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Abstract

With an ever increasing amount of data to store, hi-
erarchical storage management (HSM) systems must still
use tape for tertiary storage. A disk cache is used to re-
duce the access time to data stored on tapes in a robot de-
vice. Due to the sequential access to tape devices, some
HSM systems will transfer whole files between disk cache
and tape. In this case the disk cache is forced to handle
storage objects of nonuniform data size. In this article the
term ‘object’ is used initially to emphasize that size is a
property of the data stored in the disk cache. Thereafter
files will be called cache objects and the disk cache will
be called object cache.

When dealing with file objects in a HSM system
disk cache, size is not the only property that influences
object replacement. A new replacement algorithm called
ObjectLRU (OLRU) is introduced that considers differ-
ent object properties for replacement. Using file system
traces and cache simulation, the performance of OLRU is
evaluated. Compared to the LRU replacement algorithm,
the OLRU replacement improved cache hit rates for all
simulated cache sizes. The gap between hit rates for the
LRU and OPT replacement algorithms, which ranges be-
tween 3.2 and 0.7 percent, is reduced to between 1.9 and
0.6 percent. An online optimization of OLRU parameters
is used to increase the adaptiveness of the OLRU algo-
rithm by utilizing a genetic algorithm.

1 Introduction

With cheap fast disk storage easily transcending the
terabyte range increasingly available, one might think the
end of hierarchical storage management (HSM) systems
is within reach. Yet the amount of data to be stored
grows at a higher rate and requires systems to store even
petabytes of data. So we are still confronted with ter-
tiary storage on tape, and disk caches to reduce access
times. Due to the sequential access to the tape device,
some HSM systems store whole files to tape. Within this
setup, files are the smallest logical units of storage, and
disk caches have to deal with objects of nonuniform size.
The term ‘object’ is used to emphasize that size is a prop-
erty of the data stored in the disk cache. Other properties
will be introduced later on, at which point files will be
called cache objects and the disk cache will be called ob-
ject cache.

Caching uses locality of reference in data request
patterns to increase performance. Reed and Long[1] give
an overview of the most commonly used replacement al-
gorithms, namely, LRU, LFU, FBR, FIFO, RAND, and
OPT. They show that LRU (Least Recently Used) is the
replacement algorithm of choice when caching NFS re-
quests on an NFS server. Within the last few years
other replacement algorithms have been introduced, in-
cluding a compression-based algorithm in Phalke[2] and
an application-controlled algorithm in Cao[3][4]. Phalke
shows that compression of the IRG (Inter-Reference Gap)
can be used to predict replacement and improve perfor-
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mance. Cao allows application some control over place-
ment, which can dramatically increase performance, but
requires users to have inside knowledge of the cache ar-
chitecture. While these approaches are based on technical
improvements, Pitkow[5] makes use of findings in other
scientific disciplines; he uses psychological research re-
sults on human memory to improve the performance of
WWW caches. The above approaches have one thing in
common: they rely solely on access patterns to select ob-
jects for replacement. No additional replacement criteria
is taken into consideration for influencing system utiliza-
tion. If a disk cache stores whole files, the size of an ob-
ject is an additional replacement criterion as different ob-
ject sizes will require replacing combinations of objects.
Smith[6] uses file reference and file size as a combined re-
placement criterion. He compares several algorithms that
use the product of file size and a power of the most recent
reference time. He then replaces the file with the maxi-
mum product. Although this approach leads to increased
hit rates, he attains the best results by exploiting the em-
pirical distribution of inter reference times for different
file size ranges (offline optimization).

If we reflect further on HSM systems, additional ob-
ject properties – e.g., the cost of file allocation – come
to mind that influence replacement as well. Therefore,
we offer a new replacement algorithm called ObjectLRU
(OLRU), which will take into account various object
properties. The use of a weighting function to evalu-
ate combinations of objects provides a more flexible ap-
proach. To increase adaptiveness, the weighting function
is optimized using an online genetic algorithm. The influ-
ence of algorithm runtime on cache performance is con-
sidered, in order to exclude the possibility of performance
loss. The algorithm is based on LRU replacement but in-
corporates features introduced by Pitkow[5].

Miller[7] and Katz give an in-depth analysis of file
migration in HSM systems. They use supercomputer file
access traces to drive their simulations. One of their most
interesting findings is that migration and replacement al-
gorithms should be optimized for reading. If users ac-
cess files interactively, they tend to wait for reads, and
will evaluate system performance accordingly.

To evaluate replacement performance, trace-driven
simulations for a read workload were performed, allowing
for different system metrics (see Muntz[8]).

2 Cache algorithms

Caches are used to bridge large gaps between access
times to data. Caches are therefore applied on almost ev-
ery level of the memory hierarchies found in computers.
They range from data and instruction caches, found in mi-
croprocessors, to disk caches in HSM systems. The com-
mon problem for all cache algorithms is to decide which
data object will be replaced, and how much time can be
spent to make a replacement decision.

Throughout this paper LRU and OPT replacement
algorithms will be used to evaluate the performance of
the new algorithm. Therefore, we will give a brief sum-
mary of their replacement technique. The LRU (Least Re-
cently Used) algorithm will replace the cache object with
the oldest reference. For ease of operation, a replacement
stack is kept, which is ordered by reference. The OPT
(OPTimal) algorithm works much the same way, but will
replace the object with the furthest future reference. It
is obvious that OPT replacement can only be used if all
requests are known in advance. It is therefore called an
offline algorithm.

2.1 Performance gain

One important point when designing a cache is to
have a closer look at possible performance gain and influ-
encing factors. The performance gaing is defined to be
the ratio of access times without and with cache.

g =
access time without cache

access time with cache
(1)

The influencing factors are bandwidth and latency of I/O
devices and the hit rate of the cache. The calculation of
the performance gain is mainly used to give an estimate
for the influence of the replacement algorithm runtime. It
therefore neglects some factors like disk utilization, disk
fragmentation, or tape device blocking.

In case of a read, the access timet to data of size
s stored on tape can be calculated using the latency time
tlat and the device bandwidthbw:

t = tlat +
s

bw
(2)

If a disk cache is used, data is buffered on a disk de-
vice with lower latency and higher bandwidth. Access
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to buffered data takes the cache hit access timetchit:

tchit = tclat +
s

bwc
(3)

using disk latency timetclat and disk bandwidthbwc. The
latency time of the disk cache is composed of the hard-
ware latencythwlat of the disk device and the runtimetalglat

of the cache replacement algorithm.

tclat = talglat + thwlat (4)

Access to data not buffered (miss) requires the data to be
read from tape. Depending on the method used to trans-
fer data within the memory hierarchy, it can either be ac-
cessed from system memory or through the disk cache.
Assuming the first case the miss access timetcmiss will
be:

tcmiss = t (5)

Introducing the hit ratehitrate equations 3 and 5 can be
combined to the cache access timetc

tc = hitrate� tchit + (1� hitrate)� t (6)

We can decide whether the cache increases system perfor-
mance by calculating the equal performance hit ratehiteq .
Equal performance is given by equal access timestc and
t. Using equations 2 and 6 we get:

hiteq =
tchit
t

(7)

If the hit rate drops belowhiteq the cache will decrease
system performance. The performance gaing becomes

g =
1

1 + (hiteq � 1)� hitrate
(8)

The maximum performance gaingmax will emerge if the
hit rate is 1.

gmax =
t

tchit
(9)

Given the equations above, we can now have a
look at the influence of replacement algorithm runtime
on cache performance. Table 1 shows approximated la-
tency and bandwidth for the devices used in a HSM sys-
tem setup.

If we assume hit rates in a real disk cache to be be-
tween 50 and 90 percent, the performance gain can be cal-
culated for different algorithm runtimes and data chunk

Table 1: Latency and bandwidth for devices in a disk
cache setup

type bandwidth latency

disk 10 MB/s 10 ms

tape 5 MB/s 30 s

robot — 10 s

sizes. Table 2 lists maximum performance gain, perfor-
mance gain at 50 and at 90 percent hit rate for data chunk
sizes of one kB, one MB and one GB and algorithm run-
time ranging from zero to one hundred milliseconds.

Table 2: Performance gaingmax, g(90) andg(50) for dif-
ferent data chunk sizess and algorithm runtimetclat

sizes tclat gmax g(90) g(50)
0 ms 3960.4 9.977 1.999
1 ms 3603.6 9.975 1.999

1 k 5 ms 2649.0 9.966 1.999
10 ms 1990.1 9.954 1.999
50 ms 665.6 9.867 1.997
100 ms 363.3 9.758 1.995
0 ms 365.45 9.760 1.995
1 ms 362.16 9.758 1.994

1 M 5 ms 349.57 9.749 1.994
10 ms 335.00 9.738 1.994
50 ms 251.25 9.654 1.992
100 ms 191.43 9.551 1.990
0 ms 2.400 2.105 1.412
1 ms 2.400 2.105 1.412

1 G 5 ms 2.400 2.105 1.412
10 ms 2.400 2.105 1.412
50 ms 2.399 2.104 1.412
100 ms 2.397 2.103 1.411

The values of table 2 show the expected behavior for
the performance gain. With small data chunk sizes the
performance gain is determined by access latencies, for
large sizes it is ruled by bandwidth. We can also see that
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replacement algorithm latency mostly affects the maxi-
mum performance gaingmax; it decreases as1=x with
tclat. On the other hand, performance gain with realistic hit
rates will drop in an almost linear fashion with increased
tclat, as is shown forg(90) in figure 1. Even for algorithm
runtime of 10 ms the performance loss will be less than
0.3 percent.

In a loaded system, latency and bandwidth of disk
devices will increase, so that the performance gain will
drop. With increased device latencies the influence of al-
gorithm runtime will further diminish.
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Figure 1: Performance gaing(90) versus algorithm run-
time for different data chunk sizess

With the system setup in table 1 and the simplified
calculations on performance gain, the gap in access times
for disk and tape devices in a HSM disk cache gives rise
to replacement algorithm runtime in the order of 10 ms
without noticeable performance loss. This allows the use
of more sophisticated replacement algorithms.

2.2 Improved replacement

Well-known replacement algorithms like LRU,
LFU, or others use one criterion to decide which cache
object will be replaced. These algorithms are easy to re-
alize. Their replacement comes with high hit rates and
short replacement times. As replacement for these algo-

rithms is solely based on access patterns, no further object
properties are considered.

Advanced replacement strategies are usable as long
as replacement algorithm runtime is kept below the limit
calculated in section 2.1. The design of the new replace-
ment algorithm is based on the following points:

� adaptiveness

� performance

� reliability

� flexibility, multiple object properties considered

� extensibility

The first step in developing the new algorithm has
been to look at cache object properties that will increase
the hit rate in an object cache. If we recall that object
caches handle data of nonuniform size, the principles of
improved operation are easy to understand. The following
example will illustrate the basic point of considering ob-
ject size for replacement, as opposed to standard LRU re-
placement. Figure 2 shows the bottom of an LRU-ordered
object cache. If the cache is completely filled and an un-
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Figure 2: Tail of the LRU-ordered object cache. Object
properties shown are last reference and size

cached object of size six is accessed, cache objects of a
minimum combined size of six must be replaced. Using
LRU the objects a, b, c and d would be replaced, freeing a
total size of eleven. Since we initially needed 6 free units,
replacing only object d is sufficient. In this particular case
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it is even optimal, since the cache fill rate is kept and the
three objects not replaced can still be accessed without
a miss. For this particular setup we get optimal replace-
ment by replacing exactly one object of the size required
and a reference as well included for replacement by LRU.
This means that by introducing size we get three criteria
for optimal replacement in an object cache, namely, the
number of objects, the size of the replaced objects, and
their references. The example used simplifies part of the
problem, since for actual replacement it is unlikely that
one cache object will fit all the criteria. Therefore com-
binations of objects have to be considered. These ideas
can also be applied directly to OPT replacement, and it
is obvious that OPT replacement is not optimal for object
caches. The OPT replacement algorithm is used to give
an upper limit on possible cache performance when com-
paring different replacement algorithms. So an optimized
OPT algorithm for object caches has to be introduced as
well. This algorithm will be called ObjectOPT or OOPT
for short.

In transfering this description of optimization to
mathematical terms, the following optimization criteriaK
are used. All criteria have global minima, zero if possible.
If we assume that all objects at the end of the LRU stack
have the same probability of a future access, the probabil-
ity for a hit remains highest if only a small numbern of
objects have to be replaced. Replacing a single object is
best. The resulting criteriaKn is then given by

Kn = n� 1 (10)

If a total sizesrep has to be freed by replacement, it is best
if the sum of replaced objects sizes is equal tosrep, or

Ks =

nX

i=1

si � srep (11)

Under the OPT algorithm, objects with the farthest future
reference will be removed. For OOPT the sum of differ-
ences to the farthest referencermax has to be minimal.

Kr =
1

n(n+ 1)

nX

i=1

(rmax � ri + 1)�
1

2
(12)

The reference criteriaKr is scaled by a factor1=(n2+n)
to keep it independent of the number of objectsn. This

ensures that all criteria are orthogonal and a weighting
functionW can be defined that is a simple sum of all cri-
teria functionsK. The use of orthogonal functions is im-
portant for two reasons. The first reason is that criteria
can be selected independently to influence replacement
behavior (see also the note at the end of this section). The
second reason comes into play when optimization is used
to determine the constantsc, as orthogonal functions will
allow the identification of criteria influencing optimal re-
placement. By applying a constantc to every criteria, the
influence of criteria on the weighting function can be ad-
justed.

W = cnKn + csKs + crKr (13)

To decide which objects are to be replaced, OOPT has to
apply the weighting functionW to every possible combi-
nation of cache objects. The combination with the small-
estW will then be replaced. Givenp cache objects, mean-
ing 2p possible combinations, it is obvious that algorithm
runtime may well exceed the researcher’s lifetime. So
a limitation of the number of combinations is necessary.
Another point is that OOPT replacement depends on the
setting of constantsc, and it does not represent a single
optimal replacement algorithm, in contrast to OPT. This
clearly outlines the problems we are faced using multiple
replacement criteria.

Based on the improvements achieved using OOPT
replacement, the above techniques were used to build the
ObjectLRU (OLRU) replacement algorithm. Since OOPT
is an offline algorithm, the OLRU design requires addi-
tional runtime issues be taken into account. Furthermore,
additional replacement criteria are introduced to increase
flexibility and to prove the extensibility of the algorithm.
As with OOPT, OLRU replacement is based on using the
weighting functionW . Two additional replacement crite-
ria are introduced with OLRU. First, the positionp in the
replacement stack is used forKp

Kp =
1

n(n+ 1)

nX

i=1

(pmax � pi + 1)�
1

2
(14)

As can be seen from equation 14 the position criterion
closely resembles the reference criterion of equation 12.
In fact, the position criterion is a weakened reference cri-
terion, as position is a relative and reference an absolute
criteria. So usingKp prevents objects from getting older.



133

SinceKp andKr are not orthogonal, only one of them
should be used in actual replacement. This is done by set-
ting eithercp or cr to zero. The second new criterion is
costKk. Cost should be seen as a more abstract crite-
rion to describe object properties that depend on utiliza-
tion of system resources. In the case of an HSM system,
and therefore in the remainder of this paper, cost shall be
considered the time between request and availability of
a cache object. The specific feature distinguishing cost
from all other criteria is the fact that cost will change ev-
ery time an object is accessed, depending on actual system
usage. Cost is not a property of the cache object itself, but
of the state of the whole HSM system.Kk is the sum of
costk of cache objects.

Kk =

nX

i=1

ki (15)

Kk is also the only criterion with its minimum not equal
to zero. The weighting function of OLRU replacement is
given by:

W = cnKn + csKs + cr Kr + ckKk + cpKp (16)

(Note: by setting allc expectcp or cr to zero, OLRU re-
placement becomes equal to LRU replacement).

2.3 Algorithm runtime

The first part of this section discussed in depth the
influence of algorithm runtime on cache performance.
To keep within the limits of unnoticed performance loss
when faced with2p possible combinations, it is necessary
that the actual number of calculated combinations be re-
duced. At this point different influences lead to a working
solution. Psychology and human memory research (see
Pitkow[5]) suggest an LRU technique using a window of
possible replacement victims. Simple considerations ex-
clude combinations if a size limit is reached, or a bet-
ter combination is already found. The requirements for
building combinations are:

� combinations are build upon a small number of cache
objects located in a window at the tail of the LRU
stack. The size of this window is determined by the
total size to be freed.

� if a combination’s total size already exceedssrep no
further cache objects are added to this combination.

� if the weighting functionW for any subcombination
is worse thanWb of the best combination, no further
cache objects are added to this combination.

� if any c is set to zero the corresponding criterion is
not calculated.

With large caches these limitations may still be insuffi-
cient to reduce the depthd of combinations. In this case,
additional techniques can be used to further reduced, so
that a maximum combination depthdmax is not exceeded.

� Fallback to LRU replacement:
Cache objects will be replaced using LRU until only
dmax objects remain for OLRU replacement.

� Overlapping subwindow replacement:
OLRU replacement occurs in a subwindow of size
dmax. Using an overlapu only dmax�u objects are
replaced;u objects are kept and used as part of the
next subwindow. This continues until enough objects
are replaced.

Because the subwindow technique applies weighting to
all objects and therefore tends to keep valuable objects
(this was shown to be true in simulations), it is the tech-
nique used within OLRU.

If using all the above techniques results in algorithm
runtime below the limit calculated in section 2.1, the de-
sign goals of this section are fulfilled by the OLRU re-
placement algorithm. By introducing the weighting func-
tion W the OLRU algorithm considers multiple object
properties and can be extended to fit different replacement
problems. The ability to adapt to different system require-
ments is based on the description of criteria for different
object properties and tuning of the weighting functionW
modifying the constantsc.

3 Optimization

With the introduction of constantsc in the weight-
ing functionW of section 2.2, we gain the ability to adapt
the replacement policies to the current state of the disk
cache. In the early design state this was done by running
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simulations (see section 4 for details) and hand-tuning the
constants to increase hit rates. This offline technique may
only be used to prove that the weighting functions are
suitable to improve cache replacement. For real applica-
tions the constants of the replacement algorithm have to
be tuned at runtime. This is achieved by utilizing genetic
algorithm to optimize constants.

3.1 Genetic Algorithm

Genetic algorithms are based on methods of evolu-
tion. They have been used in optimization since about
1975 (see Holland[9] and Goldberg[10] for details). Emu-
lating evolution, a population ofn individuals is observed
whose parameter sets are bit-string coded. After a defined
period of time, a generation, the individuals of the popula-
tion are evaluated using a fitness function. The population
is then sorted according to the resulting fitness values. Se-
lection decides which individuals are used for cross-over
of bit-strings to generate new individuals, which will re-
place the individuals with lowest fitness. Mutation of in-
dividuals is used to maintain variety in the population.

The genetic algorithm is realized by simultaneously
simulating then individuals. Although this induces an in-
creased use of computational resources, replacement ben-
efits in several ways. First, by increasing the number
of individualsn, the parameter space is spanned more
effectively. Second, after evolving over several genera-
tions, most individuals will represent a reasonable solu-
tion, which will in turn increase the probability of finding
a good solution, even with rapidly changing replacement
patterns. Third, it is possible to reserve one or more indi-
viduals for simulating fixed replacement algorithms, e.g.
LRU, so that cache performance may never fall behind the
performance of reliable algorithms.

The quality of genetic optimization depends mainly
on two factors: the fitness function and the duration be-
tween generations.

3.2 Fitness function

To get a working fitness function three goals for an
optimized replacement are defined:

� obtain a high hit rate, minimize the number of re-
placed objects

� minimize time spent in the replacement algorithm

� minimize the average cost of replaced objects

The individual goals are derived from considerations in
section 2.2. Contrary to the weighting functions, these
goals are not orthogonal, they depend heavily on each
other. This is exactly the reason why genetic algorithms
are applied. If cache performance goals were orthogo-
nal, the influence of constantsc on performance could be
looked at separately and then solved analytically. As this
is not the case, it is up to the genetic algorithm to change
parameters in a way that maximizes fitness. The terms
above are transformed to calculable termsr of the fitness
functionf . They are calculated relative to the actual pop-
ulation and scaled in the range[0 : 100]. That means if
vi is the value of individuali, vmax andvmin being the
maximum and minimum values of the population,r can
be calculated by

r = 100�
vi � vmin

vmax � vmin

(17)

The total fitnessf is the sum of all terms.

f =
X

r (18)

The influence of termsr on cache performance can be
determined by deselecting terms for simulation.

3.3 Algorithm details

The implemented genetic algorithm simulates a pop-
ulation of 32 individuals. The constantsc of section 2.2
are converted to 16-bit bit-strings, using defined offsets
and multipliers. With every generation the 8 individuals
with lowest fitness will be replaced. To generate new in-
dividuals, parents for cross-over are selected by a roulette
method. Each individual is assigned a number of slots
depending on its fitness. The fittest individual will getn
slots, while the least fit individual will get 1 slot. Then
slots for the parents are selected randomly, as is position
and length of cross-over. After cross-over is performed,
individuals are selected for mutation with a defined prob-
ability. Mutation will flip up to 16 bits at a random posi-
tion of the bit-string. Duplicate individuals produced by
cross-over or mutation will be discarded.
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As replacement time is critical to cache perfor-
mance, it is obvious that running 32 additional simula-
tions would override the benefits of improved replace-
ment. Therefore the genetic algorithm is built to be used
as a module independent of the caching algorithm. The
caching algorithm submits all access requests, with ac-
companying metadata, to the genetic algorithm and in turn
requests constantsc. With this technique it is possible to
split optimization and replacement tasks. Optimization
can even be dedicated to another machine, thus reducing
the use of system resources for the disk cache. With this
approach care has to be taken to keep metadata synchro-
nized.

4 Simulation

All results in this paper are based on cache simula-
tion. The simulation program is designed to deliver re-
liable results for cache performance without implement-
ing a complete HSM system. Cache performance gaing
is determined by hit ratehitrate and algorithm runtime
tclat given by equation 8. The obtained hit rate depends
on the replacement algorithm, cache size, and the local-
ity of reference for cache requests. Algorithm runtime
depends on algorithm coding, system computational re-
sources, and the structure of cache data and metadata. The
simulated algorithm will deliver hit rates, while the simu-
lation program will deliver algorithm runtime. To obtain
usable simulation results, several requirements must be
fulfilled:

� Replacement algorithms are completely coded and
runtime optimized.

� Modular design of replacement algorithms allows
easy simulation and optimization of the new algo-
rithm.

� Input data to simulation (requests) must resemble a
real workload.

� As system performance will be rated by read perfor-
mance, a read workload is used.

4.1 The simulation program

The internal structure of the cache will determine al-

gorithm runtime. The way to efficiently organize a disk
cache is to use a fully associate cache. Without a proper
object-address or object-ID scheme, searching amongn
cache objects will require O(n) comparisons. The simu-
lation program therefore uses an AVL-tree, as described
by Wirth[11], to store object metadata; this will guaran-
tee O(logn) search comparisons. Metadata for OLRU
cache objects consist of the object-ID, last reference, size,
pointer to data, cost and two additional pointers to build a
double-linked list realizing a LRU-stack.

As simulation need not handle file data, neither data
storage nor data transfers are coded. The cache is di-
vided into blocks to resemble block based disk storage.
Although it is likely that, for performance reasons, files
in a HSM disk cache will be stored unfragmented, the
simulated cache will distribute file data and use all avail-
able blocks. This will ensure that the replacement algo-
rithm will not interfere with file allocation issues on a real
disk. For practical reasons the number of combinations in
OOPT replacement was reduced by the means introduced
with OLRU.

The reliability of results obtained by simulating a
cache depends on the quality of request patterns used. Ar-
tifical request patterns tend to be unable to reproduce lo-
cality of reference found in real systems. So the recorded
request traces of a real file system were used, as is com-
mon in cache simulation (see Muntz[8], Miller[7] or
Smith[6]).

4.2 Input traces

The traces used are the public available traces of
the Sprite file system, as described in Hartman[12]. The
Sprite traces consist of all file system requests obtained
within a period of eight days. File system request were
recorded for a network of approximately 50 workstations.

Since the Sprite traces’ requests do not contain any
information on request cost, this information had to be
generated artificially. While no cost information is in-
cluded, each request is identified by the machine-ID of
the host that dispatched the request. For each request,
cost is calculated using data size and an assigned latency
and bandwidth depending on the machine-ID, as is shown
in table 3. Using the Sprite traces library functions, file
size for valid requests can be limited. This is used to
avoid requests for files larger than the total cache size.
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Table 3: Latency and bandwidth set for machines of the
Sprite traces

machine-ID bw [MB/s] tlat [s] device

1 - 20 5 0.1 tape

21 - 40 1 0.2 net

41 - 60 10 0.01 disk

61 - 80 2 4 MO-robot

81 - 100 5 10 tape-robot

Due to the amount of requests in the traces, the total num-
ber of requests was limited to 100 000. Recording of hits
starts when the cache fill rate reaches 90 percent to ex-
clude warm up effects.

Simulations were executed on a Pentium 166 com-
puter with 48 MB memory running Linux 2.0.33. Average
simulation runtime is 20 to 30 minutes.

4.3 Evaluating cache performance

To evaluate cache performance several metrics are
considered:

� hit rate, given by

number of hits
number of requests

(19)

� average replacement cost

cost of replaced objects
number of replaces

(20)

� replacement time

runtime spent in replacement algorithm (21)

Hit rate is the most important metric for describing cache
performance. It is clearly the most influential factor for
cache performance gain (see equation 8). The hit rate de-
scribes the ability of the replacement algorithm to adapt to
request patterns. Another metric of interest is replacement

cost. As total replacement cost increases with the number
of replaced objects, it depends strongly on the replace-
ment hit rate. Therefore, the average replacement cost
will be considered, as it describes the ability to keep costly
objects, thus conserving system resources. The third met-
ric of inerest is cache replacement time. By using equa-
tions 4 and 8, replacement time can be used to calculate
the induced performance loss.

5 Results

First of all simulations were performed using LRU
and OPT replacement algorithms, in order to become fa-
miliar with the Sprite traces. Figure 3 shows the hit rates
obtained for a cache block size of 1 kB and total cache size
ranging from 8 kB to 1 MB. The attained hit rates indi-
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Figure 3: Hit rates versus cache size for LRU and OPT
replacement algorithms

cate a high locality of reference found in the Sprite traces.
The maximum cache size was therefore limited to 1 MB.
Even though this is a small size compared to disk cache
sizes, it allows examination of principles of replacement
strategies. Improved replacement does not depend on to-
tal cache size, as only a small number of cache objects
is affected. Or, to use a metaphor from electrical engi-
neering, the information contained in an AC signal is not
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influenced by a large DC component. So the results can
be applied to large disk caches, even if the size of the sim-
ulation cache is small.

Despite higher hit rates, LRU and OPT curves can
be compared to the results of, e.g., Reed[1]. The slight
impact at a cache size of 64 kB can be seen as a result
of whole-file caching. Figure 4 shows the file size distri-
bution within the Sprite traces. While the number of files
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Figure 4: File size distribution of the Sprite traces

decreases with file size, there is a noticeable step at 64 kB.
This step will lead to increased replacement of large-sized
chunks and therefore to a lower hit rate.

To achieve an upper limit for the object-cache hit
rate, OOPT simulations were performed. Figure 5 shows
the improvement of OOPT hit rates over OPT replace-
ment. The weighting function of OOPT was tuned for the
Sprite traces by adjustingc. Compared to OPT replace-
ment improved hit rates are attained for all cache sizes.
The improvement is most evident at 64 kB cache size,
when large-sized chunks have to be replaced. In spite of
limited combination depth (see section 4.1) and a hand-
tuned weighting function, the OOPT algorithm clearly in-
creases cache performance by means of hit rate. OOPT
will be used as an upper limit for cache hit rates, if object-
cache replacement algorithms are compared.

Now that we have seen that the OOPT algorithm im-
proved offline cache replacement for real workloads, we
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Figure 5: Improvement of the OOPT replacement algo-
rithm’s hit rates over OPT replacement

can have a look at OLRU replacement to see if these im-
provements can be replicated. Figure 6 shows the hit rates
for OLRU compared to OOPT and LRU replacement. The
performance gain is obvious, although the absolute in-
crease seems to be small. If LRU replacement hit rate
is used as a lower limit, we can also calculate the im-
provement of hit rates. The resulting curves are shown
in figure 7. This figure includes the hit rates of OPT re-
placement to show that OLRU replacement algorithms
can outperform the ’former optimal’ OPT algorithm at
cache sizes of 64 kB and 128 kB. Hit rate improvements
of OLRU compared to LRU replacement range from 0.1
to 1.8 percent. OLRU replacement is most effective com-
pared to LRU if large data chunks are replaced. With these
increased hit rates we can have to look at the algorithm
runtimes of figure 8. Algorithm runtime was measured
using the gettimeofday() system call, since no other high
precision timers were available. The time resolution of
the gettimeofday() system call is below one�s, as Linux
uses the Pentium cycle counters for timing information.
The disadvantage of using the gettimeofday() system call
is that total time is measured instead of process time. Fig-
ure 8 shows the runtime distribution, giving the percent-
age of runtimes below 0.1 ms, 1 ms, 3 ms, and 5 ms. Run-
times above 5 ms were less then 0.2 percent for all cache
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Figure 6: Hit rates versus cache size for OLRU, OOPT
and LRU replacement algorithms
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Figure 7: Improvement over LRU hit rates for the OLRU
and OPT replacement algorithms

sizes. Ninety percent of all runtimes are less than 1 ms.
With cache sizes of 256 kB and higher runtimes greater
than 1 ms gain a share of up to 9 percent.

But not only hit rate can be used to estimate cache
performance. In section 4.3 further metrics were intro-
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Figure 8: Runtime distribution versus cache size for
OLRU replacement

duced, which will be considered now. Replacement time
will not affect performance, if it is kept below the limit
assumed in section 2.3. The replacement times observed
in simulations show no significant relation to changed
weighting function criteriac. This may be related to
the fact that absolute time is measured instead of process
time. The measured time will therefore include additional
system process time if the simulation program is sched-
uled by the kernel. With the current setup, replacement
time cannot be used as a metric to characterize cache per-
formance. It can, however, be used with the genetic al-
gorithm’s fitness function to trigger a penalty if a timing
limit is transgressed.

With regard to replacement cost, a strong depen-
dency between it and hit rate can be observed. The source
of this dependency is obvious: more hits mean lower re-
placement cost since fewer objects are to be replaced.
Therefore, average replacement cost was chosen as a met-
ric, to see if a more cost-efficient replacement can be
achieved, while keeping hit rates high. Figure 9 com-
pares the average cost of replaced cache objects for OLRU
and LRU algorithms. The average replacement costs for
OLRU replacement are slightly lower then for LRU re-
placement. So the OLRU algorithm not only increases hit
rates, but at the same time decreases average cost. This
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result proves that OLRU can indeed be used to improve
more than one replacement criteria.

Last but not least, we will now discuss how OLRU
replacement can be optimized using the genetic algo-
rithm. Figure 10 shows the improvement over LRU hit
rates for online optimized OLRU replacement. Though
hit rates for optimized OLRU are improved, online opti-
mized OLRU will not meet the hit rates attained by hand-
tuned OLRU. This is indicated by the following points.

� Performance will usually drop with an increased
generation period.

� Performance will decrease with cache size, meaning
a smaller number of total generations.

� For a small cache size with a large number of gener-
ations, online optimized OLRU performs as well as
hand-tuned OLRU.

All these points indicate that the number of requests gen-
erated by the Sprite traces is too small to be efficiently
used for online optimization. The first two points are
a result of a decreased number of generations and thus
less evolved solutions. Warm up effects may occur as
well. At the beginning of simulation, all solutions except
one are randomly initialized, so the number of ‘advanced’
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Figure 10: Improvement over LRU hit rates for online
optimized OLRU replacement

solutions will be limited for some generations. Despite
these restrictions, online optimization showed the ability
to adapt to Sprite traces without manual interference.

6 Conclusions and future work

The OLRU replacement algorithm introduced in this
paper proves to be an expandable, well performing re-
placement algorithm for object caches. The simulations
showed improvement of hit rates between 0.1 and 1.8 per-
cent compared to LRU replacement. Most noticeable im-
provements occur when large data chunks are replaced.
The measured replacement algorithm runtime suggests
that the influence on cache performance can be neglected,
as runtime is kept below the limit calculated for a disk
cache.

To increase the adaptiveness of the OLRU algorithm
an online optimization was introduced using a genetic al-
gorithm. The online optimized OLRU replacement shows
improvements over LRU, but performs slightly worse than
hand-tuned OLRU. The performance drop is believed to
be based on the limited number of requests available in
the Sprite traces used as simulation input. To improve
online optimization it is necessary to use more suitable
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input traces. The traces would be perfect if they included
data on object cost and system workload, as this allows
us to decide if replacement cost can be used to evaluate
cache performance by means of overall usage of system
resources.

The flexibility introduced by using a weighting func-
tion can be used to include even application induced
replacement criteria. This will allow the results of
Cao[3][4] to be integrated. To further improve cache
performance other methods, such as prefetching (see
Bennett[13]), should be considered as well.
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