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Abstract

The supercomputer center, digital library, and archi-
val storage communities have common persistent archival

storage requirements. Each of these communities is
building software infrastructure to organize and store

large collections of data. An emerging common require-
ment is the ability to maintain data collections for long

periods of time. The challenge is to maintain the ability to

discover, access, and display digital objects that are stored
within the archive, while the technology used to manage

the archive evolves. We propose an approach based upon
the storage of the digital objects that comprise the collec-

tion, augmented with the meta-data attributes needed to
dynamically re-create the data collection. This approach

builds upon the technology needed to support extensible

database schema, which in turn enables the creation of
data-handling systems that support replicated data sets

within federated archives.

I. Introduction

Archival storage systems provide support for the
long-term storage of digital objects [1,2]. Each object is

typically owned and managed by a researcher who indi-

vidually deposits the data set into the archive using Unix
pathname semantics. The system works well for storing

data sets, but provides no support for managing the in-
formation needed to interpret or discover archived data

sets. Current trends in data and information generation are
leading to a paradigm shift in storing and manipulating

data sets. This is driven by the creation of large collec-

tions of data (digital sky surveys will access over 2 billion
images) and collections of large data objects (a brain

image in a neuroscience database will eventually be as
large as a terabyte) [3,4]. For scientific disciplines to

survive under the onslaught of massive data loads, an
efficient infrastructure needs to be developed to provide

automated means of information ingestion, management,

querying and access by future computations. Hence, one

needs to consider a system that not only is used for ar-
chiving digital objects, but also provides mechanisms for

knowledge discovery and efficient access to the holdings
in the system [5,6,7].

Information infrastructure focuses on the relation-

ship of a digital object with other data sets from the same
discipline or collection. From this perspective, data sets

are only useful within the context of an encompassing
data collection. Data collections are created by organizing

data through the identification of common attributes. The
common attributes can be used to create classes of objects

for representation in object-oriented databases [7] or can

be used to develop schema that define the relationship
between objects in relational databases. We have chosen

to work with object-relational database management sys-
tems that have been tightly coupled to an archival storage

system [8] and thus organize common attributes as meta-

data within a schema.

However, the schema itself contains information

content related to the clustering of attributes into tables,
the identification keys that are used to correlate tables, the

relational joins that are permitted across the attributes,

and the semantics that are used to assign meaning to at-
tributes. This schema meta-data must be quantified to

support publication of the collection organization, to
support extension of the schema through the addition of

new attributes, and to support federation of collections.

Hence, information about the organization of a collection
is as important as information about digital objects within

the collection.

Persistent archives are based upon the concept that
both the original digital objects and the information re-

quired to assemble the digital objects into a data collec-
tion must be archived. Digital objects are not archived as

stand-alone entities but, instead, are archived as members
of a digital data collection. Persistence is demonstrated by

dynamically building the data collection from the individ-

ual data objects stored in the archive, dynamically creat-
ing the relational joins needed to discover information
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within the data collection, and dynamically constructing
the presentation interface for the digital objects.

The infrastructure that enables collection based per-
sistent archives can also be used to federate archival stor-

age systems. The ability to migrate a data collection onto
new technology needs the same information as that re-

quired to federate two collections. Both problems need

the ability to interpret how a collection is organized and
the ability to dynamically build an information discovery

interface into the new collection. A persistent collection
can be viewed as the integration of two collections in time

(the same collection instantiated on two different sets of
technology). A federated collection can be viewed as the

integration of two collections in space. In this paper we

present the technology that has been implemented to
achieve both goals.

II. Information Architecture

The National Partnership for Advanced Computa-
tional Infrastructure (a National Science Foundation-

funded project led by the San Diego Supercomputer Cen-

ter) is developing an information architecture to support
the creation of scientific data collections. The technolo-

gies that are available to build an information infrastruc-
ture are:

•  Archives—to manage data sets distributed across

tertiary storage systems

•  Databases—to organize information about the data

sets

•  Data-handling systems—to provide APIs for access

to the data collections

•  Digital libraries—to provide services for manipulat-

ing and presenting the data collections

The integration of these technologies will lead to a

collection-based persistent archive that can be used to
support information repositories, supercomputer centers,

and digital libraries. We are developing an infrastructure

called the “Data Intensive Computing Environment”
(DICE) as a first step towards achieving this goal [9,10].

Currently, we are in the process of setting up a gen-

eral digital library system for ingesting, managing, ar-
chiving, and accessing several collections of scientific

data whose total size can grow to petabytes with billions

of objects. The content of these archives are scientific

data sets including documents, images, field-generated
data and simulation results for disciplines ranging from

astronomy and earth systems science to social science,
ecology, and neuroscience. An important issue is to make

information in the archived digital libraries available
through the web as well as through APIs for processing

on supercomputing platforms such as CRAY C90, IBM

RS/6000 SP and Tera MTA. We are also investigating
automation of the ingestion of data into the digital library.

Many of the data sets are produced by remote sensing
instruments or are the output of supercomputing applica-

tions.
An archival digital library should not only deal with

different disciplines but also provide a means of interac-

tion between the disciplines and their collections.  This
requires a meta-data catalog for schema level attributes

such as discipline-specific ontologies and semantics.
Also, because scientific data collections are rapidly

evolving, one needs to consider the longevity of such

ontologies and plan for the ability to migrate them for-
ward in time. Since we are dealing with objects that are to

be accessed using different types of APIs and methods,
one needs also to migrate forward the methods and proce-

dures that are used in analyzing data. Hence, one needs to
go beyond storing preservation-level meta-data for the

objects and also consider preservation-level meta-data for

methods and APIs.

Our system is built around a Meta-data Catalog
(MCAT) developed at SDSC. MCAT is a repository that

handles three different levels of meta-data, including:

•  Digital object meta-data about type, formats, lineage

(creation characteristics), ingestion protocols, usage
methods, and domain-specific data set attributes;

•  System-level meta-data about audit trails, authentica-

tion, access control, and replication and partitioning
of data sets; and

•  Schema-level meta-data including ontology informa-

tion for the relationship of the terms in the attribute
domain as well as indexing of individual data objects

into the ontology.

Digital object meta-data is typically created for

every data collection in order to support information dis-
covery. System-level meta-data is used to provide loca-

tion transparency, access transparency and protocol trans-
parency. Schema-level meta-data is used to provide a way
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to migrate the collection to new technology and to feder-
ate data collections.

III. MCAT Architecture

The MCAT is a database-based catalog that provides
a repository of meta information about digital objects.

Digital object attributes are separated into two classes of
information within the MCAT:

•  System-level meta-data that provides operational
information. These include information about re-

sources (e.g., archival systems, database systems, etc.

and their capabilities, protocols, etc.), users (e.g., user
groups, access and audit control information, privi-

leges, etc.), methods (e.g., server-level and client-
level methods and their properties) and data objects

(e.g., their formats or types, replication information,
location, collection information, etc.).

•  Application-dependent meta-data that provides in-

formation specific to particular data sets and their
collections (e.g., Dublin Core [11,12] values for text

objects).

Both of these types of meta-data are extensible, i.e.,

one can add and/or remove attributes. Internally, MCAT
keeps schema-level meta-data about all of the attributes

that are defined. The schema-level attributes include:

1. Logical Structure: When a set of meta-data is regis-

tered with MCAT, one needs to identify a logical
structure in which the rest of the meta-data will be

organized. The logical structure should not be con-
fused with database schema and are more general

than that. For example, we have implemented the
Dublin Core database schema [11] to organize attrib-

utes about digitized text. The attributes defined in the

logical structure that is associated with the Dublin
Core schema contains information about the subject,

constraints, and presentation formats that are needed
to display the schema along with information about

its use and ownership.

2 . Attribute Clusters: An attribute cluster is a set of

attribute names that are logically interconnected and
that have a one-to-one mapping among them. One

can view them as a (single or a set of) normalized ta-

ble(s) in a database context. For example, in the
Dublin Core, publisher, name, address, and contact

information form a cluster. Contributor name and
contributor type form a second cluster; title and its

type form yet another cluster, and so on. Similarly in
our system-level MCAT core meta-data, we have one

cluster for each data replica containing the type, lo-
cation, and size of the data objects. This aids the im-

plementation of relational joins across the meta-data

tables, since each replica has only one value for these
properties and these properties provide the physical

characteristics of the object. For each cluster, MCAT
keeps information about any constraints and com-

ments that can be searched when using the attribute,
along with information about use-privileges and

grant-of-use-privileges for the cluster. For each at-

tribute, MCAT keeps more than 20 different types of
information including its physical, logical and input

and output characteristics [13].
3 . Token Attributes: Token attributes have a specific

function (compared to other attributes); they capture

some simple semantic information about the domain
of discourse. In the simplest sense, one can use the

token attributes to provide the domain of discourse

for an attribute or a set. One can also use the token

attribute to capture semantic translation between dis-
cipline domains (e.g., common names vs. scientific

names) and also capture hierarchical and equivalence

relationships in the domain of discourse. Given the
development of semantic standards within a disci-

pline, one can use the token attribute as a bridge be-
tween two schemas and provide semantic interoper-

ability.

4 .  Linkages: Linkages provide a means for inter-
operating within and between schema. One can de-

fine four types of linkages:

1. attribute-to-attribute,

2. cluster-to-attribute,

3. cluster-to-cluster, and

4. cluster-to-token.

Each of the linkages can be from one-to-many, many-
to-one, or many-to-many. The linkage information is

used to generate joins dynamically based on the

user’s chosen set of attributes. The join algorithm
uses Steiner Tree generation of SQL commands from

a directed acyclic graph; the DAG is a mapping of
clusters and the linkages between them. The linkage

information is also used for performing federated
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query operation across schemas. The DAG is also
used to figure out the notion of an allowed query by

disallowing queries that span disjointed graphs.
MCAT provides APIs for creating, modifying and

deleting the above structures. The architecture of the
MCAT is given in Figure 1. MCAT provides an interface

protocol for the application to interact with MCAT. The

protocol uses a data structure for the interchange which is
called MAPS—Meta-data Attribute Presentation Struc-

ture. The data structure, which also has a wire-format for
communication and a data format for computation, pro-

vides an extensible model for communicating meta-data
information. A mapping is being developed to translate

from the MAPS structure to the Z39.50 format [14]. In-

ternal to MCAT, the schema for storing meta-data (may
possibly) differ from MAPS, and hence mappings be-

tween the internal format and MAPS are needed for every
type of implementation of the MCAT. Note that it is pos-

sible to store the meta-data in databases, flat files, or
LDAP directories [15]. MAPS provides a uniform struc-

ture for communicating between MCAT servers and user
applications.

The MAPS structure defines a query format, an up-

date format and an answer format. The MAPS query
format is used by MCAT in generating joins across attrib-

utes based on the schema, cluster and linkages discussed
above. Depending upon the internal catalog type (e.g.,

DB2 database, Oracle database, or LDAP) a lower-level
target query is generated. Moreover, if the query spans

several database resources, a distributed query plan is

generated.

Figure 1. MCAT architecture.
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Figure 2. Data collection federation.

Figure 2 shows how multiple data collections can be

queried through MCAT. Assume that a group has its own

database with a large quantity of meta-data. Moreover, the
organization of the data might be peculiar to that group’s

field of activity and the meta-data may reside as different
types of objects—e.g., files, tables, etc. The MCAT-to-

catalog interaction is facilitated by a uniform abstraction
interface (currently being defined and called the Catalog

Interface Definition) that allows external catalogs to

communicate with MCAT. The communications would
be of two different types: schema-level meta-data com-

munication wherein the semantics of the structure of the
external catalog is communicated to MCAT (and vice

versa) and meta-data communication where meta-data is
transferred between the two catalogs in response to que-

ries and updates. With this definition of an abstraction,

including new catalogs would become an exercise in

writing middleware components. We believe that the

architecture is simple but powerful enough to deal with
extensible meta-data schemata and with multiple hetero-

geneous meta-data services.
The MCAT system supports the publication of

schemata associated with data collections, schema exten-
sion through the addition or deletion of new attributes,

and the dynamic generation of the SQL that corresponds

to joins across combinations of attributes. GUIs have been
created that allow a user to specify a query by selecting

the desired attributes. The MCAT system then dynami-
cally constructs the SQL needed to process the query. By

adding routines to access the schema-level meta-data
from an archive, it will be possible to build a collection-

based persistent archive. As technology evolves and the
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software infrastructure is replaced, the MCAT system can
support the migration the collection to the new technol-

ogy. Effectively, the collection is completely represented
by the set of digital objects stored within the archive, the

schema that contains the digital object meta-data, and the
schema-level meta-data that allows the collection to be

instantiated from scratch.

IV. SDSC Storage Resource Broker

At SDSC, we have developed a system that provides

access to replicated data sets residing in federated and

distributed storage systems through meta-data based in-
formation and resource discovery. The system consists of

two components: the SDSC Storage Resource Broker
(SRB) that provides federation and access to distributed

and diverse storage resources in a heterogeneous com-
puting environment and the Meta-data Catalog (MCAT)

that holds systemic and application or domain-dependent

meta-data about the resources and data sets (and users)
that are being brokered by the SRB. The SRB provides a

uniform API for access to heterogeneous archival storage
systems and deals with federation of storage sites and

replication of data objects. The MCAT information cata-
log systems play a vital role in publishing authenticated

information, and storing and disseminating the informa-

tion through a controlled but uniform interface.
The SRB-MCAT system provides a data integration

environment that provides

•  uniform access APIs across heterogeneous file sys-

tems, databases, and archival storage,

•  protocol-transparency and location-transparency
when accessing distributed systems,

•  uniform name space abstraction over the file systems
that are being brokered,

•  meta-data-based access to files, thus supporting in-

formation discovery based on domain and system-
dependent meta-information stored along with (or

extracted from) the stored files,

•  facilities for replication, copying or moving files
across heterogeneous systems, performing resource-

level operations (proxy operations) on data before
delivery to the client: useful for data subsetting, for-

mat translation, and other pre-processing applica-
tions, and

•  an integrated encryption and authentication system
that can range from no security to fully encrypted and

fully authenticated data transfer including security
against man-in-the-middle security intrusions.

There are three main reasons for providing a uni-

form access mechanism from applications to archival
storage system such as HPSS [1] or database-archival

storage systems such as DB2-HPSS [8]:

•  The data sets under consideration can be very large,

making it appropriate to store in archival tape sys-

tems directly. Terabyte-sized brain mapping images
fall into this category.

•  The data sets may be too numerous to be stored in a
single file system (and the total size may exceed sev-

eral gigabytes) making them appropriate to store in a
database system.

•  The number of data sets may grow with many of the

data sets being sparsely used after some initial period
of time.

In all the above cases, it may be necessary to hide
the fact that the data sets are in archival systems and pro-

vide the user with a uniform interface without burdening

the user with having to know about the peculiarities of the
archival tape systems and the data set pathnames.

The SDSC Storage Resource Broker (SRB) [16,17]
is middleware that provides distributed clients with uni-

form access to diverse storage resources in a heterogene-

ous computing environment. Storage systems handled by
the current release of the SDSC SRB include the UNIX

file system, archival storage systems such as UniTree and
HPSS, and database Large Objects managed by various

DBMSs including DB2, Oracle, and Illustra (Figure 3).
Currently, the system runs on supercomputers such as the

CRAY C90, CRAY T3E and IBM SP, and on worksta-

tions such as Sun, SGI, and DEC platforms. The SRB
presents clients with a logical view of data sets stored in

the SRB. Similar to the file name in the file system para-
digm, each data set stored in SRB has a logical name,

which may be used as a handle for data operation. Unlike
the file system where the physical location of a file is

implicitly implied in its path name through its mount

point, the physical location of a data set in the SRB envi-
ronment is logically mapped to the data sets. Therefore,

the actual data of data sets belonging to the same collec-
tion may physically reside in different storage systems. A

client does not need to remember the physical mapping of
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a data set. It is stored as the meta-data associated with the
data set in the MCAT catalog. Data sets in the SRB are

grouped into a logical (hierarchical) structure called col-

lections. The collection provides an abstraction for

•  placing similar objects (possibly, physically distrib-

uted) under one collection (e.g., image collections of
a museum) and

•  placing all dissimilar objects that have a common
connection under one abstraction (e.g., all the text

paragraphs, images, figures, and tables of a docu-

ment).
The SRB supports data replication in two ways. One

can replicate an object during object creation or modifi-
cation. To enable this, SRB and MCAT allows the crea-

tion of logical storage resources (LSR) which are a
grouping of two or more resources. When an application

creates or writes a data set in these logical resources, then

the operations are performed on all the resources. The
result of using a LSR is that a copy of the data is created

in each of the physical resources belonging to the logical
resource. It is possible to specify that the write operation

is successful if k of the n copies are created. The user can
modify all the copies of the data by writing to the data set

with a “write all.” However, this operation can lead to an
inconsistency if there is a failure in the middle of the

operation. The SRB also provides an off-line replication
facility using to replicate an existing data set. This opera-

tion can also be used for synchronization purposes. When

accessing replicated objects, SRB will open the first
available replica of the object as given by a list from

MCAT. (Using the Network Weather Service [18], one
can order this list based on some criteria.)

SRB also provides a facility for resource-side proxy
operations. That is, one can define and compile operations

that are applied to data sets near the resource before

sending the object to the client. This feature can be used
for performing system-level operations like copy or move

as well as application-specific operations such as data
sub-setting, format conversions, and automatic meta-data

extraction.

Figure 3. Simplified view of the SRB middleware.
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Figure 4. The SRB process model.

The SRB also provides authentication and encryp-
tion facilities [19,20], access control list and ticket-based

access [21], and auditing capabilities to give a feature-rich

environment for sharing distributed data collections
among users and groups.

Figure 4 depicts the SRB process model. The design
of the SRB server is based on the traditional network

connected client/server model but has the additional ca-

pability of federation. Once a connection from a client is
established and authenticated, a SRB agent is created that

brokers all the operations for that connection. A client
application can have more than one connection to a SRB

server and to as many servers as required. The federation
of SRBs implies that a client can connect to any SRB

server and can also access a resource that is brokered by

any server. An inter-SRB communication protocol sup-
ports the federation operation. The SRB communicates

with MCAT to obtain meta-information about the data
set, which it then uses for accessing the data set.

Summary

The combined SRB-MCAT system support for fed-

eration of data collections can also be applied directly to
the task of federating archival storage systems. For data

collections that span multiple archives, the system is able
to build a data collection that physically resides at the

multiple locations, but which is accessed through a uni-
form logical interface. The federation of multiple collec-

tions is the spatial equivalent of the task of migrating a

collection to new technology. By building the common
information management infrastructure needed for both

tasks, it then becomes possible to build a collection based
persistent archive that is distributed across multiple sites.

One can consider a digital library that has data holdings at

multiple institutions, linked through the SRB-MCAT
infrastructure. Additionally, the software at any one of the

institutions can be updated, with the local data collection
rebuilt on the new infrastructure through the MCAT

schema-level meta-data. The distributed archive can then
be maintained as a persistent archive that will be sustain-

able through an arbitrary number of technology evolution

cycles.
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