
71

A Method To
Share Data Between Compute Clients With Network Attached

Storage
Implementation, Operation, and Performance Results

Ken Fallon
Bill Bullers

Impactdata
605 E. Huntington Dr.
Monrovia, CA, 91017
billb@impactdata.com
kenf@impactdata.com

+1-626-359-4491, +1-626-930-9405
Fax: +1-626-930-9478

Abstract: A Distributed Storage Node Architecture (DSNA) where multiple compute
clients can concurrently share the same data through a high-bandwidth file system will be
installed at the National Energy Research Scientific Computing Center (NERSC) and at the
NASA Ames Research Center. A storage protocol defined by the DSNA, includes
methods that produce applied, distributed, concurrent data management capabilities
designed to allow multiple SGI and CRAY clients to reliably share data through network
attached storage. This paper discusses the implementation, operation, and measured
performance of the DSNA and the applied protocol. Implementation issues and initial test
results are discussed. DSNA is an available, open standard.

A Network Peripheral Adapter (NPA) is embodied within the Distributed Storage Node
Architecture of a network-centric computing and data storage enterprise. The NPA is an
intelligent controller and optimized file server that empowers network-attached processors
with DSNA protocol the means to unlock the potential of distributed data access while
enjoying the benefits of centralized management and control. Optimized for high-
performance and peer-level storage, the NPA is fabric-independent and capable of linking
virtually any workstation, high-performance computer and/or network with any type of
storage device.

By connecting high-performance disk arrays and tape drives to high-speed networks, the
NPA creates network storage and allows computers to access and share data. First
integrations target data sharing between multiple SGI, CRAY, and NT systems but will be
extended to include SUN, HP, and AIX clients.

Introduction

The cutting edge of business, science, and industry, driving for computing, visualization,
communications and information content are constantly creating challenges in data and
information storage and retrieval processes. Context properties and intelligent formats for
management agents are being applied to data. The ever increasing demand for managing
larger quantities of data, and the growing requirement for rapid, distributed, global access
is forcing the exploration of new approaches to handle and process data to be stored,
searched, mined, and made available. This demand is sponsoring the evolution of data
storage products that insulate users from storage location, media, and protective services,
and is bringing about the concept of enterprise wide network computing. Retrieval,
archive, backup, hierarchical storage management applications, and distributed objects are

72

evolving but, intelligence within the data storage devices and media has been slow to
develop. As a result, there is an overwhelming demand for more sophisticated storage
servers and intelligent storage media controllers.

This paper describes measured performance results using an architecture that provides
intelligence at the storage device level and enables network attached processors to access
and share data.

Distributed Storage Node Architecture

Distributed Storage Node Architecture (DSNA) was created to facilitate data management,
data storage, data sharing, data archive, distributed objects, backup and retrieval. DSNA
was developed with the flexibility to expand with the needs of high performance computing
and high speed network users. Network file systems, like NFS, operate by copying data
through multiple memory levels from the client to the file system, to cache, to user space,
using small datagram block sizes. As a result they are inherently unable to provide high-
performance network data-flows. These systems typically apply stateless protocols, with
unmanaged concurrency, that requires the full intelligence including file serialization to be
provided by the client. NFS clients must be ‘smart’ because NFS servers are ‘dumb’.
DSNA is designed with an entirely different structure that integrates file system intelligence
into the server and operates with peer-level data flows to deliver large blocks and avoid
multiple memory transfers. DSNA is a solution to the limitations of sending large files at
high speeds. Applying DSNA protocol, a set of drivers is implemented with a Common
Peripheral Interface (CPI), to utilize high speed networks effectively. There are no
application level client drivers required.

DSNA is structured to be a complete storage system solution that provides several
integrated benefits:

• A Coherent and Cohesive Network Storage Environment

• Intelligent Storage and Data Mining

• The Management of Data Stores

• Handling Increased Network Bandwidth and Response Times

• Storage Servers and Controllers that Provide for Rapid Growth and Change

• Support for Evolving Distributed Object Storage

The implementation of Distributed Storage Node architecture is based on standard
components that support distinct network and storage device interfaces. These components
are used to achieve fabric-independent integrations for high-performance and traditional
networks. DSNA can accommodate interface components for connection to HIPPI, Fibre
Channel, ATM OC-3/12, SCSI, Gigabit Ethernet, and even 10-BaseT and 100-BaseT.
These components are integrated in a Network Peripheral Adapter (NPA) and are connected
together through a PCI data bus. High-rate data transfer is achieved by bus-mastering the
interface components. Taking advantage of memory buffers built into the interfaces, the
NPA processor reacts to data transfer commands by initiating peer-level Direct Memory
Access (DMA) data-flow between the components and eliminates multiple processor/cache
read interactions with the data. By circumventing the processor, data-flows up to 100
MB/s can be achieved across the 32 bit, 132 MB/s PCI bus.

Figure 1 shows the internal structure of the NPA.

73

Device
Interface
FC-AL
SCSI
Other

R
A
M

P
E
R
S
O
N
A
L
I
T
Y

R
A
M

P
C
I

P
C
I

Network
Interface
FC
ATM
HIPPI
Ethernet
Other

Ports
Processor

Cache

P
E
R
S
O
N
A
L
I
T
Y

Figure 1

The PCI bus-mastering technique achieves high-rate data-flow while significantly freeing
the burden on the processor and operating system, and allows a low cost NPA
implementation with ‘Wintel’ technology. The use of standard component modules
achieves significant flexibility for the DSNA to provide data storage in an open system
context. The physical level operation and structure embodied in the NPA is a significant
building block, but is only one of several major elements that enable DSNA to provide
high-performance distributed data storage.

Elements of DSNA

DSNA creates an environment for multiple network attached storage nodes each with a
Network Peripheral Adapters (NPA) and attached storage devices as shown in the next
figure.

DSNA supports the notion of distributed file management across NPAs and provides the
capability for true managed file-extent concurrency across clients. Files can be created on
one client with extents of the file opened, concurrently modified, or locked for pristine
manipulation by other clients, even using different operating systems. Each storage node
can be setup with DSNA applications that provide Hierarchical Storage Management, data
archive, backup, and disaster recovery processes. DSNA provides integrated storage
management as part of a ‘Distributed Management’ methodology in which any processor
on the network can assert management functions. Each processor maintains its own
management data, such as operational status, configuration records, file and media level
storage statistics, alarms, accounting and billing, and software update facilities. Each
processor can query every other processor and display this management information for
any storage node. Any NPA can also be setup to act as a security server to manage the
security resources across a DSNA network. Operator access requires ID and password
authentication with data access restrictions by ID. C2 security and POSIX compliance are
provided in all processors.

A DSNA storage node implementation can be as simple as a single NPA and storage device
that provides intelligent network connected shared data storage. It can be a diverse
hierarchical arrangement of disks, removable media drives, and libraries.

74

High Speed Switched High Speed Tape
Networks Disk Storage

NPAs

Disk

Tape Library

Supercomputers
and Large Fast

Network Clients Disk Array

Figure 2: Typical DSNA Storage Nodes

Personality Modules defined to support standard application familiar protocols such as
NFS and FTP are embodied within DSNA. Personality Modules include distributed object
services with support for Object Request Brokers as defined through CORBA and ActiveX
to promote open access to intelligent storage.

The Common Peripheral Interface is middleware that enables UNIX (and Windows NT)
clients to use and share network storage as if it were locally attached. Used with any
application that reads and/or writes to locally attached devices, the CPI converts
Input/Output (I/O) operations to DSNA network commands with DSNA protocol. Users
can take advantage of either a ‘transparent’ access to DSNA storage nodes or an
Application Programmers Interface (API), through which they can apply a rich set of
DSNA features including metadata and local file management. The DSNA protocol has as
its foundation the proven IPI-3 storage protocol over which several extensions are
specifically designed to accomplish high-performance network shared data storage. Device
drivers are provided for targeted systems that transform standard file I/O requests into
DSNA commands and messages. These CPI drivers provide a local file system connection
through defined mount points to DSNA storage nodes with disk and tape media. Host
application programs only require modifications if the rich DSNA feature set is to be fully
exploited. The DSNA protocol and the CPI integrate a metadata facility that collects useful
information about the files, the storage devices, and the media. The DSNA Metadata is a
vital component of the Storage Node File System (SNFS). The information is collected in
real-time and is available to DSNA utilities that use the information to locate and manage
directories and files, support file access at the block level, maintain file security and
locking, and provide operational statistics. Other utility agents link this Metadata to the
HSM and Archive Manager to place and locate files.

Common Peripheral Interface Operation

CPI drivers support two modes of operation, Transparent Mode, and API mode.
Transparent Mode allows existing applications to apply DSNA without modifications and

75

achieve high-performance results. Transparent Mode does not give user applications the
full range of DSNA features. API mode makes the full feature set available to the user.
Applications that use Transparent Mode issue OPEN, CLOSE, IOCTL, READ and WRITE
calls to a mount point. The mount point configuration/access table insures that the call is
routed to the SNFS interface where it is converted to CPI commands. Two classes of
storage device are supported, tape and disk. The API mode is a programmatic interface to
the CPI Driver that uses calls to OPEN, CLOSE, READ, WRITE, IOCTL and CPICMD.
CPICMD makes Metadata and other DSNA capabilities available to the application. These
capabilities include access to file metadata to exploit a broad set of execution, and
administrative content:

• Formatting and Configuration

• File Attribute Reports and Control

• Metadata Reports and Controls

• Operation and Execution Status

• Abort Execution Methods

• File Mark and Position Control

• Diagnostics and Error Logs

• Session Control

• Data Delivery Times

Figure 3 shows the difference between how CPI Transparent Mode and API Mode operate
within User Space (Application level) and Kernel space (CPI level).

 USER SPACE
API Path

Application API CPI Daemon

Transparent Path

File System
Interface

CPI Module
Network Driver

 KERNEL

Figure 3: Common Peripheral Interface Operation

API Mode

Details of the API Mode operation are presented in the next diagram. The CPI daemon
process and the user application that calls the API are independent UNIX processes. The
API code runs as part of the application and communicates with the CPI daemon through
UNIX inter-process communication facilities. The CPI daemon can service multiple

76

applications allowing several simultaneous accesses to the same NPA storage device. The
API is a socket connection interface through which the CPI daemon and application
communicate. The CPI daemon spawns a separate network ‘child’ process for each socket
connection and returns the results to the application. The socket connection is used to
communicate the API commands and responses. The transfer of data, defined in the API
call, takes place through shared memory. The socket connection alerts the CPI daemon to
associate an area of shared memory with the application that is used for the data transfer.

to NPAs

 using

HIPPI, FC, etc.

User space

Kernel Network Driver

Network
Process

CPI Main

CPI Daemon

Child
Processes

User
Appl’n.

User

Appl’n.

Shared Memory

CPI
Protocol
Machine

CPI Protocol

OPEN, CLOSE,
READ, etc.

API

API

Data
Path

Figure 4

Transparent Mode

The file system appears to be local to the UNIX client in the CPI Transparent Mode.
UNIX commands operate normally even though files are maintained on the NPA and
available through the network. The CPI Driver uses the mount point identifier to route the
file request to the Storage Node File System (SNFS). Through the SNFS, requests are
converted to CPI/DSNA protocol and issued to the network driver which then delivers
them to the NPA. The NPA processes the request and delivers the data to the destination
device through the bus-mastered interface. The SNFS operates as a Virtual File System
within UNIX and supports all the attributes of a local file system. The Local UNIX file
system processes client application requests and routes the requests through the UNIX
Vnode Interface to SNFS as shown in the diagram that follows. The SNFS is architected
into UNIX in the same way other file systems like NFS integrate.

77

 Application

User Space

KERNEL

 Local UNIX File System

 UNIX VNODE Interface

 SNFS Other

 File System Driver API File

 Systems

 Network Driver

 (HIPPI, Fibre Channel, etc.)

Figure 5: File System Interface

The SNFS supports features that are common to the Local File System. A
configuration/access file is used to enforce system security through encrypted NPA address
IDs, license keys, and passwords. Metadata maintained at the NPA, controls file access
modes including locking, and maintains user ownership, group ownership, authorization,
and privilege information that manages user files. Files that are shared by multiple clients
can be locked at different levels including NO locking, READ/WRITE locking, and
WRITE locking. The default is lock on WRITE.

CPI supports multiple concurrent accesses from different network attached clients but it is
envisioned to support multiple accesses from a single client. The initial implementation of
the architecture is limited to a single shared file handle per client but future releases will
enable separate file handles to be created for each of multiple file accesses made by a client.
This capability will permit concurrent parallel processing applications to be performed on
distinct extents of a file by a single client.

78

Other File Systems

DSNA is structured to operate within several different file systems based on the mount
point that is selected. The simplest format for operating with multiple file systems like
NFS, and SGI’s BDS, is to define and allocate specific disk partitions and tape volumes to
each system. Other architectures have been devised that reformat files and transfer their
data from one file system to another. DSNA implements a completely open solution that
eliminates the need for separate partitions and allows data to be concurrently shared across
processes and across file systems. The Windows NT operating system provides an NT
Redirector that allows Personality Module drivers to be written and installed that ‘redirect’
file accesses for selected mount points from the ‘other file system’ to CPI. A client
application that chooses to operate through NFS, for example, is able to do that by defining
specific mount points for NFS files to be managed. The NT Redirector diverts the file
access control from NFS through CPI to the NPA and allows the file to be opened at the
NPA as an SNFS file and at the client application as an NFS file. Clients attached to
networks that support TCP/IP such as Gigabit Ethernet and future releases of the Essential
Communications HIPPI Card can apply the network performance benefits of CPI to
standard current applications.

DSNA Integration and Benchmarks

DSNA was first integrated as a high-performance network storage node in a High
Performance Storage System (HPSS) at The Caltech Center for Advanced Computing
Research by connecting a 72 GB FibreRAID through an NPA to the HIPPI network. The
HPSS server provides native support for third-party IPI-3 disk which allows direct data
transfers to be setup and executed from the HPSS server to create a data flow path directly
between the disk and the client application. This avoids the performance lag caused by
staging the data through multiple memory read operations. Several performance
measurements and benchmarks have been made using files of 64MB and smaller.
Performance using large files (to 2GB) will be evaluated in early 1998 to compare transfer
rates between local disk and network attached disk. A similar configuration will be
installed at the Lawrence Livermore National Laboratory where additional benchmark
testing is planned. These first integrations do not explore the full capabilities of the DSNA
because they are limited to direct IPI-3 connection and do not require the data sharing
capability of the Storage Node File System.

Performance

The use of standard, commercially available network and device interface components to
structure a cost efficient design has required close cooperation between Impactdata and
partner suppliers to realize the performance objectives of the DSNA. A Pentium Pro
processor card in a passive backplane system with a standard 32 bit, 33 MHz PCI bus is
used in all the testing. HIPPI network connectivity is accomplished with the Essential
Communications PCI adapter using an Impactdata developed peer-level driver that includes
a DMA stream engine. For disk array attachment with SCSI protocol on Fibre Channel,
Emulex and Systran Adapters have been tested. Both use Impactdata developed drivers
optimized for bus mastered peer-level transfers. Current test results show 35 Mbytes per
second data transfers with small transfer sizes of 4MB. This rate was achieved by adding a
16MB transfer memory buffer between the network and device cards. Impactdata expects
to achieve 50 Mbytes per second by expanding the memory buffer size to 128MB and
increasing the transfer size to 32MB. Additional driver optimization will be possible with
firmware changes in work at Essential and the Fibre Channel card vendors. These changes

79

coupled with data transfers of 128 Mbytes or greater are expected to achieve the objective
65 Mbyte per second transfer rate.

Conclusions and Future Work

The cost efficient implementation achieved through the network peripheral adapter coupled
with high data transfer and managed file sharing make DSNA a very practical architecture
to embrace. The first applications to use true file sharing properties achieved through CPI
are with SGI Origin 2000 and CRAY client systems in an integration at the National Energy
Research Scientific Computing Center (NERSC). The NERSC integration is the first
opportunity to move DSNA file sharing out of the Impactdata laboratory into a computer
center test configuration. An installation is also scheduled at NASA Ames to operate with
CPI in the Transparent Mode and enable multiple clients to share files. Additional
validation tests to collect file transfer statistics and performance benchmarks are planned at
Ames, along with stress tests of concurrency, file locking, and hierarchical storage
management. Development is in process for similar CPI integrations with HP Convex, and
SUN Systems.

