Scheduling Non-Contiguous Tape Retrievals

Bruce K. Hillyer, Avi Silberschatz
Bell Laboratories, Rm. 2A-310
700 Mountain Avenue
Murray Hill, NJ 07974
{hillyer,avi} @bell-labs.com
tel +1-908-582-2262
fax +1-908-582-4623

Abstract

Large data installations normally archive relatively inactive data to a near-line tape
library. The tape library performs reasonably well for sequential-access retrieval work-
loads. However, if the retrieval access slices across multiple data sets, or makes re-
trievals from scattered portions of a large data set, then the performance can suffer
drastically.

In this paper, we use modeling and simulation to study several scheduling algorithms
for random-access retrievals from tape. This study is based on extensive measure-
ments of the IBM 3570 Magstar MP tape library, which is designed for fast random
access. We study the retrieval performance of the Magstar MP as a function of the
request size and the queue length (i.e., retrievals per tape switch). The following data
point illustrates the performance. Averaged over many trials, the execution time of a
schedule of 4 random retrievals from one tape (each retrieval transfers 12 MB) is 98
seconds, including the overhead of rewind, unload, eject, tape switch, and load. This
schedule gives an average data rate of 0.5 MB/s, which is comparable to the average
data rate of a magnetic hard disk that is fetching randomly-located pages.

1 Introduction

The traditional design of a large-scale storage system is hierarchical, using magnetic hard
disks for hot data, and a tape library to archive cold data. This design reflects constraints
such as cost, and practical limitations on the number of magnetic hard disks in a system. A
hierarchical storage system is well-suited to scientific supercomputing installations that do
not have excessive demands for retrievals from the tape archive.

In recent years, we have witnessed the emergence of application classes in which
archive-retrieval workloads no longer consist of a few large sequential requests. In com-
mercial settings, on-demand retrievals of archived documents, such as claim forms, check
images, and account histories, generate a random-access workload to the tape archive. Web
access to public sites can induce large numbers of concurrent accesses to an archive. Even
in scientific environments, we see examples of access to widely-scattered portions of large

data sets, and slicing across multiple data sets to retrieve relatively small portions. In these
cases, staging in all the data to disk may be inefficient. Although tape is not considered to
be a random-access medium, these examples suggest that we cannot ignore the problem of
numerous, relatively small accesses to a tape library.

In previous work, we modeled the positioning time of the Quantum DLT4700 tape
library [1], and studied the performance of scheduling algorithms for random retrievals
from the DLT [2]. For random retrievals on the DLT, sophisticated scheduling and very
large 1/Os are necessary for good performance, because of the large positioning times and
tape switch times. (By “tape switch time”, we mean the sum of the times required by the
tape drive and library to unload and eject the old tape, swap the old tape for another one,
load the new tape into the drive, and wait for the drive to become ready to use the new tape.)
Even with good scheduling and large 1/Os, the random-retrieval performance of the DLT is
relatively insensitive to the streaming bandwidth of the drive, and is largely determined by
the positioning time.

In this paper, we examine the performance of the IBM 3570 Magstar MP tape library,
which is designed for high-speed positioning and tape switches. The Magstar MP uses
a modified serpentine track layout. As with other serpentine tape units, it is difficult to
predict the positioning time between two blocks on the tape. It is not a simple function
of the logical block numbers, and it is not strictly proportional to the physical distance
between the blocks.

In section 2, we give a model of locate time for the Magstar MP. In measurements of
55,000 random locates, this model is accurate to within 1 second in 96% of the cases. In
section 3, we describe several algorithms to schedule an efficient retrieval order for several
requests from one tape. In section 4 we use our locate-time model for the Magstar MP to
evaluate the retrieval performance of these algorithms. For uniformly-distributed random
requests, we characterize the effective data rate of the Magstar MP as a function of the
I/O request size in MB and the number of requests per tape switch. In section 5 we give
concluding remarks.

2 A Model of Locate Time

A scheduling algorithm chooses a retrieval order for a set of requests to minimize the
overhead of positioning the tape head from one block to the next. To develop such an
algorithm, we need the ability to predict the positioning time between arbitrary blocks on
the tape. In this section, we develop a formula that predicts the positioning time. Because
the SCSI LOCATEcommand is used to position the tape, the model is calletbtizde-
time model

To begin, we describe the data layout used by a Magstar MP tape, and show a graph of
locate-time measurements. We observe that the slope of this graph is discontinuous, and
we describe algorithms to determine the “key points” at which these discontinuities occur.
These key points are the input parameters of a formula that predicts the locate time between
any two blocks on a Magstar MP tape. We describe the formula for the locate time of the
Magstar MP, and show the results of experiments that validate the accuracy of this model.

Before ejecting a tape, most drives rewind to the beginning of the tape. The IBM

Magstar MP is different. It is designed to rewind to the middle of the tape, to a position
called thdoad point

The Magstar MP uses a modified serpentine layout. This layout first covers one half
of the tape with 32 serpentine “half tracks”, calldap halvesthat run between the load
point and one end of the tape. Then the head crosses over the load point to the other half of
the tape, where 32 more wrap halves are written in a serpentine pattern.

The nominal capacity of a Magstar MP tape is 5 GB. (In this paper, the terms KB, MB,
and GB denote 2**10, 2**20, and 2**30 bytes, respectively.) The effective capacity of a
tape depends on the compression ratio of the data, and also on the number of defects on that
particular tape. For our experiments, we filled tapes with blocks of size 32 KB. Each block
contained pseudorandom bytes with the high bit of each byte masked off. The drive’s data
compression hardware should be able to reduce this kind of data to about 7/8 of its original
size. Over a sample of 4 tapes, the number of 32 KB blocks per tape ranged from 170878
to 180418 (5.6E9 - 5.9E9 bytes). The time to write a tape ranged from 45m58s (45 minutes
+ 58 seconds) to 50m37s. Thus, the effective writing rate ranged from 1.79 to 1.95 MB/s
(i.e., slightly more than 2 million bytes per second).

22 — Wrap half 0

Wrap half 1

Wrap half 2 Wrap half 3
20 |
18—
16—
14 -

12

0 2500 5000 7500 10000
Block Number

Figure 1: Locate Time from Block 5000 to Blocks 0—10,800.

Figure 1 shows a typical graph of locate-time measurements, taken on an IBM 3570
Magstar MP tape library running microcode version D2D. The host computer is a
Sun Sparc-20 model 61 running Solaris 2.3. We perform3@&l LOCATEcommand
via the SolaridJSCSI ioctl() , which enables a sufficiently privileged application to
send an arbitrary SCSI command to a target. For each measurement in this graph, the
starting position is logical block 5000, which is in wrap half 1, about 2/3 of the distance
from the outer end of the tape back toward the load point. An experiment measured the
locate time from block 5000 to blocks 0, 50, 100, 150, ..., 10800. These measurements
are shown by the solid line. The reverse measurements, returning back to block 5000, are
shown by the dotted line. The graph shows several interesting aspects of the Magstar MP
locate time.

¢ If the destination of the locate is on the same wrap half as the starting point, and
fairly close (i.e. within about 1/20 of the length of the tape), the locate happens at the
speed of tape reading, i.e., about 2 MB/s.

e If the destination of the locate is on the same wrap half as the starting point, but
further away than 1/20 of the tape, the locate happens at a higher tape transport
speed.

¢ If the destination of the locate is physically very close to the starting point, but on a
different wrap half, the time required to switch tracks and locate to the destination is
nearly 3 seconds.

e If the destination is on the far side of a wrap turn, but within about 1/20 of the length
of the tape, the locate requires an extra 2 seconds. It appears that the drive locates at
high speed to the wrap turn, does some housekeeping for about 2 seconds, and then
reads into the next wrap half. In the worst case, this behavior takes about 4 seconds
longer than would be required for a high-speed locate directly to the destination.

e The graph of locate time is nicely linear, except for the extra overhead beyond each
wrap turn, and the transition from normal speed to high-speed positioning. Broadly
speaking, the locate time is proportional to distance traversed. (Please do not read
too much into this statement. The locate time is not a simple linear function of
the distance between the source and destination. In particular, given 1000 pairs of
randomly-chosen logical blocksandB, our measurement édcate _time(A,B)
differs fromlocate _time(B,A) by more than 30% in 100 cases, and by more
than 50% in 50 cases.)

From the graph, it is clear that the key points that parameterize the locate-time model
will be the block numbers of the wrap turns, and the block numbers of the spikes about 200
blocks to either side of each wrap turn. Since the Magstar MP has 64 wrap halves, a total
of 192 points (3 * 64) characterize the entire tape. Unfortunately, Magstar MP microcode
D113_27D provides no documented way to ask the drive to state the logical block numbers
of these key points. Nevertheless, the wrap turns can be found relatively easily, because the
SCSI REQUEST SENSEommand for this drive is documented to return the wrap half
number in a field in the sense data. Thus a simple program can binary search for the exact
block number of each wrap turn. First we find all the wrap turns near the load point. Next
we find all the wrap turns at one end of the tape. Finally, we find all the wrap turns at the
other end of the tape. A program to do this runs in about 20 minutes. Our initial attempt at
a locate-time model for the Magstar MP was parameterized only by the 64 wrap turns. We
were disappointed with the inaccuracy of this model: If we guess incorrectly about whether
the destination is in the slow region beyond a wrap turn, we can incur an error of 4 seconds.

The locate-time model that we have developed is also parameterized by the logical
block numbers of the spikes to either side of each wrap turn. To find these blocks, we
measure locate times from the other side of the wrap turn, looking for the precipitous drop
in locate time beyond the spike. It takes between 1.5 and 2 hours to run a program that
characterizes a tape by measuring all 192 key points. C code (580 non-commentary source

lines) is available at http://www.bell-labs.com/ hillyer/papers/anaB&e€0.c for the body
of a completely unsupported program that determines the key points of a 5 GB Magstar
MP tape filled with 32 KB blocks.

The locate-time model is an ad-hoc collection of cases that describe a behavioral model
of how the drive could be positioning the tape between any two logical blocks. We do
not claim that the drive actually performs the tape motions specified in the model, but
we do claim that the model predicts most locate times well. The C code for a com-
pletely unsupported implementation of this model, specialized for the 32 KB blocksize
that we used, is available in http://www.bell-labs.com/ hillyer/papers/loteteel 3570.c
(393 non-commentary source lines). A general outline of the model is given in the next
paragraph—a full discussion of all the special cases is not worthy of the space that would
be required.

The model is given a source logical block number and a destination logical block num-
ber. For each, the model searches the table of 192 key points and interpolates to determine
which wrap half contains the block, and whether the destination is in the expensive region
just beyond a wrap turn. If the source and destination are in the same wrap half, then the
locate time is given by one of two linear functions: one models the reading speed used for
nearby locates (slope 0.015 seconds per block, y-intercept 0.95 seconds), and one models
high-speed tape positioning (slope 0.006 seconds per block, y-intercept 2.11 seconds). The
model states that high-speed positioning is used for tape motion further than 230 blocks
within one wrap half. Note that all of these constants depend on our 32 KB block size and
the particular compression ratio of our data, so they would need to be scaled for general
use.

If the source and destination are not in the same wrap half, the model uses the interpo-
lated positions derived from the logical block numbers to calculate the time to traverse the
distance at high speed, and adds appropriate amounts of time if the destination is in the ex-
pensive region just past a wrap turn, and also if the tape head crosses the load point. In the
model, the time cost for a destination in the wrap-turn region is the high-speed time to the
wrap turn near the destination, plus 1.6 seconds, plus the slow-speed time from that wrap
turn to the destination block, and the time penalty for crossing the load point is 2.4 seconds.
In addition, we can see an asymmetry in Figure 1. If the destination is in an in-bound half
wrap, i.e., an odd-numbered half-wrap, an extra 0.75 seconds are required.

The model was developed to fit a random walk consisting of a sequence of 3000 locates
on one particular tape. After we were satisfied with the accuracy of the model, we tested
it by comparing its predictions with locate-time measurements on 4 tapes. We tested a
sequence of 10,000 locates on one tape, 5000 locates on a second tape, 20,000 locates on
a third tape, and 20,000 locates on a fourth tape. In all four tests, 96% of the locate times
were predicted with an accuracy of 1 second or better. For each test, 6 or fewer locates had
errors between 2 and 10 seconds. The remainder had errors between 1 and 2 seconds.

3 Scheduling Random Retrievals from Tape

This section first describes a collection of algorithms to schedule a set of retrievals from a
single tape, and then mentions a way to schedule a set of retrievals distributed over multiple

tapes. The single tape scheduling algorithms are as follows.

One no-effort schedule is FIFO, which simply retrieves the requests in whatever order
they are given.

Another no-effort schedule is READ, which reads the entire tape sequentially, discard-
ing blocks that are not in the request list. For the Magstar MP, we found the READ schedule
to be the best choice when more than 1200 blocks of size 32 KB are to be retrieved from a
single tape.

The SORT schedule is formed by sorting the requested logical block numbers into as-
cending order. This algorithm works well for a helical-scan tape or a 9-track tape, because
the drive will satisfy the requests in a single sweep over the requested blocks. For a modi-
fied serpentine tape, such as the IBM 3570 Magstar MP, the sorted schedule will first satisfy
all the requests on one side of the load point, and then all the requests on the other half of
the tape. For a small number of requests, this approach is a little better than FIFO. For a
large number of requests, the SORT schedule converges to the READ schedule.

The SCAN schedule sorts the requests by estimated physical position on the tape, using
the table of key points (in particular, the logical block numbers of the wrap turns). The
retrieval pattern starts at the load point, sweeps toward one end of the tape in a single pass,
then reverses to sweep toward the other end of the tape, and finally back to the load point.
In our experiments, we only retrieved blocks when the tape head was moving from the load
point outward. A slight variation that we did not test would partition the requests into out-
bound (i.e. odd-numbered) wrap halves and in-bound wrap halves. The head would follow
the same path as described above, but out-bound requests would only be retrieved when
the head is moving outward from the load point, and in-bound requests would be retrieved
while the head is moving toward the load point.

The shortest latency time first (SLTF) schedule is the simple greedy schedule. It starts
at the load point. From the set of all outstanding requests, it proceeds to the one having
the shortest predicted locate time from the current position. Repeat until all requests are
satisfied. For some graphs, the SLTF algorithm is too shortsighted: it greedily chooses the
shortest edge now, even if that forces the use of a much longer edge in a later step.

OPT is the optimal schedule. We calculate it by using the model of locate time to
predict the schedule execution time for every possible ordering of the requests: the fastest
one is chosen. The number of possible orderings is exponential in the number of requests,
so it is impractical to calculate the OPT schedule for more than 10 or 12 requests.

To approximate OPT for a larger number of requests, we can use the LOSS algorithm,
which is a classical heuristic algorithm for the asymmetric traveling salesman problem.
(The traveling salesman problem seeks to find the shortest route that passes through a set
of cities: here each request is a city, and the locate-time model gives the “distance” be-
tween any two cities. The distance is asymmetric in tbeate _time(A,B) is often
significantly different fromlocate _time(B,A) .) The LOSS algorithm is presented in
[3], and is also described in some detail in [2], where it is used to schedule retrievals from
a Quantum DLT4000 tape. The results in section 4 will show that the LOSS algorithm for
the Magstar MP does not generate significantly better schedules than SLTF or SCAN. For
this reason, we only give a sketch of the algorithm here.

The basic idea of the LOSS algorithm is as follows. The algorithm processes a graph
consisting of cities with directed edges between them. The major cycle of the algorithm

searches for one pair of cities to be connected in the schedule. The major cycle is repeated
until all the cities are connected. Within a major cycle, the algorithm considers every re-
maining city, and calculates the difference between the closest and second closest neighbor
(separately for inbound edges and outbound edges). This difference, which is called the
“loss” for the city, is a lower bound on how much worse the schedule will become if the
schedule doesn’t use the edge to the closest neighbor. The algorithm finds the city having
the greatest loss value, and chooses the edge to its closest neighbor to be part of the sched-
ule. When an edge is chosen, all the other edges going out of the source are removed from
the graph, and all the other edges going into the destination are also removed. As soon as
a city has only one inbound edge and one outbound edge, that city is fully scheduled, so it
need not be considered further.

For the Magstar MP, we have not quantitatively studied the scheduling of requests that
are distributed over multiple tapes. But we can mention a result from our unpublished
study of another tape jukebox. An intuitively appealing technique to schedule retrievals
from a tape jukebox is as follows. Whenever a drive becomes idle, iterate the following
three steps. Step 1. for each tape, calculate the best schedule to retrieve all outstanding
requests for that tape. Step 2: switch to the tape whose schedule gives the highest effective
transfer rate (bytes divided by time). Step 3: execute the schedule for that tape. The
interesting result is that for uniformly-distributed random requests, the performance of this
algorithm is very nearly equaled by a much simpler algorithm: switch to a tape having the
greatest number of outstanding requests, and execute the best schedule for that tape. Ifitis
necessary to prevent starvation of requests to unpopular tapes, we can process the tapes in
rounds, such that all the tapes for all current outstanding requests must be processed before
any new request is added to the schedule.

4 Randome-retrieval Performance of the IBM 3570 Magstar MP

The model of locate time that is described in section 2 gives an accurate estimation of the
locate time between any two logical blocks on a Magstar MP tape. Using this model, it is
easy to estimate the total tape locate time for a schedule of requests: just sum the locate
time from the load point to the first block, and from the end of each block in the schedule
to the beginning of the next one. In this first experiment, we do not include the time to
rewind to the load point after the schedule is completed, and we do not include time for a
tape switch.

The basic experiment evaluates the effectiveness of the scheduling algorithms by cal-
culating the average locate time per request, as a function of the choice of scheduling al-
gorithm and the number of requests in the schedule (denoted N). For one trial, we generate
a set of N random block numbers on the tape, use each algorithm to calculate a schedule,
and then calculate the total locate time of each schedule. We divide the total locate time
by N to obtain the average locate time per request. We repeat this process and calculate
the average over many trials. For the OPT algorithm we average over 10,000 trials for N
taking each value from 1-9, we average over 1000 trials for N = 10, and we average over
100 trials for N = 12. For FIFO, SORT, SCAN, SLTF, and LOSS, we use 10,000 trials for
N ranging over 1-10, 12, 16, 24, 32, 48, 64, 96, 128, and 192; we use 8000 trials for N =

256; 4000 trials for N = 384; 2000 trials for N = 512; 1000 trials for N = 768; 500 trials for
N =1024; 250 trials for N = 1536; and 125 trials for N = 2048.

To confirm that the averages are calculated over sufficiently many trials to be repeat-
able, the above experiments have been repeated with three different pseudorandom number
generator starting seeds. Changing the starting seed alters the average locate time by less
than 1% in all cases.

For each algorithm, figure 2 shows the average number of seconds per locate, as a
function of N, for a schedule that starts at the load point, and ends with the tape head just
beyond the last request in the schedule. We see that for the Magstar MP, the SLTF and
SCAN algorithms both work well. We also see that if more than 1200 randomly distributed
blocks of size 32 KB are to be retrieved from one tape, the fastest option is to read the
entire tape. (Recall from section 2, that for nearly noncompressible data, a tape holds
approximately 175,000 such blocks.)

1 2 4 8 16 32 64 128 256 512 1024

Schedule Length (Number of Locates)

Figure 2: Average Locate Time as a Function of Schedule Length.

From the fact that the performance is nearly identical for SCAN, SLTF, and OPT, we
conclude that on the Magstar MP, the speed of a schedule is largely a consequence of where
the requests lie on the tape—an obvious order is likely to be a good order. This result is
different from the results previously obtained for the Quantum DLT4700 tape library, for
which the complex locate time enables a more sophisticated algorithm (LOSS) to give a
substantial speedup [2].

The next experiment examines the additional time required when the schedule makes
an excursion from the load point, through all the requested blocks, and back to the load
point. For this experiment, the OPT schedule is calculated in three ways for comparison.
The OPTno_rw schedule is identical to the OPT schedule shown earlier: it starts at the
load point, and ends just beyond the last block in the schedule, with no rewind. The second
schedule, calle@®PT.append _rw, simply appends a rewind to tli@PT.no_rw schedule.
SinceOPT.no_rw finds a minimal-time schedule through the last request, one may rea-
sonably suspect th@PTappend _rw maximizes the distance of the final rewind. The

third schedule, calle®@PTsched _rw, actually calculates a minimal-time retrieval sched-

ule that starts at the load point, proceeds through all the requests in any order, and then
rewinds to the load point. Figure 3 shows the average locate time for these three variations
of OPT, for schedules ranging from 1 to 10 requests. The averages are calculated over
10,000 trials for N = 1-6, 2000 trials for N = 7, 1000 trials for N = 8-9, and 100 trials for

N = 10. As before, this experiment has been repeated with three different starting pseudo-
random number generator seeds. For N = 10 the result varies by 2%; for the other values
of N, changing the seed varies the result by 1% or less.

24

N

N

24 N
20+ N -
18
16 BT S OPT _append_rw
14 OPT_sched rw ™=~ .. _

Schedule Length (Number of Locates)

Figure 3: Average Locate Time when Appending or Scheduling a Rewind to Load Point.

From this figure, we see that appending a rewind to the schedule gives very nearly the
same result as explicitly minimizing a schedule that ends with a rewind. Our explanation
for this observation is that any schedule will need to traverse that subset of the tape that
contains the requests—on the Magstar MP, the near-linearity of the locate-time function
causes a good schedule to traverse that portion of the tape in a way that approximates a
linear sweep. Whether that sweep performs I/O during the outbound trip or during the
rewind is unlikely to have a large performance impact. The total rewind time increases
with the schedule length, because with a larger number of random requests, there is a
greater likelihood that some request will be near an outer edge of the tape, causing the
rewind distance to approach its maximum.

The final topic that we study is the effective transfer rate (and hence drive utilization).
We determine the relationship between the utilization and two factors: the length of a
schedule (i.e., number of requests per tape), and the size of each request (i.e. number of
bytes transferred by each retrieval in the schedule). The effective transfer rate is the total
number of bytes retrieved, divided by the total retrieval time (the sum of the times to eject
the previous tape, switch to the new tape, load that tape into the drive, locate and read
through the blocks in the schedule, and rewind to the load point.) The drive utilization is
the effective transfer rate divided by the streaming bandwidth. The locate time as a function
of schedule length N is obtained from the best schedules in figure 2. Thus we use OPT for

schedules of 1-12 retrievals per tape, SCAN for 16-96, LOSS for 128-1024, and READ
for 2048-16384. The transfer time is calculated from the streaming transfer rate of 1.93
MB/s that we measured for our slightly-compressible data. The expected rewind time is
obtained from the simulation output that supports figure 3. The rewind time ranges from
11.9 seconds for a schedule of length 1 through 17.1 seconds for a schedule of length 10.
For longer schedules we use an approximation of rewind time that increases from 17.3
seconds through 22 seconds, which is the largest rewind time that we have measured. For
these longer schedules, the rewind time is a small fraction of the total schedule time, so our
approximation of the rewind time introduces an error of 2% or less. For the tape switch
overhead (eject, switch, load) we use the value 16.3 seconds, as reported in [4].

Figure 4 presents a family of utilization curves for the Magstar MP, using our best
scheduling algorithm for each schedule length, and including the overhead of a rewind and
a tape switch for each tape schedule. A utilization of 200% would mean that the effective
transfer rate equals the streaming data rate of the drive, about 2 MB/s for noncompressible
data. The 25% utilization curve shows (for example) that the tape library has an effective
transfer rate of about 0.5 MB/s when executing a random access workload that retrieves a
single block of size 26 MB after each tape switch. The effective transfer rate is also 0.5
MB/s for a schedule that does a tape switch, retrieves 8 random blocks of size 8 MB, and
rewinds.

4 16 64 256 1024 4096 16384

Schedule Length (Number of Locates)

Figure 4: Drive Utilization as a Function of Schedule Length and Transfer Size.

5 Conclusion

For a workload consisting of random retrievals in a robotic tape library, a large component
of the service time consists of switching tapes and the fast-forward and rewinding activity
needed to access the desired data. For this sort of workload, a traditional figure of merit is

the number of retrievals served per hour. We like to think of alternative metrics, namely the
drive utilization @ata _transfer _time / (access _time + transfer _time)), and

the effective data ratébytes _transferred / (access time + transfer _time)).

The drive utilization indicates how efficiently the tape library is being used, and the effec-
tive data rate indicates whether the library is producing data fast enough to keep the CPU
and application busy.

We have studied the performance of the IBM 3570 Magstar MP tape library, which
is designed for fast tape switching and positioning times. We have developed a way to
predict the positioning time between any two logical blocks on a tape that is filled with
fixed-size blocks. Based on this model of locate time, we have studied the performance
of several scheduling algorithms for a random retrieval workload on the Magstar MP, and
have produced estimates of the effective transfer rate as a function of the two factors: the
number of retrievals scheduled from a tape, and the number of bytes transferred by each
retrieval. Our estimates are conservative, in that they are based on uniformly-distributed
random requests. If the requests for a tape exhibit spatial locality (i.e., if the blocks are
somewhat clustered, rather than randomly scattered across the tape), the overhead of tape
positioning may decrease.

6 Acknowledgment

The measurements reported in this paper have been conducted on an IBM 3570 Magstar MP
tape library loaned to us by IBM. We thank John Gniewek, of IBM Tucson, for arranging
this.

References

[1] B. K. Hillyer and A. Silberschatz. On the modeling and performance characteristics
of a serpentine tape drive. Proceedings of the 1996 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systéthgadelphia, PA, May 23—26 1996.

[2] B. K. Hillyer and A. Silberschatz. Random I/O scheduling in online tertiary storage
systems. IfProceedings of the 1996 ACM SIGMOD International Conference on Man-
agement of Datgpages 195-204, Montreal, Canada, June 3—6 1996.

[3] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoy#e Traveling Sales-
man Problem Wiley, Chichester, 1985.

[4] Strategic Research Corporation, 350 So. Hope Ave., Suite A-103, Santa Barbara, CA
93105.Demystifying tape performance, http://www.sresearch.com/search/105420.htm
1996.

