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Abstract

The Global File System (GFS) is a prototype design for a distributed file system in which
cluster nodes physically share storage devices connected via a network-like Fibre
Channel.  Networks and network-attached storage devices have advanced to a level of
performance and extensibility so that the previous disadvantages of shared disk
architectures are no longer valid.  This shared storage architecture attempts to exploit the
sophistication of storage device technologies whereas a server architecture diminishes a
device's role to that of a simple component. GFS distributes the file system
responsibilities across processing nodes, storage across the devices, and file system
resources across the entire storage pool.  GFS caches data on the storage devices instead
of the main memories of the machines.  Consistency is established by using a locking
mechanism maintained by the storage devices to facilitate atomic read-modify-write
operations. The locking mechanism is being prototyped on Seagate disk drives and
Ciprico disk arrays.  GFS is implemented in the Silicon Graphics IRIX operating system
and is accessed using standard Unix commands and utilities.

Introduction

Distributed systems can be evaluated by three factors:  performance, availability, and
extensibility.  Performance can be characterized by such measurements as response time
and throughput.  Distributed systems can achieve availability by allowing their working
components to act as replacements for failed components.  Extensibility is a combination
of portability and scalability.  Obvious influences on scalability are such things as
addressing limitations and network ports, but subtle bottlenecks in hardware and software
may also arise.

These three factors are influenced by the architecture of the distributed and parallel
systems.  The architectures can be categorized as message-based (shared nothing) and
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shared storage   (shared disk)  Message-based architectures share data by communication
between machines across a network with the data stored locally on devices within each
machine.  Machines in the shared storage architecture access all storage devices directly.
Figures 1 and 2 show examples of message-based and shared storage architectures [1][2].

Advocates of both architectures claim the advantage with respect to these three factors.
This is a techno-religious war that will not be resolved any time soon, yet analyzing
existing systems gives perspective on the strengths and weaknesses of each architecture.
This next section summarizes a number of distributed file systems based on their data
sharing approaches.

Message-based Distributed File Systems

Sun Network File System

The Sun Network File System (NFS) was designed by Sun Microsystems in 1985 [3].
It's design goals were system independence, name transparency, and preservation of Unix
file system semantics. NFS uses a client-server approach.  The server is stateless and
writes modified data to stable storage before returning results.  The server is able to cache
data in its system memory to improve performance.  The clients make requests to the
server with all information necessary to complete the operation.  Clients and servers
communicate over a network using remote procedure calls (RPC).  The RPC is a high
level protocol built upon User Datagram Protocol (UDP) and Internet Protocol (IP).

The statelessness of the server eases crash recovery.  A client that goes down does not
effect the operations of the server or other clients.  A server that fails need only to reboot.
The clients will resend requests when the server has not completed their requests in a
given time.  The clients perceive the server as being slow but they are unaware that it has
rebooted.
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Sprite File System

Sprite is a distributed operating system for networked workstations developed under the
Symbolic Processing Using RISCs (SPUR) research project [4].  Like Sun NFS, Sprite
uses remote procedure calls to communicate across its network. Sprite's file system is
distributed across multiple servers and clients.  It's primary goal was to provide name
transparency while still providing adequate performance.  Even device special files are
accessible to any process on the network.

The Sprite file system maintains cache consistency using a server-initiated approach.
The server tracks open files. When files are non-write-shared, the clients may cache the
portions of a file within their local memories.  When a file moves from non-write-shared
to write-shared, the server performs a call-back operation and disables client caching.

Andrew and Coda File Systems

Carnegie Mellon University's Coda is a distributed file system descended from the
Andrew file system which was a joint research project between IBM and CMU [5][6].
Both file systems are designed to operate on a distributed network of workstations scaling
up to 5000 machines.

Coda (constant data availability) was designed to improve on the availability of Andrew.
Each client is able to cache entire files locally in its memory and disks.  Furthermore,
multiple copies of each file may exist on several servers.  A server failure may then have
little impact on availability.  This approach also allows clients to run in disconnected
operation using only the files it has cached locally.  The client can reconnect to the
network and synchronize its cache with the rest of the system.

Like the Sprite file system, Coda servers maintain state concerning file accesses.  The
servers are responsible for performing call-backs when a clients cached data has been
modified by another client.  File sharing on a client is guaranteed to have consistency
described by Unix file sharing semantics.  Files shared across different systems see
consistency at the granularity of the entire file.

xFS Serverless Network File System

The xFS file system is part of the Berkeley's Network of Workstations (NOW) project
[7].  It is a successor to some of the research from the Sprite project.  It uses a log
structured approach like Sprite's Log-structured File System (LFS) and Zebra's [8]
striping technique to simplify failure recovery and provide high throughput transfers.

In xFS workstations are connected by a fast, switched network.  xFS is said to be
serverless, since the storage server functionality can be placed on the same machines as a



client.  Hence, any system can manage control, metadata, and real data.  This has
advantages of load balancing, scalability, and high availability.

Like Sprite, the system supports data caching on the clients [9].  The client requests data
from a manager. This manager tries to satisfy the request from another client's cache;
otherwise it directs the client the appropriate storage device.  xFS uses a token based
cache consistency mechanism.  A client must acquire a token for each file system block
that it wishes to modify.  The managers notify the clients to invalidate their stale copies
of the data and forward their requests to the new owner of the token.

Shared Storage Distributed File Systems

Digital's VAXClusters VMS

The VAXcluster is a “closely coupled” structure of VAX computing and storage nodes
that operates as a single system.  This system had VAX nodes connected by a message-
based interconnect.  Each processor runs the same copy of the distributed VAX/VMS
operating system.  The interconnection network had two topologies: the high
performance Star Coupler hub that supported a maximum of 16 devices and a low cost
Ethernet network [10].

The storage devices are connected to the system through a Hierarchical Storage
Controller (HSC).  For high-reliability, another HSC could be placed between the dual
ported storage devices and the star coupler by adding a redundant path between the CPUs
and the storage devices.

The operating system allows files to be shared using the cluster's distributed lock
manager.  Lock requests are made for a particular access mode: exclusive access,
protected read, concurrent read, or concurrent write.  Incompatible requests for resources
are queued until the resource is unlocked.  This system is a shared storage architecture,
since all file requests are serviced from the shared HSCs.  Each HSC can support up to 32
disks.

VMS allows caching for data and file system resources.  Coherence is maintained
between the CPU's local memories by sequence numbers within the files' synchronization
locks.  When the file system modifies a block, it increments the sequence number in the
file's lock.  If another system has this block cached and later references it, this system will
find that it's sequence number is old.  The block will be refreshed from the HSC.



Cray's Serverless File System

Cray Research's Serverless File System (SFS) is a file system incorporated in their
UNICOS operating system [11].  The file system uses a HIPPI disk array as the shared
storage device.  The disk array is connected to four C90 machines through a HIPPI
switch.  All C90 machines (nodes) act as peers; there is no server machine.

Arbitration of the HIPPI disk array is performed on a Sun SPARC workstation which is
also connected to the HIPPI switch. This workstation, call the HippiSeMaPhore (HSMP)
is responsible for maintaining semaphores used for mutual exclusion of data stored on the
disk array.  It also has error recovery functions.

Cray's SFS supports two types of file operations: multiple readers and single writer.  SFS
provides consistency by using the semaphores to facilitate read-modify-write operations
as well as limiting the open file states.  Nodes are able to cache data like a local file
system but with the constraints of more limited parallel file operations.

Message—based Versus Shared Storage

The message-based architecture's strength lies in its extensibility.  The approach is as
portable as the network protocol connecting the machines and it can potentially scale to
large numbers of machines.  The best example of message-based portability is NFS.  This
file system dominates the industry, because it is available on almost every platform.  File
systems like Coda have shown that the message-based approach scales to thousands of
machines.

Message-based systems may perform well if data access is well balanced across all
machines.   Load balancing is difficult since machine capacities and usage differ
dynamically across the system.  Locality is also difficult to maintain, since there will
always be resources that are shared by many nodes in the system.  Redundant copies can
be maintained but at the cost of coherence overheads.  Furthermore, the performance
benefit of high speed devices like disk arrays is negated, since the bandwidth to each
machine is limited by the network.  To summarize, achieving good performance on
message-based systems is not an easy task.

Server and device failures are another challenging problem facing the message-based
approach, since a server failure may result in data becoming inaccessible.  Fault tolerance
may be maintained using disk array devices at each node, but redundancy is not extended
across machines.  Software redundancy schemes must be built into the file system to
maintain any fault tolerance.



The shared storage approach has the advantage that every machine has nearly uniform
access to all storage devices and freedom from servicing data requests from other
machines.  This approach is similar to the traditional uniprocessor model where a
machine acts independently.  Also, failures of a machine have little effect on other
systems except for possible load increases.  Storage device availability can be improved
using hardware RAID [12].

The shared storage architecture takes advantage of the properties of the underlying
storage hardware.  Since every node has uniform access to the devices, the bandwidth
produced by disk arrays or disk striping can be utilized by all nodes.  Also, devices
capable of command queuing can optimize head seeks to provide high throughput.

The downfall of traditional shared storage system has been scalability and cost.  Systems
like the Digital's VAXcluster and Cray's SFS are based on proprietary networks and
hardware.  Proprietary hardware does not benefit from market competition and often
remains costly.  Furthermore, these systems do not scale with the number of nodes.  In
both examples, only one storage device and a few machines can be attached to the
system.

So far neither architecture fully satisfies all three factors - performance, availability, and
extensibility but new network technologies are changing this.  For instance, Fibre
Channel (FC) is an emerging ANSI and International Standards Organization (ISO)
standard for a network architecture [13] that supports network attached storage by
including the SCSI-3 channel protocol.  Fibre Channel provides two topologies for
network attached storage: switched and arbitrated loop [14].

A high speed network like Fibre Channel can improve the performance of both shared
storage and message-based architectures, yet it does little to improve the extensibility and
availability of the message-based approach.  Providing network attachment to storage
devices greatly enhances the extensibility of shared storage.  With a network like Fibre
Channel, a system that is non-propriety and portable can be built using the shared storage
architecture.

Existing shared storage systems must be redesigned to exploit the properties of these
networks and devices.  The assumptions that traditional shared storage file systems made
with respect to data caching, coherence, and resource management are obsolete.  For
instance, Cray's SFS caches data locally on its nodes to exploit the high bandwidth, low
latency memories of the C90s.  This caching comes at the price of allowing only non-
write-shared file operations.  That is, if the file is opened by one or more readers, a writer
cannot access it until all readers close the file.  This coherence mechanism can lead to
large latencies and even starvation.



The Global File System

The Global File System is a prototype design for a distributed file system.  Network
attached storage devices are physically shared by the cluster nodes.  The GFS prototype
is implemented in the Silicon Graphics’ IRIX operating system [15][16] under the VFS
interface and is accessed using standard Unix commands and utilities [17][18][19]. The
machines and storage devices are connected via a Fibre Channel network.

GFS views storage as a Network Storage Pool (NSP) — a collection of network attached
storage devices logically grouped to provide node machines with a unified storage space.
These storage pools are not owned or controlled by any one machine but rather act as
shared storage to all machines and devices on the network.  NSPs are divided into
subpools where each subpool takes on the attributes of the underlying hardware.

GFS targets environments that require large storage capacities and bandwidth such as
multimedia, scientific computing, and visualization [20][21].  These large capacities
influence tradeoffs, such as caching and the metadata structure, associated with the
design of a file system.

Chip integration has transformed storage devices into sophisticated units capable of
replacing many of the functions performed by a server machine in a client-server
environment.  These devices can schedule accesses to media by queuing multiple
requests.  They possess caches of one or more Megabytes that can be used for read and
write caching and prefetching.

GFS caches data in the nodes' main memories only during I/O request processing.  After
each request is satisfied, the data is either released or written back to the storage devices.
To exploit locality of reference, GFS caches data on the storage devices.  GFS informs
the devices on each request what data is appropriate to cache - such as metadata that is
accessed repetitively and small files like directories which are frequently accessed.
Consistency is established by using a locking mechanism maintained by the storage
devices to facilitate atomic read-modify-write operations.  This form of locking has the
simplicity of a centralized mechanism yet is distributed across a large number of devices.

Figure 3 represents an example of the GFS distributed environment.  The nodes are
attached to the network at the top of the figure and the storage pool at the bottom.
Connecting the nodes and the devices is a Fibre Channel network which may consist of
switches, loops, and hubs.  In the example, three different subpools exist: /single is a
single disk, /wide is a striping of several disks, and the /fast is a disk array.



To the figure's left is a tape device which is directly connected to the network.  Such a
tape drive may be used for data backup or hierarchical storage management.  A node
could initiate third party transfers between the disk devices and the tape drive.  The figure
also shows how a GFS host can act as a NFS server.  This ability allows machines
without GFS capabilities to access GFS data via an NFS exported file system.  The
operating systems VFS interface handles the translation between GFS and NFS.

File System Structure

Each GFS file system is divided into several Resource Groups (RG).  Resource groups
are designed to distribute file system resources across the entire storage subpool.  Figure
4 shows the logical structure of a file system. Multiple RGs exist per device and can be
striped across several devices.

Resource groups are essentially mini-file systems.  Each group has a RG block, data
bitmaps, dinode bitmaps (used as the dinode free list), dinodes, and data blocks.  The RG
block contains information similar to what traditional superblocks maintain: the number
of free dinodes, the number of free data blocks, and the access times of the RG.  File data
and metadata may span multiple groups.
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Figure 3: GFS Distributed Environment



GFS also has a superblock which contains information that cannot be distributed across
the resource groups.  This information includes the number of nodes mounted on the file
system, bitmaps to calculate unique identifiers for each node, and the file system block
size.  The superblock also contains a static index of the RGs.  This RG index describes
the location of each group as well as the group attributes and layout.

A GFS dinode takes an entire file system block.  Each dinode is divided into a header
section which contains standard dinode fields and a section of pointers.  The number of
pointers in a dinode is the determined by equation 1 and the number of pointers an
indirect block has is given in equation 2.

file system block size - size of dinode header
# pointers in dinode = ------------------------------------------------------   (1)

size of block address

file system block size
# pointers in indirect block = --------------------------    (2)
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The pointers form a tree structure in which all data blocks  are at the tree's leaves and
have the same height.  This structure is used so that all its accesses require the same
number of indirect accesses to the data blocks regardless of the offset into the file.  This
structure differs from the traditional Unix file system (UFS) where data blocks might
have different heights.  The UFS tree is simpler to implement yet can require an
additional level of indirection.  Furthermore, UFS places multiple dinodes per file system
block.  By taking an entire block, the GFS can have hundreds of direct pointers in the
dinode instead of just ten as in a UFS dinode.  Figure 5 illustrates a GFS dinode and one
level of indirection for referencing the data blocks.

Device Locks

Device Locks are mechanisms for node machines to maintain mutual exclusion of file
system data.  They are implemented on the storage devices and accessed with a single
SCSI command.  The Dlock command instructs the devices to perform primitive
operations on the locks - test and set and clear.  The implementation of the device locks
on the device are limited by the following constraints:

1. The device lock commands are independent of all other SCSI commands.
 
2. Devices supporting device locks have no awareness of the nature of data or resource

that is locked for mutual exclusion.
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Figure 5: GFS Dinode



 
3. Each lock requires minimal amounts of device memory - as little as one byte per lock.

Lock States

The state of each lock is described by one bit.  If the bit is set to 1, the lock has been
acquired and is owned by a machine node.  If the bit is 0, the lock is available to be
acquired by any node.  The Dlock command action test and set first determines if the
lock value is 1.  If value is 1, the command returns with a status indicating that the lock
has already be acquired.  If the value is 0, Dlock sets the lock to 1 and returns a good
status to the initiator.  The Dlock command clear simply sets the lock bit to 0.

Clocks

Associated with each lock is a clock.  The clocks are logical clocks in the sense that they
do not relate to time but instead keep an ordering of events for each lock.  These clocks
are incremented when a successful action is performed. The clocks are used to monitor
how often a lock is accessed; i.e., how many times the lock has been set and then cleared.
Such a clock gives insight into load balancing hot-spots. These occur when some locks
are accessed more often than others.  More importantly, these clocks are useful for error
recovery.

The clocks are implemented using a minimal amount of memory — typically 7 to 16 bits
each.  The initiators must be aware that the clock values periodically roll-over from their
maximum value to zero.  This may happen several times a second on a highly accessed
lock, so care should be taken by the initiator not to assume that the clock value is slowly
growing.  The clock value is returned after each Dlock command.

Device Failures

The device locks and their accompanying clocks are stored in volatile memory on the
device, although the locks are held across SCSI resets.  When a device is powered on or a
failure occurs which results in the locks being cleared, the device notifies all nodes by
setting Unit Attention . Upon finding a unit attention, a node checks to see if its locks are
still valid.  Before proceeding, it will then re-acquire any locks that may have been lost.

Node Failures

A node that fails could leave device locks in the locked state indefinitely.  These locks
will remain in this state until some node clears them.  A node attempting to acquire a lock
that is owned by a failed node can identify that the lock has been untouched by checking
the activity of the lock's clock.  If the clock has remained unchanged for an extended time
period,  a node can identify such a case and clear the lock.



Care must be taken by the node clearing a lock that it does not own.  The true owner may
have failed or it may be in a hung state from which it will eventually return still believing
it owns the lock.  Furthermore, two separate nodes may simultaneously identify the same
lock which must be cleared and send resets.  It may be possible that the first node clears
the lock and sets the lock in the following command.  The second node which has already
decided to clear the lock sends the command after the lock has been acquired by the first
node.  This second clear request must be ignored.

When a node wishes to clear a lock as failure recovery, the device compares the current
clock with the input clock from the node.  This test ensures that the lock will only be
cleared if the node can identify the current value of the clock.

Deadlocks and Starvation

Deadlocks are avoided by the file system.  The file system only acquires locks in an
increasing order.  Circular dependencies are avoided. Starvation is handled by the file
system and device drivers.  The file system does not hold locks for more than a few I/O
requests to storage.  A node's device drivers test for its own starvation by checking the
activity of the lock-based clock values.  The node can increase the rate at which lock
requests are performed an in attempt to feed its starvation.

Consistency and Caching

Consistency is maintained by using atomic operations guaranteed by the device locks
when modifying data.  Given the limited number of practical device locks per device - on
the order of 1024 - individual locks cannot be assigned to each file.  One lock is assigned
to the super block, one lock is assigned to each resource group, and the remaining locks
are divided among the dinodes.  Figure 4 shows how device locks are associated with the
superblock, resource groups, and dinodes.

When device locks are not implemented on the storage device, the SCSI commands
Reserve and Release can be used to perform atomic operations on data.  These commands
provide exclusive access to the entire device for one node by not servicing requests from
other nodes.  These commands guarantee exclusive access but do not provide much
parallelism.  With only one reservation per device, many non-conflicting requests have to
wait until the storage device is released.  In a distributed environment, such limited
access decreases system throughput and response times.

The SCSI protocol describes the optional commands Reserve and Release on Extents.
These commands allow initiators to reserve for exclusive access only the data blocks that
they may need.  These commands decrease the granularity of exclusion from the device
level to the block level.  While potentially increasing the throughput of the distributed
system, Reserve and Release on Extent commands require the devices to maintain



complicated states of access permissions.  For this reason, these commands are generally
not implemented by the majority of device manufacturers.

We present device locks as a mutual exclusion mechanism that is highly parallel, has low
device overheads, and recovers from failures gracefully.  The Dlock command is being
prototyped on Seagate disk drives and Ciprico disk arrays.

Preliminary Results

Preliminary measurements have been taken with parallel SCSI hardware instead of Fibre
Channel.  Fibre Channel hardware is not yet available to us, so we present the parallel
SCSI results instead.  We hope to have Fibre Channel measurements by the time this
paper is presented.  These results are based upon tests using SCSI Reserve and Release to
maintain consistency instead of device locks.  The Dlock command is still in
development and testing by Ciprico and Seagate.

Test Configuration

These tests were conducted on three SGI Indys running IRIX 5.3 operating system.  One
Indy has a 100 MHz R4600 processor while the other two have 132 MHz R4600
processors.  All machines have 32 Mbytes of main memory.

A Seagate Barracuda 2LP was used as the shared storage device.  The 2LP is a 2
Gigabyte Fast SCSI-2 drive.  It has a 17 millisecond maximum seek time and a 7200
RPM spindle speed.  Our tests measured the time for reserve and release commands to be
approximately 2 milliseconds.  This disk and all three system disks share the common
bus.  The disk caching parameters are set at their default values.

The configuration shown in figure 6 is a representation of the test environment.  To
overcome cabling difficulties, the system disk of node 2 was attached to the internal SCSI
bus of node 0 and node 2's controller was directly connected to the internal bus of node 1.
All devices and controllers are electrically connected.



Benchmarks

Small benchmark programs were run on one, two, and all three machines to study how
effectively the SCSI bus and disk are shared.  The tests were run on the file system
running in user space as opposed to running under the VFS interface of the kernel.  The
user level file system allows for easy tracing and performance measurements.  The user
level file system adds various overheads to the system, so we believe that the VFS file
system will perform even better.

The benchmarks chosen involve tests of creating, writing, and reading files.  The file
sizes range from 1 Mbyte to 16 Mbytes.  Files were written and read by making from 1 to
128 requests per file.  A delay was placed between each request ranging from zero to one
second.  This delay represents the time for which a real application would perform
computation or wait for some reason other than I/O.  All tests were run five times so that
the median values could be used to evaluate the performance.  Table 1 summarizes these
benchmarks. The benchmarks chosen for these tests attempt to match the performance
capabilities of the single shared disk and 10 MB/sec SCSI bus.  These benchmarks will
be scaled appropriately when performing the tests on Fibre Channel hardware with
multiple devices.

Shared Disk
SCSI
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Fast SCSI-2 Bus

System Disks

SCSI ID 4 and 7

SCSI  Controller
SCSI ID 2

Node 0 System Disk

SCSI ID 3
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Figure 6: GFS Test Environment



Parallel SCSI Performance

Figures 7 and 8 show the speedups for each  machine creating and reading a 1 MB file in
128 KB requests, respectively.  Figures 9 and 10 show the speedups where machines
create and read a 16 MB file in 1 MB requests, respectively.  These results are scaled to
reflect equal amounts of work of 3 MB and 48 MB respectively.  That is, the time for one
machine is multiplied by 3 and the time is multiplied by 1.5 for two machines.  All these
times are then normalized to the one machine test by dividing by the one machine time.
Curves are given for no delay and 100 ms, 500 ms, and 1000 ms delays.  The write tests
show trends similar to the read tests.

Figures 11, 12, 13, and 14 are plots of the 16 MB creates with varying request sizes.
Figures 15, 16, 17, and 18 are plots of the same test with read requests.  The request axis
is the number of requests needed to access the entire file.  The three curves for each plot
are the time for one machine alone, the time of the slowest machine with three machines
running simultaneously, and three times the one machine time. This last curve is given as
a constant workload comparison to the three machine case.

Figures 19 and 20 are plots of the number of conflicts encountered by machines when
running the 16 MB create and read tests and no delay between requests.  Figures 21 and
22 show the same tests with a 1000 ms delay.  These conflicts were counted by the device
driver whenever a reserve command failed because the device was already reserved.

Parameter Range
Number of Nodes 1,2,3
Types Create and Write, Write, Read
File Sizes 1 MB to 16 MB
Number of Requests per File 1 to 128
Delay Between Requests 0 ms, 100 ms, 500 ms, 1000 ms

Table 1: Benchmark Parameters
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The conflict plots show several obvious but interesting trends:  the single machine tests
had no conflicts; the three machines tests had more conflicts than two machines test; a
delay between requests decreased the conflicts; and creates had more conflicts than reads.
These trends can be explained by the argument that increasing numbers or the rate of
requests increases the chances of having conflicts.  The tests that had the most conflicts
are those which issued the most requests in a given time period.

The results are promising considering the nature of the tests.  The no delay case
represents nearly constant access to the device in the single machine case.  No parallelism
can be exploited by adding one or two machines, since the device is already fully utilized.
The slowdown seen in some plots is a result of the contention for the shared device.
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with no delay
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Figure 12: GFS Creates of 16 MB files
with 100 ms delay
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Figure 13: GFS Creates of 16 MB files
with 500 ms delay

0

50

100

150

200

250

300

350

400

450

8 16 32 64 128

3 Machines
1 Machine
1 Machine * 3

Requests

Figure 14: GFS Creates of 16 MB files
with 1000 ms delay



File creates are slower than the reads because the creates require additional I/O requests
to allocate the dinodes, allocate data blocks, and build the metadata tree.  As can be seen
in the plots with the number of requests as the X-axis, the number of requests is indirectly
proportional to the performance.  This is because each request has an overhead of greater
that 2.5 milliseconds.  Also, with each request there is a possibility of a reservation
conflict which slows the request by as many as 100 milliseconds.  With Fibre Channel
and device locks, both these overheads will be substantially reduced.

The 100 ms delay tests allow some parallelism to be realized. However, it is not until the
500 ms delay that the parallelism is exploited for all three machines.  The 1000 ms delay
may represent the best speedup for this configuration, since according to figure 14 and
18, the 1000 ms delay test does not distinguish between one, two, or three machines
running simultaneously.

Striping the file system across multiple devices may have an effect similar to increasing
the delay between file system requests.  Assuming the 10 MB/sec SCSI bus is not a

0

5

10

15

20

25

30

35

40

8 16 32 64 128

3 Machines

1 Machine

1 Machine *  3

Requests

Figure 15: GFS Reads from 16 MB files
with no delay
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Figure 16: GFS Reads from 16 MB files
with 100 ms delay
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Figure 17: GFS Reads from 16 MB files
with 500 ms delay
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Figure 18: GFS Reads from 16 MB files
with 1000 ms delay



system bottleneck, adding another device to the configuration may remove as much as 50
percent of the burden from the single disk.

NFS Comparison

The benchmarks were also run on a configuration using NFS as a comparison between
distributed file systems running on the same hardware.  This configuration consists of a
dedicated server machine and three clients.  The workstations and disk are the same as
above; the server machine is a 132 Mhz Indy.  Connecting the machines is a 10 Mbit/sec
ethernet network.  The server's file system was SGI's XFS [22].

Figures 23, 24, 25, and 26 are the NFS equivalent of the speedup curves given above.
Figures 27, 28, 29, and 30 are given as a time comparison between the NFS and GFS read
tests.  A few differences can be noticed between the GFS and NFS tests.  First, while both
file system have good speedup for larger delays, NFS never has slowdown.  However, the
NFS tests use a dedicated server which is one more machine than the GFS test
configuration.  The speedup values do not take this into account.  Second, the GFS times
are much smaller - between two and ten times faster.  In cases where the request sizes
were large, GFS exceeded transfer speeds of 2 MB/sec.
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Figure 19: GFS Creates of 16 MB files
with no delay
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Figure 20: GFS Reads from 16 MB files
with no delay
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Figure 21: GFS Creates of 16 MB files
with 1000 ms delay
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Figure 22: GFS Reads from 16 MB files
with 1000 ms delay
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Figure 23: NFS Speedup for 1 MB files
Created by 128 KB requests
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Figure 24: NFS Speedup for 1 MB files
Read by 128 KB requests
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Figure 25: NFS Speedup for 16 MB files
Created by 1 MB requests
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Read by 1 MB requests



Future Work

The GFS project is still in its early phase.  When Fibre Channel hardware and device
drivers become available, an expanded set of performance tests will be performed.  These
tests will be performed on file systems with different configurations - file system block
sizes, resource group layouts, etc.

The device lock mechanisms are to be studied to accommodate failure recovery.  The
polling rates between locking retry requests must be tuned to provide a good compromise
between low latencies to each node and high system throughput.  Associated with these
rates is the delay between retry algorithm - constant delay versus variable delay.

The time that a node waits before resetting a device lock owned by another node must
also be investigated.  This time duration has to accommodate failures in a short period
without resetting prematurely.  Premature resets cause the previous owner to rebid for
locks it once owned.  This is acceptable occasionally but should be kept to a minimum.
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with no delay
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Figure 28: NFS Creates of 16 MB files
with 1000 ms delay
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Figure 29: NFS Reads from 16 MB files
with no delay
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Currently GFS stores data in a linear layout across the storage devices.  This layout
allows various forms of striping and data partitioning, but we plan to generalize this
layout to a subpool architecture.  Each subpool will have attributes reflected by its
underlying hardware and configuration.  A translation layer will be placed between the
file system and device drivers.  This translation layer will convert the linear block
addresses from the file system to the proper devices and block numbers padding requests
when appropriate.

Work has begun to study the caching algorithms and cache configurations of storage
devices.  Using hardware and simulations, we are attempting to determine the benefit of
large caches.  Replacement policies are also being studied.

Conclusion

The GFS approach to a distributed file system using shared storage devices seems
promising given the high bandwidth natures of new networks and the increasing
sophistication of devices.  The architecture places more responsibilities on storage
devices than message-based architectures.  Modern devices are able to cache, perform
mutual exclusion, and schedule requests freeing these burdens from the node machines.

The results from the preliminary performance measurements indicate that with sufficient
delay between I/O requests to a shared device, device parallelism is exploited within the
system.  This delay may take the form of machines performing file system requests
between lengthy computation or low activity.  Striping the file system across multiple
devices may have an effect similar to increasing the delay between requests.

We believe that by using 100 MB/sec Fibre Channel and multiple storage devices, this
shared storage scheme will scale well to several machines even with large workloads.
Furthermore, the fine grain mutual exclusion implemented using the device locks will
decrease conflicts to further increase the performance of each node and the system.
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