
141

EuroStore
Initial Design and first Results

Martin Gasthuber (Martin.Gasthuber@desy.de)
Patrick Fuhrmann (Patrick.Fuhrmann@desy.de)

Deutsches Elektronen Synchrotron – DESY Hamburg/Germany
Duncan Roweth (duncan@quadrics.com)
Quadrics Limited – Bristol/Great Britain

Abstract
 A European consortium formed by science and industrial partners have started the EuroStore project1 to
develop and market a Hierarchical Storage Management System (HSM) together with a high performance
parallel file system (PFS). The EuroStore project aims to design and develop a high performance file
store. It will combine the features of a Hierarchical Storage Manager (HSM) with the performance of a
parallel file system to provide a system capable of meeting the requirements of the most demanding
applications in industry, commerce, and science. The few existing HSM and parallel file system products
do not fully address all the needs of the user community, and, in some cases, represent a major investment
that users are not willing to undertake. This paper will show the user requirements and outline the design
and implementation work as of today.

1 Funded by the European Commission ESPRIT PROJECT 26317

1 Introduction

The complete EuroStore project is divided into two
major components – the HSM at the bottom and the
parallel file system as its client on top. Figure 1 shows

the basic overview of the complete system. This simple
separation into two major building blocks leads to the
separation of development tasks where both, the parallel
file system and the HSM will be developed by two
different teams with minimal dependencies to each other.

IP NetworkSequential access

Parallel File system (PFS)

Hierarchical Storage Manager (HSM)

Tape DevicesDisk Devices Robotics

Figure 1: Basic component overview

142

The complete EuroStore collaboration consists of the
following companies and science institutes.

• QSW (Supercomputer - UK)
• CERN (Science - France)
• DESY (Science - Germany)
• HCSA (Space Techn. - Greece)
• Tera Foundation (Medical - Italy)
• HNMS (Met-Service - Greece)
• AMC (Medical - Greece)

DESY and QSW will be the development sites for the
HSM and parallel file system respectively. The proposed
project was approved by the European Commission and
started at March 1st, 1998 for the duration of 2 years in
the first stage.

2 Requirements

This section will describe the initial requirements
being the main and initial motivation to start the
EuroStore project, and the user requirements created in
the context of the project by CERN, Tera, HNMS and
AMC.

2.1 Initial Requirements

Both science partners (CERN and DESY) are
working in the area of High Energy Physics, where large
storage capacity and high aggregate throughput are
historically demanding requirements. For the typical
physics analysis step the basic requirement is very
simple – we just need a very big disk. This is of course
contrary to the economic situation of HEP2 labs and on
the other side not easy to realize from the technical
standpoint. Today’s storage capacity requirements are
going from several 100 TB up into the PB region (see
Shiers [1]). More demanding are the bandwidth
requirements of hundreds of megabytes per second for a
complete, random access to datasets over the complete
repository. Other demanding requirements come from
the online data logging process, which will dump new
physics raw-data from the running experiment to the
repository. In this case, the storage system must have
minimal latencies (real time behavior) and some sort of
guaranteed aggregate bandwidth, because the spooling
capacities on disks are limited and/or the online data rate
is very high.

QSW and HCSA coming from the industrial world,
have detected an increasing demand for storage
management systems in the mid and high end ranges.

2 High Energy Physics

Some sites are using backup systems in order to manage
their data, with some success. Other today available
systems (commercial or semi commercial) are
inadequate with respect to their storage management
features and capacity or are simply too expensive in the
initial and running costs. In addition, the manageability
of such systems is too complex and thus too expensive.

2.2 User Requirements

During the execution of the project the end-user
partners have to create a user requirements catalogue.
This catalogue has been revised by the development
parties and is now formally agreed. In the following I
will briefly go through these requirements highlighting
the special and extraordinary needs.

2.2.1 Scalability

Scalability needs to be divided into performance
scalability and administration scalability (effort to keep
the system up and running)

• Storage Capacity – several hundred GB up to
several PB

• Transfer Rate – hundreds of concurrent streams
with tens of megabyte per second, resulting in a
total aggregate bandwidth of several GB/sec. This
actually depends on the installed hardware
environment, but the achievable data rate should be
no less than 85% of the slowest component
involved in the data transfer.

• Number of simultaneous clients – sites like
CERN, require that the system can handle at least
1000 simultaneous clients accessing the system.
Other end-users have lower limits.

2.2.2 Architecture and Efficiency

The majority of requirements result in a network
centric architecture, allowing a very efficient and flexible
configuration on one or more heterogeneous computing
and storage systems. Storing and retrieving a dataset
should have transactional behavior and the process of
storing and retrieving should be accompanied by a set of
parameters characterizing the demand for this operations.
Some end-users require an optimized handling of small
datasets (a few KB) whereas large dataset handling in an
optimized way is not considered a major problem. Much
of the end-user interface architecture is covered by the
definition of a POSIX compliant file system.

143

2.2.3 Data and Storage Management

Identified as a mandatory feature is the ability to
organize the storage media into levels and groups, in
order to:

• define the set of media where related datasets will
be stored – building the relation between set of
volumes and users and/or dataset type.

• organize the internal HSM migration, where
datasets are moved between different set of volumes
based on administrator defined policies.

2.2.4 Real-Time Operations

This requirement comes from CERN and the
meteorological (HNMS) group in order to allow online
data dumping applications to write new data with a
contiguous high data rate. This relates to features
EuroStore implements in the PVL (Physical Volume
Library) component of the HSM.

2.2.5 System and User Administration

In order to configure and share the (often) rare
physical resources – the physical storage environment –
between different user communities with different needs
and priorities, the HSM needs to support mechanism to
partition these resources logically. In addition the HSM
shall implement priorities and some sort of pre-selected
storage devices to user groups and/or applications.

Another required feature is quotas for the primary
and secondary storage on a per user basis.

The primary administration tool should use the
WWW (HTTP) system for GUI based administration
tasks. In addition, some end-users require the ability to
use command line tools in order to run shell script based
administration tasks.

2.2.6 Reliability and Security

All end-users require a stable, robust and
continuously running system with no need to shutdown
the system in order to perform various administration
and configuration tasks. Due to the fact that many
separate processes (probably on different heterogeneous
computer systems) making up EuroStore need to talk to
each other, the network communication needs to be
secure (encrypted) and safe. The various parts of
persistent meta data shall be managed in a way that
allows easy recovery and backup operations.

2.2.7 User Support and Statistics

To help the administrative tasks, the system has to
provide a versatile range of statistical data covering all
possible internal and external operations. As usual, the

end-users require a complete and sufficient set of
documentation in order to operate the system. It should
be noted here that some end-users explicitly asked not to
try to extend or circumvent features and limitations
imposed by the underlying platform (i.e. removing
limitations of the underlying file system).

2.2.8 Import and Export Mechanism

Most end-users with an already existing Mass
Storage environment require data import and export
mechanisms to allow bulk data movement without
copying the real data. Most of this requirement relies on
an open standard for meta data which could be
transferred between different types and instances of
HSMs.

2.2.9 Hardware and Software Support

Simply said: EuroStore should run on almost all
hardware and software systems available today.

In order to run EuroStore with a wide range of
storage device types, the system shall define the proper
interfaces in order to adapt to new or different storage
devices. This is also valid for the robotics (libraries).

The media format shall be an open standard which
makes offsite access easier and keeps the administrators
happy in the case of disaster recovery activities. Disaster
recovery generates the requirement to produce self
describing storage media.

2.2.10 Operational Environment

The system shall support various existing
technologies and methods to access the data. Network
file systems shall run without modifications. All types of
database systems should run with no difference
compared to other classical environments.

In the following design description you will see
which of the above end-user requirements can be met by
the first stage of the EuroStore project. The remaining
requirements have to be targeted in a future stage of the
project or by the partner doing the commercial
exploitation.

3 Basic Abstract Design Goals

Due to the limited resources (in time and number of
developers) we had to focus our activities on key
components and functionality. The components on which
EuroStore is based on are limited to:

• the parallel file system (PFS) running on CS2
systems today

144

• current experience and know-how in building
layered and parallel file systems.

• current experience and know-how of HSM
development and usage

In order to get feedback from the end-users the
prototype is expected to be installed at CERN in March
1999.

The basic structure of EuroStore is classical and
divided into two major building blocks3 with minimal
interference. The first building block is the parallel file
system PFS, being the interface to the end-user
applications as a POSIX file system. The second building
block is the HSM managing and controlling the
secondary storage environment. The interface between
both blocks is simple and implemented as a C based API
library for the HSM used by PFS. The PFS development
site is QSW in Bristol/Great Britain and the HSM will be
developed at DESY in Hamburg/Germany. This scheme
allows a very efficient and frictionless cooperation
between the two development partners.

The project scope and resources limits the results,
so that the first stage of the EuroStore project will
concentrate on basic functions of the PFS plus HSM. The
primary implementation platform will be Sparc/Solaris,
whereas the PFS will be ported to Digital UNIX within
the scope of the project.

3.1 PFS

PFS will be extended in numerous directions to
cope with the requirements of EuroStore. The following
objectives summarize the goals:

• interface to the HSM by adding migration
features, space management and user tools to
control explicit migration

• add RAS capabilities
• enhance management and administration

capabilities
• enhance portability – test with the port to

Digital UNIX.
• evaluate and test the implementation of

software based RAID5 features
• performance enhancements

The last item will be based on the development of a
new global locking mechanism. The portability issue will
introduce some re-working to be platform independent as
much as possible.

3 as shown in figure 1

3.2 HSM

The HSM goals are described by the terms simple,
smart and efficient. The HSM needs to meet the
performance requirements but doesn’t try to support
more single stream performance than the underlying
hardware can give. This will definitely exclude support
for parallel tape access or other related techniques. The
focus is the support for hundreds of concurrent data
streams with a moderate to high data rate (depending on
network and storage hardware). The term ‘simple’
focuses on the manageability of the HSM and the scaling
of administration efforts with the size of the installation.
From the software implementation point of view, we try
to avoid dependencies on third party products as much as
possible. As of today, the only third party product
required by the HSM is the object oriented database
system for storing and managing the HSM internal meta
data. Due to the scaling requirement (which is the most
important one) the basic design of the HSM is network
centric and in line with the IEEE reference model.

4 PFS Structure

PFS is a System V layered file system. It can
basically run on any platform supporting layered file
systems and thereby manage the data distribution over
multiple nodes and disks. PFS is built out of two major
components, first, the so called map file system and
second, the underlying data file system. The map file
system stores structural information, distribution
information and file attributes. In addition the map file
system will also manage the migration state of the file
and the necessary migration meta data in order to recall
the file if requested. The data file system can be a local
(i.e. UFS) file system or a remote NFS mounted file
system. Each regular PFS file is represented by one entry
in the map file system and one or more (could be all)
entries in the data file systems, depending on the stripe
configuration. The directory structure of the PFS is
directly represented within the map file system, but the
regular files there only contain information on how to
access the stripes of the PFS files stored in the data file
systems. The directory structure of the data file systems
bears no relationship to that of the PFS; it is only there to
speed lookup on the data file systems.

4.1 Proposed changes

During the EuroStore project the directory
information on the map file system will be redistributed
on the data file systems on a per directory base. In

145

addition PFS will be enhanced by the following features
within the EuroStore project:

• support for MPI File I/O
• mmap support
• concurrency control with global lock manager
• backup and restore capabilities
• RMS integration

Figure 2 shows the new proposed structure of the
PFS. It eliminates the separate map file system by using

the first component file system for the directory structure
and storing mapping information in a separate array
striped over all the component file systems. The first
component file system looks rather like the map file
system of old PFS. However a regular file found here is
empty, unless the corresponding PFS file has data striped
on this component file system. The inode number of the
file is used to index into the map array. The mapping
information found there describes how the PFS file is
striped over the component file systems, and the same
inode number is used find the remaining data files in the
other component file systems.

With this scheme, a PFS file requires a maximum
of one inode on each component file system. The space
overhead is the fixed at approximately 128 bytes per PFS
file; the entry in the map array and I/O to read and
update the mapping information is distributed over all
component file systems.

Figure 3 shows the layers of and around PFS. Elan
is the name of the high speed low latency network which
can be used to built MPP architectures and the parallel
file system PFS.

4.2 Administration

The administration tasks on the PFS will be
performed using a JAVA/Applet based environment,
allowing all JAVA enabled WEB-browsers to be used
for this purpose.

4.3 HSM Integration

The HSM will provide a simple C based API
library in order to create, read and remove files in the
HSM. PFS will be added by an external process using
this API, the so called migration daemon. This process
receives messages from the kernel level PFS code and
starts and controls the data transfer from/to the HSM.
The initial data transport vehicle will be a TCP stream,
whereas the API will also allow other transport
mechanism in the future. In the first stage of the
EuroStore project the HSM API will only support
sequential access of complete files. Again – Future
stages of the EuroStore project will allow partial reads
(specifying offset and length of data to read).

5 HSM

The HSM will have a network centric design
following the IEEE reference model. The complete HSM
service is built out of sub-services implemented as
separate processes or threads running on the same or
different heterogeneous platforms. The communication

Elan driver

Cluster membership

Kernel messaging

Elan-IP Elan-FS

PFS

Migrate
Restore

GLM

Figure 3: PFS layersComponent 0
Data files accessed by

“normal” directory
structure

Components 1 … n-1
Data files accessed by “indexed”

directory structure

Map Array
Striped over all component file systems

Figure 2: PFS basic overview

1

146

Robot

Robot

��Client

PUT / GET

S
N

M
P

Enterprise
Network

Management
Tool

Inter-
active
ssh

Browser/
Applet GUI

based
Admin.

ss
h

ssh

ss
h

ss
h

ssh

ssh

ss
h

ss
h

ss
h

ssh

ssh

ssh

ssh

ssh

ss
h

ss
h

(P
)

SNM
P (P)

(P)

Door

ss
h

untrusteduntrusted

BFS + SS + DB

 BIG BUBBLE
(highly multithreaded)

PVL (P)

Mover

Mover

Mover

PVR

PVR

PVR

ss
h

Adm
in

Doo
r

Figure 4: HSM Structure

147

mechanism between all these sub-services is done with a
secure message passing environment (called Cell-
Communication). In order to support heterogeneous
platforms and to implement the HSM in an object
oriented fashion we select JAVA as the implementation
language. Only the PVR, which will be highly library
vendor specific, and parts of the Mover code will use C
code. The Cell-Communication environment allows the
secure communication of pure C code processes with
JAVA virtual machines. Of course, this combination can
not exchange JAVA objects and uses only ASCII strings
to avoid problems using heterogeneous platforms. Figure
4 shows the overall design of the HSM. Not shown are
the possible configuration options in order to achieve the
appropriate scaling effects.

5.1 Internal Object Separation

The HSM supports the notion of Storage Groups to
allow a single Store to be divided into several sub-
domains containing specific user groups and/or dataset
types. The Store represents the root of the internal HSM
object structure, whereas the Store is built out of Storage
Groups. The Storage Group is further subdivided into
Volume Sets which act as the source and destination for
the HSM internal migration of datasets. The Volume Set
is itself built out of Volume Containers defining the set
of physical volumes belonging to a single physical
library. To describe and control the internal HSM
migration there exists an object, called Migration Path,
which encloses the migration condition and the
source/destination Volume Set. Each dataset stored in the
HSM has a link to an existing Migration Path describing
the dataset migration characteristics.

5.2 Interfaces

The HSM provides a simple service to the PFS (or
other clients), namely storing and retrieving complete
datasets (or files in the PFS nomenclature) sequentially.
A future version of the EuroStore HSM might support
read operations on parts of datasets (partial reads). This
simplicity is mirrored in the data access API in that it
contains only 3 functions: create/write a dataset, read an
existing dataset and remove an existing dataset. In
addition, the API will support simple query operations
(ask for all files on a given volume, etc.) for its clients
(like PFS). The data access API is implemented as a C
based thread safe library.

5.3 Structure of HSM components

Figure 4 shows the EuroStore HSM components
and how they interact. The big gray shaded area
enclosing the central components identifies the trusted or
authenticated area. All messages inside are pre-
authenticated by the components located on the border
line. These components, namely the Door, Admin Door
and the SNMP authenticate incoming messages and
forward them to the final destination component. All the
ssh labeled (red) arrows indicate a secure (ssh based)
network communication path. In the following I will
briefly describe the functions implemented by the HSM
components in Figure 4.

5.3.1 Door – Admin Door – SNMP

These components are agents and the only direct
network reachable components in the system. All
messages from the outside world will be passed via these
components (processes). Their primary function is to
authenticate users/hosts and set up a secure channel
between both worlds. In addition the SNMP components
will translate SNMP messages into internal messages.
The SNMP component allows any enterprise network
management tool to query the HSM. It also supports
SNMP traps. The other two Door components are doing
minimal translation of messages between the internal and
the external world. The separation between the main
Door and the Admin Door is made in order to avoid
problems reaching the system in the case of heavy load
on the main Door. The main Door will have a separate
TCP connection for each client contacting the HSM, so
is a possible candidate for running into TCP connection
limits induced by the underlying operating system.
Beside this, both Doors implement similar functions.

5.3.2 BB – Big Bubble

The BB is the central component representing the
instance of a Store. It implements the functions of a
bitfile server (BFS) and storage server (SS). To a very
high degree, both server components are mainly database
operations. For every new request entering the system,
BB will start a new thread which performs all necessary
tasks before the request is being forwarded to the PVL
and the thread dies (stops).

5.3.3 PVL/PVR

The PVL/PVR components will implement the
classical functions outlined in the IEEE reference model.
In order to cope with the user requirements the PVL
contains numerous features not available in many other
implementations.

148

• priorities – specified by the client application.
The priorities age over time and aging stops at
a configurable limit. This allows the
administrator to configure the HSM in a way to
handle more important requests with a minimal
latency.

• Configurable number of write operations on a
given Volume Set allowing the administrator to
choose between two excluding characteristics:
• datasets will be in strict chronological

order on the storage media, but the number
of concurrent write operations to that
Volume set is limited to one.

• the PVL will pick any suitable physical
media from the Volume Set and allow
write operations. This PVL selection is
based on the current situation
(mounted/allocated drives and media) of
its managed libraries and drives. This
option allows concurrent writes but
datasets won’t be in chronological order
on the media.

• Regular expressions assigned to a storage
device (drive). The PVL will manage a defined
set of variables (most of them are request
dependent) which can be used to build the
regular expression. The expression will be
evaluated by the PVL each time a new drive
scheduling sequence starts. This feature allows
a very flexible way to pre-select fixed drives
for a given class of requests, i.e., allow only
write requests from a given hostname and user
on the assigned drive.

• Virtual library partitioning allows partitioning
a single resource (the library with the attached
drives) among all served clients (Stores). This
is in contrast to the static behavior of the
regular expression option, because no explicit
drive will be partitioned among clients versus
saying “30% of the total resources are
guaranteed for the client”.

5.3.4 Mover

The Mover’s task is to contact the client (through a
dedicated connection, which must not be a TCP
connection) and send or receive the data. The Mover will
also accept commands from the PVL to execute
load/unload and other similar operations.

5.4 Administration

There are two ways to achieve administration task
connections. The first one allows a standard interactive
ssh application to log into the Admin Door. The Admin
Door implements a shell like interface to execute simple
ASCII command line operations. The second option use
the WEB (HTTPS) interface to send secure (signed)
JAVA/Applet code to the client JAVA enabled browser.
The Applet code connects to the Admin Door using the
ssh protocol.

5.5 Scaling Options – Configuration

The HSM allows a wide range of configurations in
order to support the wide range of end-user site
requirements. The minimum configuration consists of a
Door – BB – PVL – PVR – Mover and Admin Door
whereas the resource consumption of all these HSM
components should be low enough to allow them to run
on the same system. For larger end-user environments
the HSM can be scaled up in the following ways:

• A single Door can serve one or more BB’s
(representing the Store instance).

• A single PVL can serve one or more BB’s.
• A single BB can use one or more PVL’s.
• A single PVL can manage one or more

different libraries served by the appropriate
PVR.

• Movers can be installed appropriate to the
number of available storage devices.

• A single Mover can be used by one or more
BB’s.

• A single Admin-Door and SNMP process can
serve the complete domain (all BB’s, PVL’s,
PVR’s, etc. in the complete domain of the end-
user (i.e. a laboratory)

These configuration possibilities shall allow the
administrators to configure the HSM according to their
storage requirements and available hardware.

5.6 Secure Message Passing environment

Developed as a pre EuroStore component, the
secure message passing environment, called Cell-
Communication, is the basis for all interprocess message
communication. The system implements secure network
channels using the open SSH protocol allowing other
SSH based applications to connect to the HSM
components. The Cell Communication encloses the
following features:

• asynchronous message passing (JAVA objects)
• encryption through network paths

149

• key exchange and connection initialization
based on the SSH protocol

• ciphers available: DES/IDEA/BLOWFISH
• 100% JAVA code
• source routing
• routing scheme similar to IP on UNIX systems
• global routing management module based on

well known Cell addresses (broker)
• addressing by name
• sender buffering to overcome small network

glitches
• modules for

• ssh login (interactive ssh application)
• telnet login
• SNMP

In addition, the C based client code allows standard
C based applications to connect to the JAVA world to
send ASCII messages (not JAVA objects in the case of a
JAVA to JAVA message).

6 Conclusions

We believe that our approach, combining a parallel
file system, extended by migration features, with a
lightweight but highly scalable HSM, fulfills the
requirements of scientific and commercial applications
of today and tomorrow. The short project lifetime is
possible because the parallel file system is well
understood, and the existence of the object oriented
JAVA environment allows fast, reliable new
implementation schemes.

1 Building a Database for the LHC – the Exabyte
Challenge, Jamie Shiers CERN – Proceedings 6. NASA
and 15 IEEE Mass Storage conference March 1998

