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Abstract

When the BaBar experiment at the Stanford
Linear Accelerator Center startsin April 1999, it
will generate approximately 200TB/year of data
at arate of 10MB/sec for 10 years. A mere six
years |later, CERN, the European Laboratory for
Particle Physics, will start an experiment whose
data storage requirements are two orders of mag-
nitude larger.

In both experiments, all of the data will re-
side in Objectivity databases accessible viathe
Advanced Multi-threaded Server (AMS). The
guantity and rate at which the datais produced
reguires the use of a high performance hierarchi-
cal mass storage system in place of a standard
Unix file system. Furthermore, the distributed
nature of the experiment, involving scientists
from 80 Institutionsin 10 countries, also requires
an extended security infrastructure not com-
monly found in standard Unix file systems.

The combination of challenges that must be
overcome in order to effectively deal witha
multi-petabyte object oriented database is sub-
stantial. Our particular approach marries an op-
timized Unix file system with an industrial-
strength Mass Storage System. This paper de-
scribes what we had to do to create a robust and
uniform system based on these components.

I ntroduction

The BaBar experiment at the Stanford Lin-
ear Accelerator Center, SLAC
(http://www.slac.stanford.edu/), is designed to
perform a high precision investigation of the
decays of the B-meson produced from electron-
positron interactions. When the experiment starts
in April 1999, it will generate approximately
200TB/year of data at arate of 10MB/sec for 10
years. Specifically, 100,000 object oriented
2GB-sized databases are created each year. Once
created, the data are rarely updated and serve as
areference for further analysis. The quantity and
rate at which the data are produced, let alone
analyzed, requires the use of a high performance

CERN

scalable storage system. Constructing such a
system, unfortunately, still remains elusive.
While hardware has progressed with higher
media densities that grow at an almost exponen-
tial rate, transfer ratesincrease almost linearly.
This quickly gives rise to the ability to storein-
creasing amounts of data with an effectively de-
creasing amount of time in which to processit.
Software solutions to this dilemma have been

devised. For instance, IBM’s High Performance
Storage System, HPSS (see Figure 1 or refer to

http://www5.clearlake.ibm.com:6001/), allows

striped (i.e., parallel) point-to-point data transfer
for any supported media. However, when such
solutions are applied to tape media, they become
overly complex, troublesome to administer, have

limited error recovery, and are costly to scale.
These problems practically limit tape transfer

rates to single controller speeds. Thus, the Babar
experiment is not capacity challenged, it is speed

challenged.

This situation becomes even more problem-
atic as larger experiments are being planned. For
instance, CERN (http://www.cern.ch/), the Euro-
pean Laboratory for Particle Physics, is currently

building a new accelerator, the Large Hadron
Collider (LHC). A number of physics experi-

ments at the LHC are scheduled to start taking
production data in 2005. The data taking period
is expected to last 15 or more years, with data
rates ranging from 100MB to 1.5GB per second,
depending on the experiment. The total collected

data sample will be in 100PB range.

Improving Access Time

Our approach to solving this problem is to

implement an architecture that can:
1. store unlimited amount of data,
2. optimally transfer large and small
blocks of data,
3. dynamically load balance among n-
servers, and
4. replicate databases on demand.
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Figure 1: High Performance Storage System

Unlimited Data Storage

The notion of storing unlimited amount of
datais not new. Many Mass Storage Systems are
available to do this. We chose IBM’s High Per-
formance Storage System (HPSS), an industrial
strength system using a secure infrastructure and
a fully transactional database for storing all sys-
tem meta-data to prevent any undetected loss of
data. This is critical for experiments such as ours
where the data can never be regenerated.

HPSS is also unique in that it provides
point-to-point data transfer between a source and
a sink which can be a device or an application, as
pictured in figure 1. The main advantage of such
an architecture is the minimization of the number
of nodes that exist between the source and sink;
thus maximizing the transfer rate. However, be-
cause the control functions have been separated
from the data transfer functions, it can be ex-
pected that there is a substantial latency in start-
ing any individual data transfer operation. In-
deed, this is the case with HPSS which excels
with large transfer units (>100KB) but suffers
with small transfer units (e.g., <100KB), as
shown in figure 2.
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Database Access with HPSS

The Objectivity database employs a spe-
cialized data server daemon (AMS) that reads
database pages on remote servers and transfers
them to the client application. The AMS uses a
set of standard POSIX.1 filesystem 1/O routines
to perform operations on directories (open, read,
close) and database files (create, open, read,
write, truncate, rename, etc.). Hence, the AMS
assumes that it has access to a standard POSIX-
compliant filesystem.

On the other side, HPSS offers several user
interfaces, out of which the following could be
used by an ODBMS: C language API, FTP/PFTP
(parallel FTP) and NFS V2. However, the main
purpose of the NFS interface is to provide access
to HPSS name space and bitfile data and is not
efficient for data transfer. This leaves the C lan-
guage API and PFTP as the candidates for inte-
grating Objectivity/DB and HPSS.

One possibility would be to provide HPSS
access via the filesystem’s vnode layer. We re-
jected this option because:

1. It would make us sensitive to operating sys-
tem internals,

2. It would not solve the poor small block
transfer time, and

3. It would not solve remote procedure call
timeout problems when a file had to be
brought back from tape.

A comprehensive solution would require
that AMS provide dedicated support to a MSS as
well as provide support to enhance transfer rates.
Consequently, we approached Objectivity, Inc to
provide a customized AMS. Together, we pro-
vided MSS support by:



exposing theiinternal filesystem layer®,

load balancing protocol,

RPC timeout extension protocol,

Usage hints protocol, and

. Security protocol.

While security isnot performance related, itisan
often overlooked aspect whose lack renders any
performance improvements moot.

The ability to expose the filesystem layer
allowed usto link any arbitrary filesystem, in-
cluding HPSS, with the AMS, as shown in figure
3 where the oofs layer gluesthe AMS to HPSS.
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Figure3: Thelayered AMS

However, figure 2 shows that the optimal
data transfer size of HPSS does not match that of
Objectivity/DB. The database requests datain
pages or groups of pages, but a single transfer
does not exceed 64K B (the vertical linein figure
2). On the other hand, HPSS achieves best per-
formance when transferring megabytes of datain
asingle request or when utilizing data streaming
techniques. The lower performance for small
data blocks can be explained by the overhead
associated with every read and write regquest,
when different HPSS components need to be
contacted. For example, asingle I/O request in-
volves the Bitfile Server, Storage Sever and than
aData Mover, which finally opens a dedicated
network connection to the client and does the
actual datatransfer. In case of data streaming the
connection is kept open all the time and there is
no extra overhead.
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Figure 4: Veritasfilesystem performance

! Known as the Objectivity Open File System (oofs) inter-
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In fact, we considered providing special
code in the oofs layer in order to group /O re-
quest and perform larger data transfers. How-
ever, the pattern of read and write calls executed
by AMSiis closer to random access then to se-
quential, which makes the implementation diffi-
cult and does not guarantee significantly im-
proved performance. Also, high performance for
small block transfersis readily achievable with
certain file systems, as shown in figure 4 for a5
disk RAID 5 configuration with the Veritas file-
system (http://www.veritas.com/).

Our solution to this problem was, in some
ways, quite obvious. We simply married afile
system whose transfer characteristics were opti-
mized for small block transfers yet was capable
of handling large blocks with HPSS, as shown in
figure 5. The ooss (Objectivity Oriented Staging
System) layer provides access to filesin the local
filesystem, in the same way asthe standard AMS
does. But if the fileis not found in the local file-
system, it is copied to the local filesystem (i.e.,
staged) from HPSS.
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Figure5: Extending oofYHPSS

Since the ooss layer effectively glues ana-
tive filesystem with HPSS, it is in the best posi-
tion to optimize the use of each system. Itisalso
the natural place to implement algorithmic ori-
ented changes that can substantially improve
performance.

Dynamic L oad Balancing

Dynamic load balancing has two compo-
nentsin out design:
1. Directing clientsto the least |oaded
server and
2. Creating more data access paths via
replication, as needed.
These mechanisms are dynamic because client-
server associations and replication decisions are
made in real time based on currently available
load information and policy.

face.



Figure 6: Dynamic Load Balancing

Dynamic client-server associations are pic-
tured in figure 6. The ability to direct aclient to
an arbitrary server not only provides aload-
balancing mechanism, it also automatically in-
creases the number of datatransfer paths as the
load increases.

The mechanism to implement dynamic load
balancing is profoundly ssmple. 1/O requests are
directed to a control server (i.e., controller). The
controller merely redirects the request to the least
loaded server. Future I/O requests continue to be
sent to the chosen server until that server redi-
rects the request. Redirection can be used to bal-
ance the load using one or more of the following
criteria, among others:

e Number of clients,

« Availablereal memory,

« Availabledisk space,

¢ Network link performance, and
» Servicelevel agreements.

However, redirection implicitly assumes that
each server contains an exact copy of al the
data. Given the amount of data involved, this
would not be practical. Instead, the controller
redirects requests only to servers that are known
to contain the requested data. Thisis usually a
subset of all available servers. Should the load
increase beyond the capacity of the current set of
servers for some piece of data, the controller
automatically orchestrates a replication operation
allowing the load to be spread across an addi-
tional server, effectively providing alarger pipe
to the data. When the load falls below a certain
threshold, the replica can be eliminated to reduce
disk space contention. Thus, redirection can also
be used to temporarily increase transfer rate ca-
pacity when the need arises.

Dynamic replication can be easily imple-
mented because HPSS provides a common re-
pository for al of the data. The mere act of di-
recting arequest to a database server hasthe side
effect of replicating the data associated with that
request. Thisis because the ooss layer automati-
cally stagesthe dataif it is not present in the
local file system. This greatly simplifies the
Controller's bookkeeping and naturally distrib-

172

utes functionality. In order to maintain proper
replicas, the Controller makes sure that all up-
date requests are directed to the master
read/write copy. When all updates are com-
pleted, that copy is made available in read-only
form to potentially all other servers by simply
migrating the database back into HPSS. This is
possible because our experimental data is largely
read-only and updates to the databases that can
be replicated are strictly controlled.

Dealing with latency

High latency is a common part of all Mass
Storage Designs that include offline storage (e.g.,
tape). Unfortunately, it is one least likely to be
dealt with in systems that expect all of the data to
be online. The usual problem is that the re-
questor times out waiting for the data and as-
sumes that the request failed. The request may be
retried, but more likely than not, the request will
abort.

We dealt with the issue by designing a defer
protocol into the AMS. For instance, when the
ooss finds that it must copy data into the local
filesystem from HPSS, it determines the length
of time that it will take to make the file available
and reports the time back to the client via the
AMS. This allows the originating client to wait
that amount of time and then re-issue the request.
This eliminates one of the more vexing problems
introduced by “back-door” migration schemes —
client timeouts and retransmission storms. This
mechanism is called the Deferred Request Proto-
col.

Client supplied usage hints

Another important feature that has been
added is the ability to allow a client to send hints
to the oofs as well as the ooss layers. These hints
can be anything that the implementation can un-
derstand such as processing options (e.g., se-
guential or random), clustering and parallel-
staging hints. Properly used hints can substan-
tially reduce overall processing time. This
mechanism is called the Opaque Information
Protocol in that all information generated by the
client is simply relayed without inspection or
change to the layer that understands the informa-
tion.

Security

Finally, given that the BaBar and LHC col-
laborations are wide-spread, security became a



critical requirement. It matters little if one mini-
mizes processing time only to keep spending it to
recreate hacked data. The AMS architecture al-
lowed us to implement a general authentication
scheme that can be based on most existing secu-
rity protocols (e.g., Kerebros, PGP, etc.). The
authentication scheme allows us to implement
appropriate authorization levels to maintain the
safety and integrity of the databases. The mecha
nism is called Generic Authentication Protocol.

CERN Configuration

Theinitia intention wasto use the HPSS
system at CERN for managing both the tertiary
storage and all associated disks. The disks would
form the highest layer of the migration hierarchy,
where files would not reside permanently but
only when they are opened by an application.
The AMS was to access the files via the POSI X
compliant HPSS programming API.

After our experience with the first prototype
of the interface, the decision was taken to re-
move a large part of the disks from the control of
HPSS and let AM S access them directly. In such
configuration, when client application triesto
open a database, the database file is imported
from tape and stored in the local disk pool. All
subsequent 1/0O operations on this database file
can be performed by AMS with the full speed of
the local filesystem.

Of course, the control over the disk pool
comes with all the associated disk space man-
agement issues. The interface must care for
staging in files, migrating them back to tape and
purging when there is not enough free spacein
the pool (hence the name: staging interface). For
this purpose a new module has been added to the
interface - migration daemon. The daemon peri-
odically scans the disk pool and copies new or
modified filesinto HPSS. When the amount of
free disk space falls below a predefined thresh-
old, the migrated files are deleted from the pool.
Filelocking is used to synchronize operations of
AMS and the migration daemon.

The staging interface used at CERN is
linked with the Remote File I/O library (RFIO).
RFIO is a package developed at CERN and used
by the HEP community. Its main purpose isto
provide all standard file 1/O operations on remote
files, with better performance than NFS V2 does
and without directory mounting. RFIO effec-
tively replaces the HPSS library in the interface.
This allows deployment on all major UNIX plat-
forms, regardless if they are supported by HPSS
or DCE, required by HPSS, which is of impor-
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tance at CERN with its heterogenous computing
environment. The HPSS servers at CERN run the
RFIO daemon, which translates RFIO requests
into HPSS API calls and arranges for data trans-
fer connections. RFIO makes full use of HPSS
parallel, point-to-point data transfer capabilities,
and no performance degradation has been ob-

RFCP

RFIO copy)

Figure 7. AM S staging using RFIO & HPSS

served. Figure 7 presents logical view of
AMS/HPSS interface using RFIO to communi-
cate with the server and initiate data transfers.
Theterabyte database test

Thefirst practical large-scaletest of all the
involved components has started in November
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Figure 8: Configuration for 1TB Database Test

98. We are planning to store 1TB of datain ob-
ject database format in HPSS using the described
AMS/HPSS staging interface. The primary goal
isto prove the functionality and capacity of the
system, with performance as a secondary goal .
The foreseen fill rate is between 1 and 2MB/s,
which should allow to store 1TB in about 2
weeks. The configuration of the test systemis
described on Figure 8.



The experience gained during the 1TB test
should allow CERN to move into the hundred-
terabyte region in year 1999 and into the pe-
tabyte region later. More attention will be given
to the data rates, which should grow to 35MB/s
in 1999 and to 100MB/s and more in 2005. As
both HPSS and Objectivity/DB has been sepa-
rately shown to sustain over 30MB/s data rates,
thistask is certainly achievable.

SLAC Configuration

We approached the notion of having HPSS
manage all aspects of the storage system with
great skepticism. Based on previous experience,
we knew that HPSS was unlikely to perform well
with small transfer units. However, our first task
was to implement the oofs and show that AMS
could, in fact, interface with other complex file-
systems. Theinitial proof of concept used the
HPSS POSIX API asthe filesystem.interface. As
expected, this marriage of AMS and HPSS was a
poor performer.

Our next step was to implement a system
that used afast local cache (i.e., Veritasfilsys-
tem) with HPSS providing tertiary storage (i.e.,
Redwood tapes). We decided to use pftp asthe
transfer protocol between the cache and HPSS.
The decision was based on our need to quickly
develop aworking prototype. Figure 9 illustrates
the architecture of this design.
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Figure 9: AM S staging using PFTP & HPSS
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In the design, all AMS data operations go
through the oofs layer. The migrating filesystem
isimplemented in the ooss layer which oofs
uses. When afileis opened, if it does not exist in
the local filesystem, ooss stages in the file from
tape using pftp. A separate migration process
works independently to maintain a target amount
of free space in the local filesystem. Modified
files are migrated back to tape and |east recently
used files are purged. Files can also be staged or
migrated on demand and purged based on a par-
ticular time and date.
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The system uses the HPSS Name Server as
the authoritative file catalog. Indeed, the only
filesthat exist in the local filesystem are those
that are being actively used. This meant that we
had to implement a special gateway processto
issue HPSS commands from aremote host (i.e.,
the AMS). These commands are typical meta-
data oriented operations such as name lookup,
rename, erase, etc.

Figure 10 shows our test configuration. It
consists of asingle AMS with a900GB local
cache and a single tape server to which two
Redwood drives have been attached.
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Figure 10: Configuration for 1TB Database Test

We used this configuration to create over
4,000 databases equaling approximately 4TB of
data. What impressed us was the stability and
balance of this configuration. We suffered no
system-related failures and transfer rates were
limited by network speed. Consequently, we
could only achieve an aggregate transfer rate of
approximately 9.8MB/Sec. Even at the maxi-
mum possible database creation rate, the migra-
tion process had little difficulty in keeping up
with the system and maintaining adequate free
space.

Our choice of pftp proved to be fortuitous.
Since the protocol has been widely implemented,
the system is essentially independent of the mass
storage system being used. This allowed usto
create similar configurations for other laborato-
riesthat did not have HPSS, as well as allowed
usto bein aposition to switch mass storage ven-
dors without impacting the system.

Of course, we knew that the production
system needed to be substantially faster to han-
dle the expected 1 TB/day databases creation rate
aswell asthe 1-2TB/day anaysisrate (i.e.,, 3TB
of data moved per day). Our approach was to
further distribute the hardware and upgrade the
network. A production AMS would serve both as
a database server as well as an HPSS data mover,
albeit with a ftp-like interface for implementa-
tion independence. Figure 11 illustrates this ar-
chitecture.



In the figure, each AMS server has two or
more tape drives attached to it. Thus, when a
stage-in or stage-out operation is needed, data
can be transferred from local disk to local tape
using shared memory instead of the network;
providing the highest possible transfer rate. The
system is also self-correcting. Since all of the
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Figure 11: AM S gtaging with a local tapes

tape drives are controlled by HPSS, should an
AMS need more tape resources than it has lo-
cally available, additional tape drives, attached to
other AM S hosts or perhaps dedicated tape serv-
ers, can be transparently used.

The system is also highly scalable since we
can add as many of these AMS/Mover nodes as
needed to handle the load. Dynamic load bal-
ancing allows us to easily spread the load across
multiple hosts as well as recover from failed
hosts. Our production configuration for the first
year of operation is shown in Figure 12.

IBM RS6000
—

Figure 12: 1% Year Production Configuration

In this configuration, there are four
AMS/Mover hosts providing approximately 4TB
of disk cache. These hosts can communicate with
each other as well astheir clients through gigabit
switched ethernet. This configuration provides
maximum flexibility, scalability, and perform-
ance achievable at modest cost increments. Con-
sequently, we feel that we have finally addressed
the BaBar speed challenge.
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