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Abstract:  Shared file systems like Cray's SFS, DEC's VAXcluster file system, and
Oracle's Parallel Server exploit network-attached storage by creating serverless distributed
file systems that allow efficient, simultaneous access to shared, network-attached storage
devices.  In the past,  these shared file system designs relied on proprietary network-
attached storage like DEC's CI network or higher-cost interfaces like HiPPI, or used
software to emulate shared storage networks. With the advent of Fibre Channel,  a high-
volume, open standard in network-attached storage interfaces is now available.  In this
paper we will review past work in traditional distributed file systems like NFS and AFS
and work in shared file systems by Cray, DEC, CMU and others.  New file system
architectures for shared network storage will also be described1.

We will give a brief overview of Fibre Channel technology, describing its protocol layers,
how higher level protocols like IP and SCSI are mapped to this protocol, and the
topologies supported.  Finally we will sketch the future evolution of network-attached
storage as it moves from high-end, high-capacity requirements  into mid-range and lower-
end desktop computing.  We believe these  trends may be affected by Fibre Channel’s
potential to function as both a network and storage interface.

1.  Introduction

This paper reviews traditional client-server distributed file system designs and motivates
shared disk file systems by describing Fibre Channel, a widely-used shared storage
interconnect that will encourage the development of shared file systems.   We define shared
file systems and describe past and current work in this important research area.  Finally, we
sketch possible trends that may develop in the future as Fibre Channel and shared storage
systems evolve.

2.  A Short History of Distributed File Systems

In a traditional client-server distributed file system the server typically provides a name
space, enforces file access permissions, maps names and file offsets to disk block
addresses, and performs directory lookups.    Clients send file system commands such as
create, read, and write across a network to be executed on the server.

There are several advantages to the client-server approach for distributed file system
design.  Clients are to use access files transparently across a network using the same
commands employed by the local file system, preserving binary compatibility.  Network
hardware and protocol independence are achieved by using standard network protocol
stacks which include protocols such as RPC, XDR, and TCP/IP, as show in figure 1.  
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Figure 1:   NFS Protocol Stack on Client and Server.

Network protocol independence helps insure portability by separating the network
hardware from the distributed file system software.  As we will show, this has implications
for both  performance and system complexity.

Important design criteria for distributed file systems include [Vah96]:

1.      Name        Space    — how is the file system name space constructed on each client
and does each file have the same pathname across all clients?

2.     Statefull        or       stateless        operations    — do the clients and the server maintain state
about previous operations and which files are open on which clients?  

3.     Semantics        of       sharing     —  when multiple clients share a file concurrently do they
see file modifications on other clients immediately (UNIX sharing semantics) or
is there a delay?

4.     Server        Callbacks     —  when a cached file is modified does the client discover
this via polling the server or does the server callback  other clients to inform
them that the file has changed?

The original client-server distributed file system designs [SaG85], [Tuc96], [Vah96] relied
on a single central server  to service clients requests which simplified the design but also
limited scalability and availability by introducing a single point-of-failure.   To achieve
better scalability distributed file systems have evolved in the following directions:

1. Distributed servers to balance the file request workload and provide redundancy
[Sat90], [Ous88].

2. Looser sharing semantics and client-based caching to reduce client demands on
the server [Sat90].

3. Migrating functionality from the server to the clients [Sat90], [AnD95].

Some examples of distributed file systems include NFS [SaG85], [Tuc96],  RFS [Vah96],
Sprite [Ous88],  Coda and  AFS [Sat90], and xFS [AnD95].  Here we summarize three
distributed file system designs:  NFS,  RFS, and AFS.
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    2.1                Network        File        System       (NFS)   

The Network File System was designed by Sun Microsystems in the mid-80s to allow
transparent file sharing among multiple UNIX clients [SaG95], [Vah96], [Woo95],
[Koe95].  Sun also developed the vnode/vfs installable file system interface to allow a
single UNIX kernel to support multiple, non-native file systems by providing an interface
between file-system independent and file-system dependent portions of the kernel.  This
technique, though not the vnode/vfs interface itself, has become standard today as most
modern operating systems provide an interface for installable file systems to be added to the
kernel.  

The original NFS architecture has been described as stateless but improving performance,
failure recovery, and consistency with UNIX file system semantics has meant that most
NFS implementations include state in actual implementations, especially on clients.  NFS
goals included operating-system-independent implementation,  hardware and transport
independence, and simple failure recovery.   Sun aggressively licensed NFS and provided
a reference implementation that allowed many other vendors to implement it;  today it is the
de facto standard for distributed file systems in UNIX and other heterogeneous
environments.

Figure 1 shows the basic NFS protocol design:  clients requests are routed through the
client vfs layer onto a network via RPC, XDR, and TCP/IP protocols to the server vfs
layer.  The server translates these client requests into local file system requests;  read
request data is packaged and returned to the client whereas write data is synchronously
written to disk (as is any metadata modified as a result of the write request).  This means
that the client application cannot proceed until the NFS server has written the data and
metadata to the disk media.  This limitation is a direct result of the state-less nature of the
NFS protocol and results in other performance-inhibiting NFS “features”:

• when the NFS server crashes clients continue to send request packets,
burdening the network with unnecessary load

• when clients interpret a heavily-loaded NFS server as having crashed due to
long response latency they continue to send request packets to this server,
loading it even further

    2.2               The        Remote        File        Sharing       system       (RFS)   

RFS was developed by AT&T and introduced in SVR3 UNIX to provide remote access to
files over a network.  Unlike NFS,  all UNIX semantics are preserved.   The
implementation is state-full to improve performance,  provide UNIX file sharing semantics,
and simplify implementation.   RFS has never reached the popularity of NFS though in
many ways it is a cleaner distributed file system design.  

RFS uses a central name server to provide resource names for exported directories.  In
addition,  its structure is hierarchical:  a single RFS system may be composed of multiple
domains each of which is an independent administrative structure.  However, files may be
accessed between domains relatively transparently.  The RFS server maintains state about
clients including which files have been opened by a client, incrementing the reference
counts on their vnodes.  In addition,  file/record locks and readers/writers counts for named
pipes are maintained as well as a table of all clients that have mounted file systems [Vah96].  

Crash recovery in RFS is relatively straightforward.   A virtual connection is set up when a
mount operation is first performed between a client and server.  This virtual connection is
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broken when either the client or server fails.   When a client crashes, the server decrements
the inode reference counts for files opened by that client and releases any file or record
locks held by that client.   When a server crashes,  client processes waiting for server
requests to complete are informed an error has occurred by the return of the ENOLINK
error message.  RFS inodes referring to files on the failed server are flagged so that later
operations on these files return an error condition and a user-level process is started to clean
up state related to this server.

Since RFS maintains state information on the server about which files each client has open,
it is possible for the server to inform clients who have cached a given file that it has been
modified and the current cached versions of this file are therefore invalid.  This mechanism
was also used by the Sprite operating system [Ous88] and the state-full NFS
implementation Sprite inspired [Sri89].   Client caching is write-through so that all client
writes must be immediately sent to the server which then informs clients to invalidate their
cached versions of this file, providing strong consistency.   A drawback of this approach is
that if a client crashes or becomes unreachable across the network then it may take a long
time for it to respond to cache invalidation requests which prevents other client operations
from completing [Vah96].

    2.3        The        Andrew        File        System     

AFS [Sat90]  originated in 1983 as a joint project between Carnegie Mellon University and
IBM to develop a campus-wide data sharing infrastructure that exploited desktop
workstation technology but also provided the efficient data sharing capabilities of
centralized machines.   AFS evolved through three implementations — AFS-1, AFS-2, and
AFS-3 — before the development was spun off to Transarc Corporation.  

AFS shares some of the features of central server distributed file systems like NFS and
RFS but was designed to scale to dozens of servers and thousands of clients potentially
sharing data across a wide area network.   Data is stored centrally in the collection of
trusted AFS servers called “Vice” which are surrounded by untrusted AFS clients
embedded in a surrounding network connected to Vice.  A client workstations can access
any file in the Andrew name space using the same name providing location transparency.
(NFS file names may be different on each client depending on where the exported directory
is mounted on each client.)

Like RFS,  AFS-2 and AFS-3 rely on server callbacks when files cached in clients have
been modified.  AFS-1 and AFS-2 cached whole files, while AFS-3 caches 64-Kbyte
chunks.   AFS-2 uses session semantics:  once a file is opened by a client,  it reads and
writes that file in isolation from other clients.  File modifications are written to the server
only when the file is closed.  Clients cache entire directories and perform name lookups
directly without accessing the server.  

An excellent guide by Levy and Silberschatz to previous work in the area of distributed file
systems can be found in [LeS90].   The Transarc DFS is a highly sophisticated and robust
descendant of AFS-3 (see www.transarc.com).  Fault-tolerance issues in distributed
file systems are discussed in [KiS96].  Performance measurements for several distributed
file systems are described in [Sat90] and [Bak91].  A classification scheme in the context of
network-attached storage can be found in [SoE97a].
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3.  The Advent of Network Attached Storage:  Fibre Channel Arrives

Recent advances in switching technology, fiber optics and the convergence of network and
channel interfaces [SaL94], are allowing order-of-magnitude improvements in network
latency and bandwidth through new technologies like Fibre Channel [Ben95].  Open
standards and high-volume markets, combined with the constant increase in functionality
and decrease in cost for microelectronic devices,  continue to drive down network costs.
The previous speed imbalance between disk drives and networks will be reversed: parallel
drive designs will be needed to exploit switched network bandwidth and meet the
requirements of tomorrow’s demanding applications.  

The Fibre Channel standard integrates both storage and networking capabilities into a single
serial interface that currently has a speed of 100 Megabytes/second (and a growth path to
400 Megabytes/second),  allows both low-cost loop connections (much like FDDI rings)
with up to 126 devices at distances beyond 100s of meters and is scalable to 100s or 1000s
of devices with Fibre Channel switches.  Yet Fibre Channel is beginning to achieve
widespread use with disk drives and adapters priced about the same as parallel SCSI
technology [Dem94].  In contrast, today’s parallel SCSI technology supports only about 8
devices per bus with each bus extending at most 25 meters making the technology
effectively unscalable.

In this section we give an overview of the Fibre Channel standard which we break into four
sections:  interconnect topologies,  physical characteristics, protocol layers, and industry
support.  

    3.1              Interconnect        Topologies   

There are three basic  topologies supported in Fibre Channel:

1. Point-to-point

2. Fabric (switch)

3. Arbitrated loop (ring)

Fibre Channel networks can be set up as a single point-to-point link between two “N-
Ports”,  as a group of  N-ports connected together through “F-ports” on a Fabric (switch),
and by a group of “NL_ports” connected together on an arbitrated loop (ring) without the
need of a switch.  Each N_port resides on a  Fibre Channel “node” which is typically either
a computer, disk array, or disk drive.   These three topologies allow system architects to
use only as much bandwidth and interconnect capability as required.  Hence,  a single disk
attached to a single computer uses a point-to-point connection,  a group of disk drives
attached to a single computer would likely use an arbitrated loop topology to reduce the port
cost per disk drive,  and a cluster of large, fast  servers might share several fast disk arrays
across a Fabric switch.   These topologies and their interactions are all formally defined in
the Fibre Channel standard (see http://www.fibrechannel.com).

    3.2               Physical        Characteristics

Though the physical Fibre Channel interface was originally designed to support single- and
multi-mode optical  connections, the standard has been broadened to include support for
copper coax and twisted pair lines run over shorter distances.   Single-mode fiber optic
connections can be run up to 10 kilometers; cheaper multi-mode connections can be run up
to 1 km.   Each port includes both a transmitter and receiver:  in point-to-point and Fabric
topologies the remote connections for the transmitter and receiver end at the same port,
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while in the arbitrated loop topology these connections end up at different ports.  Full-
speed connections run at  1,062.5 Mbps (Megabits per second) which, after protocol
overheads are factored in,  gives a potential data transfer rate of 100 MBps (megabytes per
second).   The standard includes a well-defined path to “double-” and “quadruple-speed”
which can achieve data transfer rates of 200 MBps and 400 MBps,  respectively.  

Fibre Channel provides scalability in both bandwidth and ports.  Arbitrated loop topologies
allow up to 126 NL_ports,  far exceeding the 8 to 16 devices possible with parallel SCSI.  
Current Fabric switches contain 8 to 16 ports but can be cascaded to create large Fabrics
with over 32 switches and 512-port Fabrics.

    3.3               Protocol        Layers   

Fibre Channel functionality is implemented in 6 layers [Ben95]:

1. FC-0: Physical Interface and Media
2. FC-1: Transmission Protocol and Byte Encoding
3. FC-AL: Arbitrated Loop Functions
4. FC-2: Signaling Protocol and Link Service
5. FC-3: Common Services over Multiple N_ports
6. FC-4: Upper Level Protocol Mapping

FC-0 defines the optical and electronic cable plant,  connectors,  and transmitters and
receivers.   FC-1 describes the 8B/10B encoding used for byte and word alignment,
ordered sets used for frame bounds, low-level flow control, and link management,  port
operational states and error monitoring.  FC-2 defines the frames, sequences and
exchanges used to transfer data and control information,  buffer-to-buffer and end-to-end
flow control,  and Fabric and N_port login and logout.  FC-3 includes common services
implemented over multiple N_ports such as striping while FC-4 codifies how upper level
protocols like IP and SCSI [Dem94] are mapped onto Fibre Channel.

New products are being introduced at an increasing rate and the Fibre Channel standard
continues to evolve.   The following Web sites provide current information on standards
and products:

• http://www.fcloop.org
• http://www.fibrechannel.com

Van Meter provides an excellent overview of other interfaces (but including Fibre Channel)
that allow direct attachment of devices to networks [Met96].

4.  Shared File Systems

The client-server architecture for current distributed file systems described in section 2 was
driven partly by the inability to attach storage devices directly to a network and by requiring
that the file system be independent of the network transport medium employed.  However,
as new technologies like Fibre Channel that support network-attached devices become
increasingly ubiquitous,  it becomes reasonable to consider distributed file system
architectures which exploit this network-attached hardware without deep protocol stacks
like that found in NFS (see figure 1).  These shared file systems are similar to local file
systems in several ways but also must address new issues in synchronization, scalability
and error recovery.

In this section we describe the key characteristics of shared file systems and give examples
of this file system architecture.  Shared file systems we are aware of  include:
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• IBM Sysplex [Pfi95]
• Oracle Parallel Database Server [Llo92]
• LLNL’s High Performance File System [Wat95]
• DEC Vaxcluster file system [KrL86], [DEC87] (1984)
• High Performance File Server [ArB93] (1993)
• Cray’s Shared File System [Mat95] (1994)
• IBM’s Parallel Journaled File System [DeM95] (1995)
• NASD (Network Attached Secure Disk) File Systems [Gib96], [Gib97](1995)
• Global File System [SoE97a], [SoE97b], [SoR96] (1995)
• Veritas’  Cluster File System (CFS) (1998)

Our definition of a shared file system is simple and therefore fairly broad:  a  shared file
system  allows direct data transfers between computers (clients) transferring data and the
storage device that contains the data such that more than one client may access data from the
same storage device.   Hence, the device is shared between clients.  This definition implies
an interconnection network between multiple clients and the storage device.  In addition,
the file system software must recognize the existence of other clients accessing the same
storage devices and file system data and metadata.  This requirement precludes most local
file systems from being considered as shared file systems since local file systems generally
consider the storage devices as being owned and accessed by a single host computer.

Shared file systems provide a server-less alternative to traditional distributed file systems
where the server is the focus of all data sharing.    A shared file system approach based
upon a shared network between storage devices and clients (often referred to as a Storage
Area Network or SAN ) offers several advantages:

1.     Availability            is increased since if a single client fails another client can continue
processing its workload because it can continue to access the failed clients data
from the shared disk.

2.     Load-balancing      a mixed workload among multiple clients sharing disks is
simplified by the clients ability to quickly access any portion of the dataset on
any of the disks.

3.     Pooling     of storage devices into a shared disk memory  equally accessible to all
clients in the system is possible.

4.     Scalability     in capacity, connectivity and bandwidth can be achieved without the
limitations inherent in file systems designed with central servers.

Shared file systems can be classified using the following characteristics:

• Symmetric or asymmetric?

• Locking performed on clients or devices?

• Proprietary or open storage networking interface?

• Developed by modifying a local file system or writing new code?

A shared file system is symmetric if any client can perform any file system operation
without interacting with another client.  In asymmetric shared file systems a client must first
make a request through a file manager executing on another client.  The file manager
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typically manages the file system metadata, checks file access permissions, and provides
the client with information necessary to access the data directly on disk via the storage area
network.  Asymmetric shared file systems are sometimes said to use third-party transfers
because the file manager acts as a third-party in the transfer between the client and storage
device.  Once approved the data transfer between client and device is direct.

Asymmetric file systems have several advantages.  The file manager can be designed by
modifying the server in client-server distributed file system so that the control and data
operations are separated [ArB93], [Wat95], [Gib97].   Since control transfers are much
smaller than large data transfers a separate network for control packets can emphasize low
latency and avoid interference with larger (and hence typically longer) data transfers. The
predominance of packet-switching networks makes the latter advantage less important
today.  In addition, asymmetric designs do have several significant disadvantages,
including:

• the file manager is a bottleneck and single point-of-failure

• both client and file manager code must be written and

• centralized locking and logging on the file manager limit scalability.

Since shared file systems allow multiple clients to access shared storage devices
simultaneously a locking mechanism is necessary to insure mutual exclusion as file system
metadata is modified.  For example,  if a write operation increases a file’s size then
additional file system blocks must be assigned to that file, changing the file system block
allocation maps and the file’s dinode (disk inode) structure so that it includes these
additional blocks.  The operations on both these data structures must be atomic to insure
they are completed properly.

Locking in shared file systems is performed either in the clients or in the devices.  In either
case this locking may be either centralized or distributed.  Asymmetric shared file systems
exemplify centralized, client-based locking:  all metadata locking is performed on the file
manager [Wat95], [Gib96], [Gib97].   In contrast,  shared file systems like the Vaxcluster
[KrL86] and Oracle Parallel Server [Llo92] use a distributed, client-based locking scheme
called the distributed lock manager.  A distributed lock manager is not as vulnerable to file
manager failure and can balance the lock manipulation overhead among many clients.
However,  distributed lock manager design in the context of potential client failures is
notoriously difficult and may inhibit scalability to large numbers of clients.  A key
advantage to client-based locking, at least at the current time, is portability:  all that is
required is a network protocol that allows clients to communicate.  Presently,  there is no
standard, widely-used fine-grained locking technique available on devices 2.

Locking in either storage or network devices usually can yield a simpler and faster lock
protocol than client-based approaches [Pfi95], [Mat95], [SoE97a].  The lock mechanism
can be placed in a centralized dedicated piece of hardware as in the IBM Sysplex Coupling
Facility [Pfi95] and the Cray SFS HSMP [Mat95],  in the network switch or hub, or on the
storage device itself as in the University of Minnesota’s Global File System [SoEb97].  
These locks can be in one central location or spread among the devices or other network
components.   Since devices are less likely to fail than clients and can rely on techniques
like RAID to ensure availability,  lock protocol design is simplified.   There must exist a
pool of fine-grain locks that are fast and preferably distributed among the devices or
network components to balance lock manipulation load.
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IBM Sysplex,  Cray SFS, and DEC Vaxcluster shared file systems used ESCON
(Enterprise System Connection), HiPPI, and CI (Cluster Interconnect), respectively, as the
underlying shared  storage interconnect.  These are proprietary or low-volume, high-end
interfaces that are generally specific to a single vendor.  In contrast,  Fibre Channel is an
open, industry-wide standard supported by every major workstation, disk, disk array, and
component vendor and prominent OEMs like Compaq, HP, Sun, SGI, and Microsoft.
Thus, Fibre Channel will provide the underlying shared storage interconnect for Storage
Area Networks of the future enabling cross-platform shared file systems.

An important question when designing a shared file system is whether to re-use existing
distributed or local file system code or to write a new file system.  Most previous efforts. in
shared file system design, including Cray’s SFS [Mat95] and IBM’s PJFS [DeM95],
modified existing local file systems to work in a shared storage environment.  Local file
systems emphasize caching as much file system data and metadata as possible which
improves performance when locality and data re-use exist in file accesses.  However, this
emphasis on caching complicates file sharing between clients when local file systems are
modified to act as shared file systems [Mat95].   The Global File System [SoE97b] was
designed to be a scalable, symmetric, shared disk file system that exploits shared storage
devices on a network.  The on-disk data structures and locks are partitioned to balance load
between devices thereby enhancing scalability.  Caching is used sparingly where necessary
but is not allowed to interfere with fine-grained data sharing between clients.

We now give brief descriptions of four shared file system designs 3.

    4.1               DEC        Vaxcluster       file       system       (1984)   

DEC developed the Vaxcluster architecture to provide a highly available system that
provided users with a single system image across a cluster of Vax workstations.  The
original implementations used the CI (Computer Interconnect),  a custom 70 Mbps network
that interconnects both computers and disk controllers.  The Vaxcluster provides  an
elegant, symmetric shared file system for Vaxcluster nodes where locking is handled
through the distributed lock manager [KrL86], [DEC87] (DLM).  This client-based lock
manager provides a generalized lock service for all resources in the Vaxcluster, including
devices, print services, files,  and any other resource the user or operating system might
care to define.

The lock manager allows clients to request and release a lock.  Each request specifies a
locking mode which provides for varying levels of exclusive control on the associated
resource, from exclusive access (no other host may read or write the resource), to
concurrent read access where other clients may read or write to the shared resource.   Lock
requests may be queued so that once the resource becomes available the requesting client is
so informed.  The distributed lock manager is distributed across the clients in a Vaxcluster
and locks are cached on the requesting client if possible.  This distributes the lock manager
load to all machines in the cluster, which aids scalability.  It is designed to work in the
presence of client failures.  

The original VMS file system was modified to use the DLM to support shared,
simultaneous access to files and associated file system metadata [DEC87].   This required
that locks be associated with directories, file, volumes.  Extensive caching was used to
speed operations in the original file manager:  this caching was preserved in the Vaxcluster
implementation by exploiting version numbers associated with lock operations.  Stale cache
data could be detected as a disparity in version numbers caused by earlier file update
operations [DEC87] that had occurred on other clients.
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    4.2               Cray’s        Shared        File        System       (1994)

Cray developed a shared file system called SFS (Shared File System) for the UNICOS
operating system [Mat95].  Originally developed as a custom implementation for a
customer who required highly available, shared access to disks shared by multiple C90-
class vector mainframes,  SFS later became a supported product.  Matthews [Mat95]
describes how the implementation evolved over time but the basic architecture was the same
for all implementations:  a symmetric design with device-based locks.  The UNICOS file
system was modified to support parallel access to shared files on shared disks.  The key
improvement across the implementation phases was a reduction in either lock overhead or
the number of lock operations.

Cray developed a “semaphore” operation to be executed at the device and developed a
mapping of semaphores-to-metadata that allowed mutual exclusion for the operations on
this metadata.  The semaphore operation is actually a test-and-set primitive and is much
simpler than the locks used in the Vaxcluster’s distributed lock manager.   Cray achieved
good performance on large transfers for a single client [Mat95] but no multiple-client
performance data is reported in this paper.

    4.3                NASD       (Network        Attached        Secure        Disk)        File        Systems       (1995)   

Gibson [Gib96], [Gib97] has proposed Network Attached Secure Disks as a standard for
shared storage devices4. NASD goes beyond previous shared disk storage systems in two
key areas:  security and objects.   NASD-based file systems as currently proposed use a file
manager for directory and certain other operations,  but provide mechanisms to keep these
overheads low.   However,  it is quite possible that NASD could support symmetric shared
file system designs as well.

Secure communications between disks and clients is achieved using capabilities that have
been cryptographically sealed by the file system manager.   Support for these cryptographic
operations is placed on the devices.  NASD goes beyond all other previous shared file
system approaches in that it dramatically raises the semantic level of disk drive operations,
from fixed-size blocks to variable-sized objects.  These objects can be files or directories
and support for partitions,  containers for separate groups of files, is provided.  The higher
semantic level used means that fewer disk commands need be sent over the network per file
operation,  reducing network overheads and improving scalability.  

Gibson has modified NFS and AFS [Gib97] to exploit NASD drives simulated on DEC
Alpha workstations,  reporting relatively low overhead costs for NASD operations and
good scalability across four clients.

    4.4                Global        File        System       (GFS)

In the Global File System design, clients service only local file system requests and act as
file managers for their own requests;  storage devices serve data directly to clients.   No
direct communication is necessary between clients to enable basic GFS operations so that
client failures or bottlenecks do not in general affect other clients.

As shown in figure 2,  in a GFS storage system the network-attached storage devices on
the peripheral network form a global pool that we call the Network Storage Pool (NSP) that
can be carved up into many subpools. This partitioning into subpools allows the system
manager to configure separate subpools, each potentially with different characteristics.
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Figure 2:   Global File System Distributed Environment.

GFS provides transparent parallel access to storage devices while maintaining standard
UNIX file system semantics: user applications see only a single logical device via the
standard open, close, read, write and fcntl.  It is a symmetric design with device-based
locks and was designed from the ground up as a shared file system implementation
[SoE97b].  Current performance results show good scalability to four clients but also show
the importance of reducing lock-related overheads and the need for better caching on
devices.  

Finally, contrast figure 1 with figure 3,  which shows the protocol layers traversed by GFS
(the diagram would be similar for other shared file systems).  The dedicated storage
interconnect transport layer obviates the need for protocol stacks that interconnect client to
server.

Figure 3:  Global File System Protocol “Stack”.
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Several vendors including Mountaingate,  Mercury Computer Systems, and Transoft are
developing shared file system products based on Fibre Channel networks5. However, little
or no published technical information is available on these systems.

5 .   Summary and Conclusions

Though network-attached storage and the information systems that exploit it are today
changing rapidly,  some trends are becoming apparent.  

Fibre Channel is clearly the network-attached storage interface of choice.  Though SSA
(Serial Storage Architecture) is a worthy technical competitor to Fibre Channel,  it does not
have the wide industry support that FC enjoys.  Fabrics were developed in the FC standard
first but  arbitrated loop implementations are growing increasingly sophisticated so that FC-
AL (Fibre Channel Arbitrated Loop) appears to be mirroring the evolution of Ethernet.
Products are now available that support logically shared FC-AL that can be partitioned into
separate domains with smart hubs forwarding traffic between domains only when
necessary.  Switch-based fabrics are supporting increasing functionality including name
servers, which provide hosts with a dynamic database of currently-attached devices and
hosts.  FC will continue to evolve with faster interfaces, first reaching 200 MBytes/sec by
the year 2000 followed by 400 MBytes/sec not long after that.  

FC will succeed first in high-end storage applications due to its improved physical interface
and scalability compared to parallel SCSI.   Disk vendors are currently putting Fibre
Channel drives at the same price point as parallel SCSI drives.  FC host adapters are not
significantly more expensive than parallel SCSI adapters and are comparable in price to
Gigabit Ethernet adapters.  So Fibre Channel pricing will provide an opportunity for it to
displace other networking technologies like Gigabit Ethernet and ATM, but its success
strictly as a networking interface is not assured.  The ability to have a single interface
supporting both networking and storage connections is an appealing way to reduce system
cost and complexity.

Shared file systems will continue to increase in popularity due to the availability of FC as a
cost-effective, high-performance network-attached storage technology.  Application
requirements for high availability and performance that shared file systems and FC provide
are driving system vendors to support these technologies.  We expect most of the first
implementations to be asymmetric but with migration paths towards symmetric designs.
Some technical issues remain,  but a cross-platform shared file system is possible in
principal.  The principal barriers to cross-platform, shared storage embedded in kernel-level
file systems is the lack of a consistent, public, cross-platform installable file system
interface;  the lack of a standard metadata layout agreed on by all vendors;  the tremendous
effort required to debug and test kernel-level file systems that must support legacy
applications and interfaces;  and kernel dependencies built into many aspects of the storage
subsystems.  

Distributed file systems will continue to be popular since they provide network
independence and portability.  However,  as Web technologies evolve and become more
visible at the file system level,  distributed file systems may be displaced because they
exploit neither the spatial locality nor the performance of network-attached storage
interfaces as do shared file systems.



13

Acknowledgements

I would like to acknowledge the current and past members of the GFS team at the
University of Minnesota for insightful discussions about the work described in this paper,
including Steve Soltis, Grant Erickson, Ken Preslan, Chris Sabol, Jon Brassow, and
Erling Nygaard.  Discussions with Tony Shoemaker of Rainmaker Imaging, Ted Fay of
Santa Monica Studios,  Andy Hendrickson of Industrial Light and Magic, Kevin Mullican
and Chuck Spaulding at RFX, Inc., and Alan Poston at NASA Ames Research Center
were very helpful in understanding the major benefits of shared file systems and important
issues in their design.  

References

[AnD95] T. Anderson,  M. Dahlin,  J. Neefe,  D. Paterson,  D. Roselli, and R. Wang,
“A Serverless Network File System,”  ACM Operating Systems Review,  vol.
29, no. 5, December 1995.

[ArB93] D. Arneson, S. Beth, T. Ruwart, and R. Tavakley, “A Testbed for a High
Performance File Server,” Proceedings 12th Symposium on Mass Storage
Systems,, Monterey, CA, March 1993.

[Ben95] A. Benner, Fibre Channel: Gigabit I/O and Communications for
Computer Networks.  New York, NY:  McGraw-Hill,  1996.

[Bak91] M Baker, et al.,  “Measurements of a Distributed File System,” Proceedings
1991 Symposium on Operating System Principles, pp. 198-212, 1991.

[Cha96] A. Chankhunthod,   P. Danzig,  C. Neerdaels,  M. Schwartz,  and  K. Worrell,
“A Hierarchical Internet Object Cache,”  Proceedings of the 1996 USENIX
Annual Technical Conference,  pp. 153-164,  January 1996.

[DEC87] Digital Equipment Corporation,  Special Issue on Vaxcluster Systems ,
Digital Technical Journal,  No. 5, September 1987.

[Dem94] D. Deming.  The SCSI Tutor.  Saratoga, CA:  ENDL Publishing, 1994.

[DeM95] M. Devarakonda, A. Mohindra, J. Simoneaux, W. Tetzlaff,  “Evaluation of
Design Alternatives for a Cluster File System,”  1995 USENIX Technical
Conference, January 1995.

[Gib96] G. Gibson et al., “A Case for Network-Attached Secure Disks,” Technical
Report CMU-CS-96-142, Carnegie Mellon University,  June 1996.

[Gib97] G. Gibson et al.,  “File Serving Scaling with Network-Attached Secure Disks,”
Proceedings of the ACM Int. Conf. on Measurements and Modeling of
Computer Systems (SIGMETRICs ‘97),  Seattle, WA, June 15-18, 1997.

[Koe95] S. Koegler, “SPANStor Adds on Network Storage with Ease and
Convenience,”  Network Computing,  November 1, 1995.

[KaG89] R. Katz,  G. Gibson, and D. Patterson,  “Disk System Architectures for High
Performance Computing,”  Proceedings of the IEEE,  vol. 77, pp.1842-1858,
1989.



14

[KiS96] S. Kittur, D. Steel, F. Armand, and J. Lipkis,  “Fault Tolerance in a Distributed
CHORUS/MiX System,”  Proceedings of the USENIX 1996 Annual Technical
Conference, pp. 219-228,  January 1996.

[KrL86] N. Kronenberg, H. Levy, W. Strecker,  “VAXClusters:  A Closely-coupled
Distributed System,”  ACM Transactions on Computer Systems,  vol. 4, no. 3,
pp. 130-146,  May 1986.

[LeS90] E. Levy and A. Silberschatz,  “Distributed File Systems: Concepts and
Examples,”  ACM Computing  Surveys,  vol. 22, no. 4,  pp. 321-374,
December 1990.

[Llo92] I. Lloyd,  “The Oracle Parallel Server Architecture,”  Proceedings of
Supercomputing-Europe 92,  pp. 5-7, 1992.

[Mat95] K. Matthews, “Implementing a Shared File System on a HiPPI Disk Array,”
Fourtheenth IEEE Symposium on Mass Storage Systems,  pp. 77-88,
September 1995.

[Met96] R. Meter,  “A Brief Survey on Current Work on Network Attached
Peripherals,”  ACM Operating Systems Review, pp. 63-70,  January 1996.

[Ous88] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch,  “The
Sprite Network Operating System,”  IEEE Computer,  pp. 23-36,  February
1988.

[Par94] B. Parwlowshi et al.,  “NFS Version 3:  Design and Implementation,”
Proceedings of the Summer USENIX Conference,  1994.

[Pfi95] G. Pfister,  In Search of Clusters. Upper Saddle River,NJ: Prentice-Hall.

[RuO95] T. Ruwart and M. O’Keefe, “A 500 Megabyte/Second Disk Array,” Fourth
Nasa/Goddard Conference on Mass Storage Systems and Technologies,
College Park, Maryland, March 1995.

[SaL94] M. Sachs, A. Leff, and D. Sevigny, “LAN and I/O Convergence: A Survey of
the Issues,” IEEE Computer, vol. 27, no. 12, pp. 24-33, December 1994.

[SaG85] R. Sandberg,  D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,  “Design and
Implementation of the Sun Network File System,”  Proceedings of the Summer
USENIX Conference,  pp. 119-130, 1985.

[Sat90] M. Satyanarayanan,  “Scalable, Secure, and Highly Available Distributed File
Access,”  IEEE Computer,  pp. 9-20,  May 1990.

[Sch94] C. Schimmel,  UNIX Systems for Modern Architectures.  Addison-
Wesley: Reading, MA, 1995.

[Sea97] D. Seachrist, R. Kay, and A. Gallant, “Wolfpack Howls Its Arrival,”  BYTE
Magazine, pp. 126-130, vol. 22, no. 8, August 1997.

[SoE97a] S. Soltis, G. Erickson, K. Preslan, M. O’Keefe,  and T. Ruwart,   “The Global
File System:  A File System for Shared Disk Storage,”  submitted to the IEEE
Transactions on Parallel and Distributed Systems, October 1997.



15

[SoE97b] S. Soltis, G. Erickson, K. Preslan, M. O’Keefe, and T. Ruwart, “The Design
and Performance of a Shared Disk File System for IRIX,” to appear in the 1997
Joint IEEE and NASA Mass Storage Conference (these proceedings),  College
Park, MD,  March 1997.

[SoR96] S. Soltis, T. Ruwart, and M. O’Keefe,  “The Global File System,” Fifth NASA
Goddard Conference on Mass Storage Systems and Technologies, College
Park, MD, September 1996.

[Sri89] V. Srinivasan and J. Mogul,  “Spritely NFS:  Experiments with Cache-
Consistency Protocols,”  Proceedings of the 12th ACM Symposium on
Operating Systems Principles,  pp. 45-57, 1989.  

[Tuc96] M. Tucker,  “NFS Accelerators,”  SunExpert Magazine,  pp. 59-64, August
1996.

[SwD96] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, G. Peck,
“Scalability in the XFS File System,”  1996 USENIX Technical Conference,
January 1996.

[Vah96] U. Vahalia,  UNIX Internals: The New Frontiers.  Prentice-Hall, Upper
Saddle River, NJ, 1996.

[Val93] P. Valduriez,  “Parallel Database Systems: the Case for Shared-something,”
Proceedings of the Ninth International Conference on Data Engineering,  pp.
460-465, 1993.

[Wat95] R. Watson and R. Coyne,  “The Parallel I/O Architecture of the High
Performance Storage System (HPSS),”  14th IEEE Symposium on Mass
Storage Systems,  pp. 27-44, September 1995.

[Woo95] C. Wood,  “Client/Server Data Serving for High Performance Computing,”
Fourteenth IEEE Synposium on Mass Storage Systems,  pp. 107-119,
Monterey, CA, September 1995.

                                                
1 This work was supported by the Office of Naval Research under grant no. N00014-94-1-
0846, by the National Science Foundation under grant no. CDA-9414015 and no. ASC-
9523480,   by NASA through grant no. NAG2-1151 and by equipment grants from
Seagate Technology, Brocade Communications,  Silicon Graphics Inc. and Ciprico.

2 See reference [SoE97b]  which describes DLOCK,  a fine-grain device-based locking
mechanism  implemented as a SCSI command ,  as an example.  The University of
Minnesota team  intends to pursue the standardization of this command  in the X3T10
(SCSI) committee  in collaboration with our industrial partners.

3 We do not claim these systems are either the most important or the most widely used;
rather, they provide a view of the spectrum of design choices and tradeoffs possible.  The
interested reader is urged to explore the references to learn more about the other shared file
systems listed earlier.



16

                                                                                                                                                
4 More information on the National Storage Industry Consortium,  a group of companies
and universities involved in standards for network-attached storage devices (NASDs), can
be found at  http://www.nsic.org/nasd.

5 See, respectively, the following WWW sites:  www.mountaingate.com, www.mc.com,
and  www.transoft.net.  


