Adaptive Disk Striping for Parallel Input/Output

Huseyin Simitci

Daniel A. Reed*

{simitci, reed }@cs.uiuc.edu

Department of Computer Science
University of Illinois
Urbana, Illinois

Abstract

As disk capacities continue to rise more rapidly than
transfer rates, adaptive, redundant striping smoothly
trades capacity for higher performance. We devel-
oped a fuzzy logic rule base for adaptive, redundant
striping of files across multiple disks. This rule base
is based on a queuing model of disk contention that
includes file request sizes and disk hardware parame-
ters. At low loads, the rule base stripes aggressively
to minimize response time. As loads rise, it stripes
less aggressively to maximize aggregate throughput.

This adaptive striping rule base is incorporated
into our second generation Portable Parallel File Sys-
tem (PPFS II). Experimental results showed that
the analytical models of disk striping are capable
of accurately predicting file system behavior. Also,
it is shown that, depending on the access pattern,
adaptive striping can double the input/output per-
formance compared to striping with fixed distribution
parameters.

1 Introduction

As new high-performance computing systems, achiev-
ing multi-teraflops and beyond quickly emerge, the
performance of storage subsystems remains an obsta-
cle to utilizing the full power of these systems. More-
over extant parallel file systems (e.g., SGI XF'S [1] or
IBM GPFS [2]) cannot deliver the full hardware in-
put/output bandwidth to these parallel applications.
Even small changes in the access pattern may cause

*This work was supported in part by the Defense Advanced
Research Projects Agency under DARPA contracts DABT63-
94-C0049 (SIO Initiative), F30602-96-C-0161, and DABT63-
96-C-0027 by the National Science Foundation under grants
NSF CDA 94-01124 and ASC 97-20202, and by the Depart-
ment of Energy under contracts DOE B-341494, W-7405-ENG-
48, and 1-B-333164.

performance degradation. Emerging distributed ap-
plications with time-varying input/output demands
[3, 4] will exacerbate this situation.

To support multi-teraflop applications manipulat-
ing multi-petabyte data sets, next-generation file sys-
tems will have to stripe data over thousands of sec-
ondary and tertiary storage devices [5, 6, 4]. How-
ever, we have to balance the need to decrease transfer
time using striping and the need to make multiple, in-
dependent transfers. Such a complex task will require
file systems that can intelligently make adaptive file
distribution decisions. To truly understand the ef-
fects of various access and system parameters on the
performance of the striped requests, we need to derive
analytic models of disk striping. These models will
also allow prediction of the input/output behavior of
peta-scale machines with hundreds of thousands of
disks.

Several studies of parallel file systems [7, 8] have
shown the importance of matching underlying file sys-
tem policies with the application’s access patterns.
Mismatched policies and access patterns can signifi-
cantly reduce input/output performance.

These observations point to several unresolved
problems in dynamic file distributions — contention
between accesses inside an application and across
multiple applications and tradeoffs between disk
space and input/output performance. More specif-
ically, key research questions include:

e analytical models of disk striping to study the
input/output performance on very large compu-
tational systems,

e adaptive selection of data striping policies based
on request patterns and system load,

e techniques for trading disk storage for band-
width by redundantly storing multiple, striped
copies of files.

88

To address these issues, we are investigating the
performance-directed selection of file striping distri-
butions across storage devices and redundant storage
of multiple distributions to reduce access time. This
exploration builds atop our earlier work on physical
and logical, input/output pattern comparisons [9, 10]
and portable, parallel file systems [7]. It integrates
real-time performance data, automatic access pat-
tern classification, and fuzzy logic controls for choos-
ing and configuring flexible policies. The foundation
of the research is a prototype software library called
PPFS II (Portable Parallel File System II).

In this paper, we outline an approach to adaptive
disk striping that focuses on three primary research
areas: development of analytical models of dynamic
disk striping and redundant storage; utilization of
automatic access pattern classification and real-time
file system performance data; and implementation of
fuzzy logic rule bases for disk striping policy selection.

The remainder of this paper is organized as follows.
In §2, we present research relevant to this study. We
discuss our approach to adaptive file system policies
in §3. We present the queueing models of disk striping
in §4. §5 contains an introduction to fuzzy logic con-
trol and discusses the adaptive striping rule base. In
86, we describe our experimental, adaptive, file sys-
tem prototype. We present experimental results in
§7. Finally, we conclude by presenting the directions
of future work and summarizing the implications of
adaptive disk striping policies in §8.

2 Related work

Disk striping optimization. One way to remedy
the performance difference between computing ele-
ments and storage devices is to stripe data across
several storage devices [5], effectively increasing the
overall data throughput. This distribution technique
is foundational to RAID systems [11], and striping file
systems [12, 13]. But the effectiveness of this tech-
nique is dependent on the configuration of the storage
system and the characteristics of the workloads using
it.

Cormen and Kotz [14] point out that asymptot-
ically optimal disk I/O algorithms require flexible
striping parameters. They also note that requiring
the input/output operations to be fully striped is
equivalent to using just one disk with a block size
multiplied by the number of disks. Vitter and Shriver
[15] studied the optimal number of input/output op-
erations required by several parallel algorithms. One
of the results in this study reveals that the constraint
of fully striped input/output increases the number of

disk accesses by more than a constant factor com-
pared to independent accesses to parallel disks.

Chen and Patterson [16] observed the importance
of using an optimum striping unit, the amount of log-
ically contiguous data on each storage device. They
define parallelism as the number of disks serving a
request, and concurrency as the average number of
outstanding user requests in the system. Then, they
show that higher levels of concurrency require lower
levels of parallelism to decrease the contention for re-
sources. Similarly, lower levels of concurrency allow
more parallelism for individual requests, which de-
creases individual response times.

Elford and Reed [17] studied the effects of evolving
disk technology on disk-array designs. Their model-
ing and simulation results suggest that the net effect
of combined disk technology improvements is to re-
duce the range in which disk arrays are preferable to
collections of disks that are not synchronized. Data
density increases negate many of the advantages of
disk arrays. However, this was predicated on many
assumptions about request sizes and access patterns.
In particular, it assumed that requests are distributed
equally across the disks. High arrival rates, access hot
spots, shared file access on parallel systems, and vari-
able size requests all affect performance, which makes
choosing an appropriate data distribution dependent
on a host of interrelated factors.

In [18], Scheuermann, Weikum, and Zabback
present an analytic model for striping on parallel disk
systems which is very similar to the models that we
discuss in §4. Our striping models differ by mak-
ing more simplifying assumptions on service time dis-
tributions and considering the case of networks of
servers and clients. In [18], only shared-memory mul-
tiprocessors are considered and network latencies are
ignored. This work points out the importance of file
specific striping tuning even in a shared-memory ar-
chitecture.

Redundant storage. Several researchers have ob-
served that disk areal densities are increasing much
faster than access latency times (seek plus rotation)
are decreasing [19, 6]. This fact only exacerbates the
lagging disk access times. This improvement differ-
ence implies some trade-offs. Namely, one can use
the extra capacity to store copies of the data files
redundantly.

For performance and reliability improvements, file
replication techniques such as mirroring have been
extensively studied in the database community [20].
Wolfson, Jajodia, and Huang [21] proposed an adap-
tive, file replication scheme that migrates redundant
copies of files to locations where the read-write activ-

89

ity is highest on a tree network. In an earlier study,
Wolfson and Milo [22] showed that finding an opti-
mal replication scheme, with minimal cost for a given
read-write pattern over general network topologies, is
NP complete.

Input/output characterization. There are a
number of studies that present models of physical
disk [23, 24, 25] and disk-array [17] access behav-
ior. Also, the logical and physical patterns of appli-
cation input/output in parallel scientific applications
have been studied extensively [9, 26, 8, 27, 10, 28].
These studies have shown that parallel applications
exhibit a wide variety of input/output request pat-
terns. Insights from these studies led to new, parallel
file-system application programming interface (API)
standardization efforts like the SIO API [29] and the
MPI-IO APT [30].

Flexible parallel file systems. Almost all paral-
lel file systems provide users with some way to cus-
tomize the file system policies. For example, Intel
Paragon’s PFS [31] and IBM SP2’s PIOFS [32] allow
users to dictate certain file distribution parameters
such as striping widths and striping units.

First generation PPFS (Portable Parallel File Sys-
tem) [7, 33, 34, 35, 36] is an input/output library,
which is portable across parallel systems and work-
station clusters. PPFS has a rich interface for appli-
cation control of data placement and file system poli-
cies. Yet, to achieve performance gains with PPFS, as
is the case in PFS and PIOFS, the application writer
must understand both the application access pattern
and the PPFS input/output cost model. However,
several characterization studies have shown that de-
velopers often do not know their file access patterns
in sufficient detail to correctly choose file policies. As
a result, some studies have proposed techniques that
can automatically classify access patterns [34, 35] and
dynamically choose appropriate policies [33, 36].

Computational steering. Interactive application
steering [37, 36] is studied extensively, particularly in
the context of scientific applications and immersive
visualization.

Several techniques for automated decision making
have been proposed, ranging from decision tables and
trees through standard control theory to fuzzy logic.
In contrast to other alternatives, fuzzy logic has at-
tributes that make it a good choice for poorly un-
derstood optimization spaces with conflicting goals
[38, 39].

3 A parallel file system with
adaptive striping

Clearly, it is imperative to choose the optimal num-
ber of disks to stripe across and the optimal strip-
ing unit if one wants to use parallel disks effectively.
These observations led us to study analytical models
of striping and to develop fuzzy rule bases for adap-
tive striping.

We are investigating techniques that can dynam-
ically change the way data is striped across storage
devices based on request sizes, request concurrency
inside an application and across multiple applica-
tions, and file access patterns. To explore long-term
trends and thousands of storage devices, we have con-
structed both analytic models and fuzzy logic rule
bases that capture the relationship between access
patterns and thousands of storage devices.

We consider policies that trade storage space for in-
creased input/output bandwidth by generating mul-
tiple, redundant copies of data with different opti-
mized distributions. The increasing gap between the
storage capacity and access time makes this approach
both viable and necessary.

Besides having higher storage requirements, redun-
dant storage introduces other overhead. The copies
must be constructed during file creation or copied off-
line after execution, and they must be maintained to
keep data consistent. The advantage of redundant
copies depends on the number of times the data will
be accessed and the actual access patterns.

We are integrating adaptive striping policies into
our next-generation parallel file system, PPFS II.
This system will be discussed in more detail in §6.
PPFS 1II is designed to be a testbed for adaptive,
parallel file-system policies.

Parallel file data structures in PPFS II can accom-
modate multiple, redundant copies of a file with dif-
ferent data layouts. Figure 1 shows an example layout
for a single parallel file with two copies. Runtime in-
formation about the file is kept as the Dynamic Meta
Data. Data distribution information is contained in
cluster structures. Each complete copy of the file con-
stitutes a new fork. Forks are distributed — generally
in a round-robin fashion, to the server disks. Each
extent of a fork on a disk is called a tine. Tines are
stored as the underlying operating system’s native
files.

The two forks in Figure 1 illustrate how different
striping layouts can be implemented. Fork 0 is dis-
tributed on two disks with a relatively big stripe size.
Fork 1, on the other hand, is distributed among four
disks with a smaller stripe size and with gaps between
tine segments.

90

Figure

Figure 2. Merged storage of two parallel files.

This flexible layout structure allows other opti-
mizations. If several files are accessed in an inter-
leaved pattern by the application, they can also be
stored in an interleaved fashion, as seen in Figure 2.
This allows for some prefetching optimizations when
a segment of one of the files is accessed. The adjacent
segment of the next file will be next in sequence on
the disk track, or will be cached somewhere in the
storage hierarchy.

4 An analytical model of disk
striping

Models of disk systems where each request is served
by a single disk are well understood. They are gen-
erally modeled as M/G/1 queues [40]. However, for
striping file systems where each request is served by
multiple servers (fork-join queues), there do not exist
any general analytical models.

In this section, we will explore analytical models
of disk striping, the basis for our adaptive striping
rule base. First, we will discuss the disk and network

service time distribution assumptions.

4.1 Service time distributions

The notation that will be used for the remainder of
the document is contained in Table 1. We assume the
disk service time is the sum of seek time, rotational la-
tency, media transfer time, controller-interface time,
and serial software overhead. Also, we consider the
case where the disks are distributed over a network
and add a network setup time. Network transfer time
will be included in the interface time. All of these ser-
vice time components will be assumed to be nonover-
lapping.

To maintain tractability, we assume that any ro-
tational and seek latency is possible when a request
arrives at the disk. If the time for a full rotation
is ¢ seconds, we assume the rotational latency is
uniformly distributed on the interval [0, ¢]. Then,
the expected rotational latency is ¢/2 seconds with a
variance of ¢?/12. This presumes rotational position
sensing (RPS). Ruemmler and Wilkes [23] discuss the
balance of accuracy and simplicity implied by this as-
sumption.

Similarly, if the time for a full-stroke seek, a seek
between farthest tracks, is f seconds, we will assume
seek time is uniformly distributed on the interval
[0, f]. Then, the expected seek time will be f/2
seconds with a variance of f2/12.

For simplicity, we assume that the data density on
the disk is constant and that there are ¢ blocks on a
track. We are not considering disk layouts which con-
tain more blocks on longer, outer tracks than shorter,
inner tracks. For a fixed request size, the media trans-
fer time is a function of the disk rotation speed 1/¢
and the number of tracks accessed.

For each block transferred there will be ¢ seconds
of disk controller interface and network transmission
delay. Since we are assuming that the disks can be
distributed across a network, for each disk request we
assume there is a network setup delay which is uni-
formly distributed on the interval [0, k], with an ex-
pected value of k/2 seconds and a variance of k?/12.
Finally, since the client may dispatch the sub-requests
serially, we will add an overhead of h seconds per sub-
request to the service time.

4.2 Distributed striping model

In the model, it is assumed that there are m disks
distributed across a network. Mean request size is
[blocks. A block is a fixed amount of data on a
disk, most probably representing a file-system block.
And the total request arrival rate to the system is

91

Table 1. Modeling parameters.

Variable Definition

¢ Time for full disk rotation (s)

f Time for full stroke seek (s)

k Network connection setup time (s)

t Size of disk track (blocks)
D Request width (disks)
m
l
]
h

Number of available disks

Mean request size (blocks)

Network and interface delay (s/block)
Sub-request software overhead (s)
Aggregate request rate (reqs/s)
Request rate for stripe width D
(Sub-)request response time (s)

Am
AD
R
S (Sub-)request service time (s)

Am- For tractability, we will assume Poisson arrivals.
So, the interarrival times will have an exponential
distribution.

We assume that each request is divided into D sub-
requests, which are distributed onto D disks with a
stripe size of {/D blocks. D will be referred to as the
request width. For a given request size, the number of
disks accessed by a request depends on the striping
unit. The number of all the disks a particular file is
distributed on will be denoted by the striping width.

In this model, multiple unrelated sub-requests
might be queued on a particular disk because of over-
lapping requests. We assume the requests are dis-
tributed uniformly among the disks, and the request
arrival rate for each disk is the total sub-request ar-
rival rate divided by the number of disks, which is

_)‘W_D_ (1)

Ap =
Since uniform distribution assumes there are no ac-
cess hot-spots, this will result in a lower-bound on
the actual response time.

Each disk can be modeled as an M/G/1 queue [40].
A possible queuing network model is shown in Fig-
ure 3. Since, in this model, sub-requests are served
asynchronously, first we will find the service and re-
sponse time of each sub-request. Then, we will take
the maximum of these sub-request response times as
the response time of the main request.

The service time for each sub-request can be com-
puted with six components,

_foe ko el (L
SD—2+2+2+t<D>+z(D>+hD. (2)

The variance of the sub-request service time can be

m

m Disks

—
O
O

O

: :D:D_O D Disks

& m@

O

Figure 3. Distributed striping model.

computed as,

s (P4
950 T T 19

(3)

Then, for this M/G/1 queue, the queuing delay,
Wp, and the response time, Rp, can be computed as

AD (O’%D + S%)
2(1—=ApSp) ’

AD (O’%D + S%)
2(1 - ApSp)

Wo (4)

Rp Wp+Sp =

The response time of the main request is the ex-
pected value of the maximum of D sub-request re-
sponse times. We will use the formula

Riarp, = ’Y(D) Rp (6)

to approximate the expected maximum of D inde-
pendent and identically distributed variables with a
mean of Rp. The scaling factor (D) depends on
the probability distribution function of Rp [41, 17].
Kim and Tantawi [41] provide the following scaling
functions:

g—fl, uniform
v(D) = 0.5772 + In(D), exponential (7)
14 Z2/2log(D), normal.

Figure 4 plots this scaling function for various distri-
bution function assumptions.

92

4.5
4 -/./I/./.

Exponenti I‘/./'/'/./.,
- ponential

25
P W Uniform

Normal, CV=0.3

Scaling Factor

0.5

O T T T T T T T T T
1 5 9 13 17 21 25 29 33 37

D (number of disks)

Figure 4. Scaling factors for D random variables.

If we assume a uniform distribution of response
times, we will get
2D
= —— Rp. 8
D+1°7 ®
We should note that this is an approximation.
Clearly, some response time components do not sat-
isfy this uniformity assumption. However, as will be
seen in §7, experiments on our PC cluster has shown
that this approximation accurately predicts the re-
sponse times.

RmazD

4.3 Parameter studies with the strip-
ing model

To explore the effects of each parameter on overall
input/output system performance, we have plotted
several performance graphs using some realistic sys-
tem parameters. Unless otherwise stated, the param-
eters have the fixed values shown in Table 2. The
values for rotational latency (¢ = 8.4 milliseconds),
full stroke seek (f = 18 milliseconds), and blocks per
track (¢ = 22) are approximated using the product
specifications of the Western Digital WDE4360 Ultra
SCSI hard drive, which is used in our experimental
platform that will be presented in §7. Here, one block
is assumed to be 4 KB. We will assume a system with
128 disks and an average request size of 1024 blocks.
Network setup time and interface time will be as-
sumed to be 30 milliseconds and 0.5 millisecond, re-
spectively. We will assume there is an overhead of
one millisecond per sub-request at the client. These
values are observed during the experiments on our
experimental platform. Finally, in plots where the
request rate is fixed, we will assume a request rate of
30 requests per second.

Table 2. Parameter values used in plots.

Variable Value
c 0.0084 s
f 0.018 s
k 0.030 s
t 22 blocks
m 128 disks
[1024 blocks
i 0.0005 s
h 0.001 s
A 30 req/s
0.4
0.35
_. 03
o
9 0.25
()
A
,E 0.2 \
8 o015
AN
@ 01
\W
0.05
0 — — — —
Yo R Dy PP D4
Request Width (D, disks)
Figure 5. Service time as a function of request
width.

First, we plot the service time, S, with respect to
the request width in Figure 5. For this distributed
striping model, the figure shows the service time of
the sub-request, which will be scaled after the re-
sponse time is calculated. As the number of disks
used increases, the service time decreases because of
the decrease in media transfer time. As expected,
this decrease in service time slows down gradually.
Increasing the request width beyond a certain point
increases the service time because of increasing serial
overhead. As seen from the figure, larger request sizes
utilize extra disks better.

The response time is the sum of queuing delay and
service time, and is scaled as in Equation 8. It is
plotted in Figure 6 with respect to the total request
arrival rate and the request width for a fixed request
size of 1024 blocks. For a fixed request rate and a
fixed number of total disks, increasing the request
width (D), also increases the sub-request arrival rate.
Since the decrease in the service time cannot compen-

93

Response Time (R, s)

Request Rate
(A, req/s)

< o
© Request Width
(D, disks)

76

Figure 6. Request response time as a function of
request rate.

sate for the increase in the request rate, after a certain
point the response time increases very rapidly. Note
that smaller request arrival rates can tolerate bigger
request widths.

The area labeled “Unstable Region” in Figure 6
denotes the region where the values of request width
and the request rate cause the utilization,

ApS (9)
for an M/G/1 queue, to be greater than one. An
M/G/1 queue is unstable when p > 1, and this is con-
sidered an undesirable situation. It basically means
that the system is not able to keep up with the re-
quest arrival rate any more and the queues will grow
indefinitely. For the same set of parameters, the uti-
lization, or traffic intensity, is plotted in Figure 7,
where the regions considered stable (p < 1) and un-
stable (p > 1) are labeled as such. As Figures 6 and
Tsuggest, disk utilization quickly becomes very high
with increasing request rates.

Similar behavior is repeated if we vary the request
size, which basically increases the service time, and
this is illustrated in Figure 8. As Figures 6 and 8
show, the request width can and must be chosen opti-
mally, considering the request and input/output sub-
system parameters.

If we take the derivative of the Equation 8 with
respect to D, and solve

p =

0 Rmamp

ap

(10)

1.6
1.4
12
Qa
=
S
S
N
=
©
3 g "
N o
Request Rate © Request Width
(\ req/s) ™R (D, disks)

Figure 7. Disk utilization as a function of request
rate.

Response Time (R, s)

Request 490
Size -
Yo}
1, block. © ©
(/. blocks) ~ Request Width
(D, disks)

Figure 8. Request response time as a function of
request size.

94

Optimal Stripe Width (D ,disks)

<
Request Rate ©
(A, req/s) ©
@

Request Size
§ (1, blocks)

Figure 9. Optimal request width for the distributed
striping model.

for D, we can find an optimal request width which
minimizes the response time. Optimal request width
is plotted in Figure 9 with respect to request arrival
rate and mean request size. Larger request sizes allow
bigger request widths, while higher request arrival
rates dictate smaller request widths.

If we solve Equation 9 for D, we can compute the
request width needed to obtain a utilization of p'.
Such a solution is given by

(=l — ULt +mp't)

b= (ct f+k) Amt

(11)

Figure 10 plots the request width for varying re-
quest rates when p’ = 1, using Equation 11. This
figure actually shows the maximum allowable request
width for a given request rate and request size pair.
Any request width greater than the corresponding
value would cause the system to be unstable. This
upper bound on the request width can be used for
initialization of a Newton like optimization method
to find an optimal request width.

5 Fuzzy logic adaptive control

Classical control techniques and decision tables/trees
require in-depth knowledge of the control domain.
They also depend on consistent parameter-space di-
vision. In contrast to these techniques, fuzzy logic
control has characteristics that make it an excellent
choice for problems such as input/output systems —

200

S AW
é 160 \"\;\
5N\
glzo
£ 100 N
g 80 D N e [i=12
e T
N [=1024] =
g 20

0'5 q‘ N S AT IR TR

Request Rate (A, req/s)

Figure 10. Maximum request width with respect to
request rates.

Dark Dim Light
o 1
>
S
205
E
=0
0 0.5 1
Brightness

Figure 11. Fuzzy variable Brightness.

it can handle imprecise system definition and conflict-
ing goals. A fuzzy logic control system can use com-
mon sense knowledge about the domain by manip-
ulating linguistically described concepts [42, 43, 44].

In fuzzy logic, the semantic properties of the sys-
tem variables are represented with a collection of
fuzzy sets. Figure 11 illustrates the fuzzy sets (con-
cepts) corresponding to the fuzzy variable Brightness,
together with membership functions that define the
transitions between these concepts. At the right end
of the spectrum, membership function LIGHT has
a truth value of one. As the Brightness decreases,
the truth value of LIGHT decreases linearly and the
truth value of DIM increases. At the left end, only
DARK is true and others are fully false. Definition
of these fuzzy sets, together with a set of IF - THEN
rules, constitutes the knowledge base of the fuzzy con-
troller.

Such a knowledge base for the shutter speed of a

95

INPUTS
OUTPUT

SENSORS El— ACTUATORS
SENSORS ACTUATORS

Figure 12. PPFS II fuzzy controller architecture.

camera might contain rules like:

IF (Brightness == LIGHT) THEN

ShutterSpeed = FAST
IF (Brightness == DARK) THEN
ShutterSpeed = SLOW

Fuzzy operators, counterparts of boolean opera-
tors, are used to combine input fuzzy values. For
example, a fuzzy OR operator might take the maxi-
mum of the two input fuzzy sets.

In this example, first the truth values of the an-
tecedents of each rule are computed. Then, the con-
sequents are scaled with the resulting value. In this
way, multiple rules may generate outputs for the same
input. At the end, outputs of all rules with the same
consequent are joined to obtain a single output.

Figure 12 illustrates the flow logic of a fuzzy con-
troller as implemented in PPFS II. The functions of
the model components are as follows:

Knowledge repository. Contains the fuzzy pro-
duction rules and the definition of the fuzzy sets. This
is static information in this model. A more complex
and adaptive system can be obtained by providing a
feedback loop from the system outputs to the knowl-
edge repository to tune the fuzzy sets and to modify
the rules.

Inputs. Inputs are gathered from the system sen-
sors and pre-processed to serve the needs of the fuzzy
logic system.

Fuzzifier. The inputs are “fuzzified.” That is, the
values are converted to their fuzzy representations
through the information taken from the knowledge
repository.

Fuzzy logic decision process. This process exe-
cutes all the rules in the knowledge repository that
have the fuzzified input in their premise, resulting in
a new, fuzzy set representation for each output vari-
able.

Defuzzifier. Representative scalar values are ob-
tained from output fuzzy sets using a defuzzification
method (e.g., centroid defuzzification).

Outputs. Outputs from the defuzzifier are post-
processed, to transform them into usable control in-
formation, and then distributed to the actuators.

Actuators. These are software components in the
system that allow dynamic control of the system com-
ponents assigned to them.

Sensors. Sensors gather critical performance at-
tributes of the system components and forward them
to the fuzzy control logic.

In contrast to techniques like decision tables which
cause discrete changes, fuzzy logic provides smooth
transitions between policies. Its natural approach to
domain definition allows quick experimentation and
tuning of the control system.

5.1 Adaptive file striping rule base

Below we will describe a fuzzy system module that
determines the best striping unit adaptively, consid-
ering the current state of the system. This rule base is
based on the parametric studies of the analytic strip-
ing models presented in §4.

The fuzzy variables RequestRate and Request-
Width, can have the fuzzy values given in Figure
13. RequestRate has values INFREQUENT, OCCA-
SIONAL, FREQUENT, and CONTINUOUS to de-
note the rate of request arrivals. The rate will be
scaled to be in the interval [0, 1] to make the rules
portable to various systems. We also normalize Re-
quest Width by the total number of devices, which
makes Request Width to be in the interval [0, 1], also.
Then, a Request Width of 1.0 denotes that all the de-
vices are used. With this definition, the fuzzy val-
ues in Figure 13 can be used for the fuzzy linguistic
variable Request Width. We have used only triangu-
lar and trapezoidal membership functions, because
they allow fast and optimized fuzzy inferencing pro-
cedures. Other, smoother curves can be employed
with a higher computing cost of manipulation.

As discussed in §4, the level of parallelism for in-
dividual requests must decrease as the system load,

96

if (RequestRate ==
if (RequestRate ==
if (RequestRate ==
if (RequestRate ==

if (RequestRate ==
if (RequestRate ==
if (RequestRate ==
if (RequestRate ==

if (NetworkPerformance
if (NetworkPerformance

if (DiskPerformance
if (DiskPerformance

if (FileParallelism ==

INFREQUENT && RequestSize
OCCASIONAL && RequestSize
FREQUENT && RequestSize
CONTINUQUS && RequestSize

INFREQUENT && RequestSize
OCCASIONAL && RequestSize
FREQUENT &% RequestSize
CONTINUQUS && RequestSize

== TINY){RequestWidth = SMALL;}
== TINY){RequeStWidth = TINY;}
== TINY){RequestWidth = TINY;}
== TINY){RequestWidth = TINY;}
== LARGE){RequestWidth = HUGE;}
== LARGE){RequeStWidth = LARGE;}
== LARGE){RequestWidth = SMALL;}
== LARGE){RequestWidth = TINY;}

LOW) {RequestWidth = SMALL;}
HIGH) {RequestWidth = LARGE;}

LOW) {RequestWidth = LARGE;}
HIGH) {RequestWidth = SMALL;}

LOW) {StripeWidth = LARGE;}

if (FileParallelism == HIGH) {StripeWidth = SMALL;}

if (RequestRate ==
if (RequestRate ==

INFREQUENT) {FileReplicationTime = ONLINE;}
FREQUENT) {FileReplicationTime = QOFFLINE;}

Figure 14.

RequestRate in the models, increases. This estab-
lishes an inverse relation between Request Width and
RequestRate. And, to be able to utilize multiple disks,
the RequestSize must be big enough. These relations
can be represented by the fuzzy rules given in Fig-
ure 14. The relation defined by the rule base can
be used to adaptively determine the RequestWidth,
which, in turn, dictates a striping unit with the rela-
tion

AverageRequestSize
RequestWidth x NumOfDisks "

(12)

StripingUnit =

Figure 15 depicts RequestWidth as a function of
the RequestSize and RequestRate according to the rule
base. As desired, increasing RequestRate dictates less
striping, thus higher striping units. And along a con-
stant RequestRate level, higher request sizes require
higher request width, thus more parallelism. The
shape of the graph is a function of the fuzzy sets,
fuzzy rules and the fuzzy methods used.

One thing to note is that the decisions obtained
from fuzzy controllers may be considered as sugges-
tions. Their applicability can be further tested by the
actuators responsible for the files in question. For ex-
ample, the actuator can round up the striping unit to
a multiple of the access granularity of the device.

Fuzzy logic rule base for adaptive striping.

6 Experimental infrastructure

As a testbed for our adaptive file system policies, we
have designed and completed a prototype of a next
generation portable parallel file system, PPFS II. It
provides a real-time, file system adaptation environ-
ment on top of both clustered PCs and traditional
parallel computers.

PPFS II uses Autopilot [45, 46], a closed-loop,
performance measurement and adaptive control sys-
tem. Autopilot provides lightweight software sensors
to capture the performance data from system compo-
nents and actuators to manipulate software behavior.
Even though sensors provide qualitative data to en-
able adaptive decision making, earlier research [33]
has shown that using qualitative classification data
about the access patterns enables better optimiza-
tions. In PPFS II, this information can be obtained
by user supplied hints or via automatic classification
techniques.

PPFES II utilizes a set of trained, artificial, neu-
ral networks (ANNs) [47] to classify application in-
put/output patterns. These automatic classifiers are
implemented as Awutopilot sensors which distribute
the information to connected decision procedures. To
maintain rule base portability, the user hints and the
classification information obtained through sensors
are treated as clues or suggestions. They do not di-
rectly effect system operation. Rather, decision pro-

97

Request Width

I T I I I I i I
OCCASIONAL CONTINUOUS
% 1 |- INFREQUENT FREQUENT: _
2 08 ron : 1
_: 7/ \ .
m / AY :
o 06[S Yoo -
Q ‘(‘ \‘ !
§ 04l S - 4
2 / \ :
0.2 : //l . \\ i
0 | Az DN L Y |
-04 -02 0 02 04 06 08 1 12
RequestRate
T | T T T T T T
o TINY SMALL LARGE HUGE
$.
> P
2 08 A -
< / \
(2] ’ \
o 06 S Y
o Y \
g 04 — ,I E \\ —
2 / \\
0.2+ : // \\ i
0 | i L L 4 L.
-04 -02 0 02 04 06 08 1 12 14

RequestWidth

Figure 13. Fuzzy linguistic values for RequestRate
and Request Width.

cedures interpret them to arrive at policy decisions.

PPFS II implements distributed decision proce-
dures in the form of fuzzy logic rule bases. Based on
system- and user-level, input/output resource usage
information, these rule bases intelligently select file
system policies. These policies can balance conflict-
ing resource demands within and across applications
and trade storage space for increased input/output
bandwidth.

Figure 16 illustrates the high-level component ar-
chitecture of PPFS II prototype. All file system
components are connected via logical links provided
Globus/Nexus [48] that allow location transparent
system operation. Metadata manager keeps the com-
ponent addresses and data layout information. Sen-
sor/actuator manager is the central place for publish-
ing and querying Autopilot sensors and actuators.

To develop and experiment with PPFS II, we have
set up a cluster of PCs. The cluster consists of nine
Dell Dimension XPS PCs with Pentium IT 266 MHz
processors and 64 MB main memories. The cluster is
connected with a 100 Mbit/sec switched Fast Ether-
net network which provides 3.2 Gbit/sec peak cross-
bar bandwidth. Each PC in the cluster contains three
4.3 GB disks connected to an Ultra Wide SCSI host

1.4

0.9

05 T 0.7

Request Rate 0.9

0.5
Request Size

0.3
0.1

Figure 15. Optimal request width obtained from
the rule base.

GLOBAL

LIENT CA

Figure 16. PPFS II distributed grid architecture.

adaptor. This results in 24 storage servers in the
cluster, one for each disk.

7 Experimental results

In this section, we will present preliminary results we
have obtained on our experimental platform with the
PPFS II prototype.

7.1 PPFS II disk

mance

striping perfor-

To experiment with the PPFS II striping perfor-
mance, we used a suite of SIO Low-Level API [29]
benchmarks. These configurable benchmarks are
flexible enough to generate many of the common,
parallel input/output access patterns seen in earlier

98

Response Time (ms)

200
Inter Request 800

Delay (ms) 16 12 Request Width
24 (D, disks)
(a) Experimental
Figure 18. Response times for 64 KB read requests.

Execution Time (s)

24

16
2 8

4

4 .
Number of 8 1 Reques_twldth
Clients (D, disks)

Figure 17. Total execution time to read 1 GB with
512 KB requests.

characterization studies.

First, to assess the striping performance of the ex-
perimental platform, we ran a series of benchmarks
with varying numbers of clients, which is illustrated
in Figure 17. In each case, the corresponding num-
ber of clients are reading a 1 GB file collectively,
with 512 KB blocks, and with random offsets at 512
KB boundaries. The figure presents the execution
time with respect to the request width, the number
of disks used for a particular request, and the num-
ber of clients used in the experiment. Using multiple

Response Time (ms)

200

Inter Request 800

Delay (ms) 16 Request Width

(D, disks)

(b) Queuing model prediction

clients reduces the execution time because of parallel
accesses. The figure shows that the overall execution
time is affected by the choice of the request width.
For this experimental setting, a request width of four
disks provides the optimal execution time.

7.2 Striping model verification exper-
iments

To validate our analytical models of striping, we ran
a series of benchmarks with varying request arrival
rates and request widths. The results are presented
in Figures 18 and 19, which show the effects of dif-
ferent request widths on the response time of indi-
vidual requests. In these experiment, eight nodes are
reading a one gigabyte file Requests on each client
are separated in time with the inter-request delays
shown in figures. Figures 18 and 19 also present the
corresponding response time predictions obtained us-
ing the analytical striping model presented in §4. For
these plots, the model parameter values given in Ta-
ble 2 are used after adjusting the request size param-
eters. These figures show that the analytical striping
model can predict the result of using different strip-
ing parameters. The average difference between the
actual and predicted response times is 11% in Figure
18 and 13% in Figure 19.

8 Conclusions

Our preliminary experiments have shown that auto-
matic, rule based, adaptive control of input/output

99

Response Time (ms)

Inter Request gpg

Delay (ms) 16 12 Request Width

24 (D, disks)

(a) Experimental

Figure 19. Response times for 512 KB read requests.

subsystem can provide significant performance im-
provements. Analysis of input/output behavior on
our experimental platform also proved the impor-
tance of striping parameters in the face of changing
system conditions. Our striping rule base is based on
an analytical model, which is shown to be accurate
in predicting experimental outcomes.

In the future, PPFS II will utilize Hidden Markov
models (HMMs) to build a probabilistic model of the
access pattern using prior execution training. This
generality will allow automatic classification of arbi-
trary access patterns.

Finally, the closed-loop and interactive perfor-
mance steering techniques developed for PPFS II will
not only benefit the input/output subsystem, but
they can also be applied to other subsystems that
exhibit dynamic behavior in a computational grid.

Acknowledgments

PPFS I and Autopilot are the result of the collective
work of a number of past and present researchers in
the Pablo Research Group, most notably Ruth Aydt,
Ryan Fox, Mario Medina, James Oly, Randy Ribler,
Nancy Tran, and Guoyi Wang.

References

[1] M. Holton and R. Das, XFS: A Next Generation
Journalled 64-Bit Filesystem With Guaranteed Rate
I/0. Silicon Graphics, Inc.

Response Time (ms)

Inter Request 800

Delay (ms) 16 12 Request Width
24 (D, disks)

(b) Queuing model prediction

[2] IBM Corp., GPFS: A Parallel File System, April

1998.

[3] NSF Terascale Computing Initiative, “Teras-
cale and Petascale Computing: Dig-
ital Reality in the New Millenium.”

http://rrbhpnt.asc.cise-nsf.gov/NSFReport.htm.

[4] P. H. Smith and J. V. Rosendale, “Data and Visu-
alization Corridors,” Tech. Rep. CACR-164, CACR,
CALTECH, September 1998.

[6] K. Salem and H. Garcia-Molina, “Disk Striping,” in
Proceedings of the 2"% International Conference on
Data Engineering, pp. 336-342, ACM, Feb. 1986.

[6] T. Sterling, P. Messina, and P. H. Smith, Enabling
Technologies for Petaflops Computing. MIT Press,
1995.

[7] J. V. Huber, C. L. Elford, D. A. Reed, A. A. Chien,
and D. S. Blumenthal, “PPFS: A High-Performance
Portable Parallel File System,” in Proceedings of the
9th ACM International Conference on Supercomput-
ing, pp. 385-394, July 1995.

[8] D. A. Reed, C. L. Elford, T. Madhyastha, W. H.
Scullin, R. A. Aydt, and E. Smirni, “I/O, Perfor-
mance Analysis, and Performance Data Immersion,”
in Proceedings of MASCOTS ’96, pp. 1-12, Feb.
1996.

[9] H. Simitci and D. A. Reed, “A Comparison of Log-
ical and Physical Parallel I/O Patterns,” Interna-
tional Journal of High Performance Computing Ap-
plications, vol. 12, no. 3, pp. 364-380, 1998.

E. Smirni and D. A. Reed, “Workload Character-
ization of Input/Output Intensive Parallel Appli-
cations,” in Proceedings of the 9th International
Conference on Modelling Techniques and Tools for

[10]

100

[11]

[12]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

Computer Performance FEvaluation, pp. 169-180,
Springer-Verlag, June 1997.

D. Patterson, P. Chen, G. Gibson, and R. H. Katz,
“Introduction to Redundant Arrays of Inexpensive
Disks (RAID),” in Proceedings of IEEE Compcon,
pp. 112-117, Spring 1989.

J. H. Hartman and J. K. Ousterhout, “The Zebra
Striped Network File System,” ACM Transactions
on Computer Systems, vol. 13, pp. 274-310, Aug.
1995.

P. C. Dibble, M. L. Scott, and C. S. Ellis, “Bridge:
A High-Performance File System for Parallel Proces-
sors,” in Proc. 8th Int’l. Conf. on Distr. Computing
Sys., (San Jose, CA), pp. 154-161, jun 1988.

T. H. Cormen and D. Kotz, “Integrating Theory
and Practice in Parallel File Systems,” in Proceed-
ings of the 1993 DAGS/PC Symposium, (Hanover,
NH), pp. 64-74, Dartmouth Institute for Advanced
Graduate Studies, June 1993.

J. S. Vitter and E. A. M. Shriver, “Algorithms for
parallel memory I: Two-level memories,” Algorith-
mica, vol. 12, pp. 110-147, Aug.andSept. 1994.

P. M. Chen and D. A. Patterson, “Maximizing Per-
formance in a Striped Disk Array,” in Proceedings of
the 17th Annual International Symposium on Com-
puter Architecture, pp. 322-331, 1990.

C. L. Elford and D. A. Reed, “Technology Trends
and Disk Array Performance,” Journal of Parallel
and Distributed Computing, vol. 46, pp. 136-147,
1997.

P. Scheuermann, G. Weikum, and P. Zabback, “Data
Partitioning and Load Balancing in Parallel Disk
Systems,” The VLDB Journal, vol. 7, pp. 48—66, Feb.
1998.

P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patter-
son, “RAID: High-Performance, Reliable Secondary
Storage,” ACM Computing Surveys, vol. 26, pp. 145—
185, June 1994.

D. Bitton and J. Gray, “Disk Shadowing,” in Pro-
ceedings of the 14th International Conference on
Very Large Data Bases, pp. 331-338, 1988.

O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive
Data Replication Algorithm,” ACM Transactions on
Database Systems, vol. 22, pp. 255-314, June 1997.

O. Wolfson and A. Milo, “The Multicast Policy
and its Relationship to Replicated Data Placement,”
ACM Transactions on Database Systems, vol. 16,
pp- 181-205, Mar. 1991.

C. Ruemmler and J. Wilkes, “An Introduction to
Disk Drive Modeling,” Computer, vol. 27, pp. 17-28,
Mar. 1994.

E. Shriver, A. Merchant, and J. Wilkes, “An Ana-
lytic Behavior Model for Disk Drives with Readahead

Caches and Request Reordering,” in Proceedings of
SIGMETRICS’98, pp. 182-191, 1998.

[25]

[27]

[29]

[34]

[35]

[36]

101

J. Wilkes, B. L. Worthington, G. R. Ganger, and
Y. N. Patt, “On-line Extraction of SCSI Disk Drive
Parameters,” in Proceedings of the Joint Interna-
tional Conference on Measurement and Modeling of
Computer Systems, pp. 146-156, May 1995.

P. E. Crandall, R. A. Aydt, A. A. Chien, and
D. A. Reed, “Input/Output Characteristics of Scal-
able Parallel Applications,” in Proceedings of Su-
percomputing 95, (San Diego, CA), pp. CD-ROM,
IEEE Computer Society Press, Dec. 1995.

E. Smirni, R. A. Aydt, A. A. Chien, and D. A.
Reed, “I/O Requirements of Scientific Applica-
tions: An Evolutionary View,” in Proceedings of
the Fifth IEEE International Symposium on High-
Performance Distributed Computing, pp. 49-59,
Aug. 1996.

E. Smirni, C. L. Elford, and D. A. Reed, “Perfor-
mance Modeling of a Parallel I/O System: An Ap-
plication Driven Approach,” in Proceedings of the
Eighth SIAM Conference on Parallel Processing for
Scientific Computing, Mar. 1997.

P. F. Corbett, J.-P. Prost, C. Demetriou, G. Gib-
son, E. Riedel, J. Zelenka, Y. Chen, E. Felten,
K. Li, J. Hartman, L. Peterson, B. Bershad, A. Wol-
man, and R. Aydt, “Proposal for a Common Paral-
lel File System Programming Interface Version 1.0.”
http://www.cs.arizona.edu/sio/apil.0.ps, Nov.
1996.

The MPI-IO Committee, “MPI-IO: A Parallel File
I/0 Interface for MPI,” April 1996. Version 0.5.

Intel Corporation, Intel SSD, Beaverton, OR,
Paragon System User’s Guide, 1995.

P. F. Corbett and D. G. Feitelson, “The Vesta Par-
allel File System,” ACM Transactions on Computer
Systems, vol. 14, pp. 225-264, Aug. 1996.

T. M. Madhyastha, C. L. Elford, and D. A. Reed,
“Optimizing Input/Output Using Adaptive File Sys-
tem Policies,” in Proceedings of the Fifth Goddard
Conference on Mass Storage Systems and Technolo-
gies, pp. 11:493-514, sep 1996.

T. M. Madhyastha and D. A. Reed, “Input/Output
Access Pattern Classification Using Hidden Markov
Models,” in Proceedings of the Fifth Workshop on In-
put/Output in Parallel and Distributed Systems, (San
Jose, CA), pp. 5767, ACM Press, Nov. 1997.

T. M. Madhyastha and D. A. Reed, “Intelligent,
Adaptive File System Policy Selection,” in Proceed-
ings of the Sixzth Symposium on the Frontiers of
Massively Parallel Computation, pp. 172-179, IEEE
Computer Society Press, Oct 1996.

D. A. Reed, C. L. Elford, T. Madhyastha, E. Smirni,
and S. L. Lamm, “The Next Frontier: Interactive
and Closed Loop Performance Steering,” in Proceed-
ings of the 1996 International Conference on Parallel
Processing Workshop, pp. 20-31, August 1996.

[37] J. Vetter and K. Schwan, “High Performance Com-
putational Steering of Physical Simulations,” in
Proc. Int’l Parallel Processing Symp., (Geneva),
pp. 128-132, 1997.

[38] L. A. Zadeh, “Fuzzy Sets,” Information and Control,
vol. 8, pp. 338-353, June 1965.

[39] N. K. Kasabov, Foundations of Neural Networks,
Fuzzy Systems, and Knowledge Engineering. The
MIT Press, 1996.

[40] R. Jain, The Art of Computer Systems Performance
Analysis. Wiley, 1991.

[41] M. Y. Kim and A. N. Tantawi, “Asynchronous Disk
Interleaving: Approximating Access Delays,” IEEFE
Transactions on Computers, vol. 40, pp. 801-810,
July 1991.

[42] L. A. Zadeh, “A Fuzzy-Algorithmic Approach to the
Definition of Complex or Imprecise Concepts,” In-
ternational Journal of Man-Machine Studies, vol. 8,
no. 3, pp. 249291, 1976.

[43] L. Zadeh, “Commonsense Knowledge Representation
Based on Fuzzy Logic,” IEEE Computer, vol. 16,
p. 61, Oct. 1983.

[44] L. A. Zadeh, “Fuzzy Logic = Computing with
Words,” [EEFE Transactions on Fuzzy Systems,
vol. 4, no. 2, pp. 103-111, 1996.

[45] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed,
“Autopilot: Adaptive Control of Distributed Appli-
cations,” in Proceedings of HPDC'7, July 1998.

[46] D. A. Reed and R. L. Ribler, “Performance Analysis
and Visualization,” in Computational Grids: State of
the Art and Future Directions in High-Performance
Distributed Computing, Morgan-Kaufman, Aug.
1998.

[47] T. M. Madhyastha and D. A. Reed, “Exploiting
Global Input/Output Access Pattern Classification,”
in Proceedings of SC °97: High Performance Com-
puting and Networking, (San Jose), IEEE Computer
Society Press, Nov. 1997.

[48] I. Foster and C. Kesselman, “Globus: A Metacom-
puting Infrastructure Toolkit,” International Jour-
nal of Supercomputing Applications and High Per-
formance Computing, vol. 11, pp. 115-128, Summer
1997.

102

