSFC Version 0 DAAC are
submitted interactively, while most requests to NDADS are submitted by email.
Network and mailer delays compound archive delays to cause the user to suspect that the
request has been lost.
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Figure 22.  Distribution of file inter-reference times.  The point at ``185+'' represents the tail of the
distribution.



173

Repeat references due to same user

1 25 50 75 100 125 150 185+
0

0.2

0.4

0.6

0.8

1

number of days

fraction of repeat references

Figure 23. Fraction of repeat references in which both the current and  the previous reference are
submitted by the same user (binned on inter-reference time).

The performance of the STbin algorithm and its variants (Alphabin and Costbin) depends
on the distribution of file sizes.  In  Figure 24, we plot the file references binned on the
file sizes.  Large files account for a large fraction of the accesses (the average size of a
requested file is 12.8 Mbytes). Caching large files can be effective if caching large files is
likely to result in a cache hit.  In Figure 25, we plot the proportion of file references that
are to files previously referenced, binned by file size.  We also plot the average interaccess
time. Large files have high reaccess rates, and for this reason the STbin variants improve
hit rates as well as cost reduction.
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Number of files ordered binned on file size
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Figure 24.  Ordered  files binned on file size.
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Figure 25.  Repeat requests and interaccess times binned on file size.

The result that the average size of a requested file is 12.8 Mbytes was unexpected,
because the average size of a file in the archive is 1 Mbyte.  The bias towards ordering
large files is due in part to the anonymous ftp archive, which serves small files.  Users
prefer small files, but there is a high volume of data ordered for the DAO and PAL data
products, both of which are stored in large files (an average of 16.5 Mbytes and 55.0
Mbytes, respectively).
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In Figure 26, we plot the ``ageÕÕ of the files that are referenced (requested).  We compute
this distribution as follows.  For every file referenced in the observation period, we
compute the file age to be the difference between the reference time and the time that the
file was archived.  We bin the referenced files based on file age in weeks.  Because there is
a dependence between the time of reference and the file age, we plot the file age
distribution for each quarter of 1995.  The peak in the age of the referenced files in all four
charts corresponds to roughly the same archiving dates (we note that many files were
rearchived in early 1995).  Recently ingested data does not show an unusually high user
interest.  One explanation for this result is that new data is not immediately known to
most users, and it is only after some advertisement (newsletter, conference, word of
mouth) that the data may be more frequently requested.  This result is consistent with
observations of the NDADS archive.
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Figure 26.  Distribution of time between file archive and file reference.

Internal Activity

We conclude with some observations of the work performed by the archive.  In Figure 27,
we plot the number of Unitree media mounts per week, and the average number of files
transferred per mount (we obtained this data from the Unitree logs).  The average number
of files transferred per mount for all of 1995 is 8.6. Unitree does not distinguish between
mounts to read or write data. Consequently, the average number of files transferred
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includes both read and write operations.  Migrations are executed periodically (e.g., one
hour) to increase the chance of writing multiple files to the same media. Stage operations
are performed as soon as the resources are available (e.g., tape drives).  It would have been
interesting to derive the average number of files retrieved for stage operations only, and to
correlate the stages with the requests. This could have provided some insight on how well
the stage operations are scheduled and how clustered the files requested are on tapes.

The reader might note that this chart does not correlate well with the results presented in
Figure 1 through Figure 8.  There are two reasons for this discrepancy.  First, the data in
Figure 1 through Figure 8 is based on time an order was requested, not time the order was
processed or distributed.  Request processing might be delayed due to heavy loads, or to
handle very large requests (e.g., see Figure 9).

As described in the introduction, we have limited this study to only those orders that are
filled by "pulling" data from the mass storage system Unitree.  However, the entire
activity for the DAAC is significantly higher (see Figure 28) because of the other
distribution methods used at GSFC  DAAC that are not included in this study (e.g. CD-
ROM, anonymous ftp, off-line requests).  It is interesting to note that the distribution
volume is much greater than the ingest volume.
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Figure 27.  Unitree mounts per week and files per mount.
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Archive activity / per month, 1995

1 2 3 4 5 6 7 8 9 10 11 12
0

200

400

600

800

1,000

1,200

month

volume (Gbytes)

Ingest and archive Distribution

Figure 28.  Total archive activity, per month.

Conclusions

We have presented a study of the external requests made to the GSFC Version 0
Distributed Active Archive Center.  The analysis examined only a subset of all requests
submitted.  In particular orders for CD-ROMs, off-line requests and anonymous ftp are
excluded because they did not affect the performance of Unitree and the near-line devices.
A summary of the results are:

• Most of the volume of the data ordered is concentrated on two of the seven data
products, and on higher level data.

• Most of user requests (by volume) were submitted via the Character-based User
Interface (ChUI).  

• Most of the volume of data is distributed via tape.

• The requested volume varies greatly between months.  Most of that volume is
submitted during normal working hours.

• There is a wide range of request sizes, and some requests are very large (100+
Gbytes).

• Most requests require service from a small number of data sets.

• A small set of hot users account for most of files and volume requested.

• LRU/2-bin is the best file caching algorithm on this workload, STbin also works well.

• The file interreference distribution has a peak at < 1 day, and a long tail.
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• Interest in data is not correlated with the time of archiving.
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