
Usage Patterns of a Web-Based Image Collection

Nisha Talagala, Satoshi Asami, David Patterson
Computer Science Division

University of California at Berkeley
Berkeley, California

Abstract

This paper presents a study of user access patterns
to a large, web-based, image collection. The images are
the entire collection of the Fine Arts Museums of San
Francisco, the largest on-line collection of high
resolution art images in the world. The images are served
using a tile-based solution that allows a user to zoom-in
and navigate within an image. We studied five months of
web log data for this collection. Our analysis revealed the
following: less than 10% of all available documents on
the site were accessed in the five month period and
document popularity appears to follow a Zipf
distribution. Also, images have interesting areas which
are viewed more than others, some image resolutions are
viewed far more than others, and user navigation patterns
vary between resolutions and are sensitive to download
time. The paper discusses these results and their
implications for the design of caches and archival storage
systems to support this type of workload.

1.0 Introduction

In the past decade, the popularity of the World
Wide Web has grown exponentially. By the year 2000,
the number of hosts on the web is expected to pass a
hundred million [1]. This explosive growth has to led to
many studies of web site content and access patterns
[2,3,4,5]. However, most of these studies have focused
on HTTP logs from more traditional web sites, sites with
small amounts of storage and relatively small files.

At the same time, institutions with large archives of
documents (for example, museums and libraries) are
beginning to digitize their holdings and put them on their
web sites [6]. These web accessible digital libraries are
becoming more and more common. These sites differ
from traditional web sites in several ways. First, they will
contain tens to hundreds of thousands of files, the entire
content of an institution’s archive. Second, these files
will not be simple HTML documents, they could be

images, video, or other multimedia files. Such files are
large by web server standards; over 1MB [6], compared
to files on traditional web servers that are between 256
and 512 bytes [7]. Third, since the site will contain
hundreds of thousands of documents, access to most
documents will have to be through a search engine and
not through a sequence of HTTP links.

Putting an archive of documents on the web raises
several problems. First, low internet bandwidth makes it
impossible to access high quality multimedia
interactively. For instance, downloading a 1MB
document over a 28.8K modem takes about 5 minutes.
Also, copyright considerations may prevent a site from
making high quality copies available for download. For
images, both of these problems can be addressed with a
tile-based solution. In other words, images are available
as a set of tiles in several resolutions. The user can zoom
in to view parts of an image in more detail. This way,
users are allowed to see details without ever being
allowed to download a high quality version of the whole
image. This technique has been standardized as the
FlashPix format [8] and is becoming popular for high
quality images.

In this paper, we present a study of user access
patterns to a web-accessible image collection. Our image
collection now contains over 75,000 high resolution
images of art work [9], the entire collection of the Fine
Arts Museums of San Francisco. At 75,000 images, it is
by far the largest art image database in the world. In
second place is the National Archive, with 3500 images.
The images are available through the Museum’s web site
athttp://www.thinker.org/. Access to the images is
through a keyword search. Each image is available in
eight resolutions, from 12.5% to 1600%. The images are
stored and served as a sequence of tiles in each resolution.

Our results are based on HTTP server logs for this
site over a five month period; March - July 1998. During
this period, the image count on the site increased form
20,000 on March 1st, to 59,000 at the end of July. In this
paper, we describe the access patterns observed through
our logs, and draw conclusions about the system
architectures and caching policies that would work well

203

for this type of workload. To our knowledge, we present
the first study of user access patterns for a large
collection of such tiled images.

Section 2 describes our system, our tiled image
format and our user interface. Section 3 describes our
http logs and how they were processed. Section 4
presents the results that we have obtained from these
logs. Section 5 discusses the implications of our results
on the design of web servers for this style of workload.
Section 6 describes related work in this area and Section
7 concludes with a summary and possible future work.

2.0 Our System

Our web service, called The Zoom Project, has been
available to users since March 1st 1998. This site
provides a database of high resolution images of art
work. Figure 1 shows how the site works. The front end
contains a search engine. Each image is searchable by
title, artist, time period, and other descriptive keywords.
This database contains only the image attributes, not the
images themselves. Each image is identified by a 16 digit
key. When a user wishes to view an image, the image is
requested from the storage servers using this key. This
request is passed down to the storage front end, which
forwards the request to a storage server with a copy of
the image. From then on, all image data transfer occurs
between the storage server and the client. The storage
servers are PCs with 8GB, 7200RPM SCSI drives. We do
not describe the storage system in detail here; a
description is available in [10]. Note: We have two front

ends because the database and the storage server portions
of the site are at different geographical locations. The
second front end eases management by creating a level of
indirection between the search engine and the storage
servers. This way, we are able to reconfigure the storage
system component without modifying the search
database.

Each image is available at resolutions of up to
3072x2048 pixels. Our tiled image format, called GridPix
[11], is similar in concept to the FlashPix standard which
is becoming popular for presenting high resolution
images over the web [8]. Figure 2(a) shows the GridPix
format; a GridPix file contains a 2KB header structure, a
variable sized index of offsets, and a sequence of tiles in
resolutions from 12.5% to 100%. Tiles for resolutions
higher than 100% are generated on the fly from the 100%
resolution tiles. The index of offsets marks the positions
in the file where various tiles begin. Each tile contains
144x144 pixels and is individually compressed in JPEG.
The average tile size is 2.9KB, and an average GridPix
file is about 1.2MB.

Figure 2(b) shows our user interface. We describe
the user interface in detail because it is important to
know what the interface looks like before discussing
usage patterns. Our interface is entirely HTML based. A
CGI script (mkhtml.cgi) creates a graphical viewer
with zoom and panning controls. The user can choose the
size of the viewer; five sizes are available, 14’, 15’, 17’,
20’, and 24’. At any time, only the area of the image that
fits within the viewer will be transferred to the client.
Each tile is retrieved separately by a second CGI script

Figure 1: How the site works. Clients access images through a keyword search at the front end. Once an image
is selected, tiles are transferred to the client from a storage server that is holding the image. The storage servers
are managed by a storage front end. The vertical line separating the database and storage system indicates that
these two servers are in different geographical locations.

204

5

struct gridheader

headersize
width, height
numlayers
tilewidth, tileheight
ratio
numtiles

offsets

Layer 2

Layer 1

Layer 3

1

2

14 15

19 20 21 22

16 17 18

13121110

23

876

3 9 4

GridPix File
struct gridheader

headersize
width, height
numlayers
tilewidth, tileheight
ratio
numtiles

offsets

Layer 2

Layer 1

Layer 3

1

2

14 15

19 20 21 22

16 17 18

13121110

23

876

3 9 4 5

HTML Source

JPEG Tiles

Graphical Web Browser

Server

Client

gettile.cgi

mkhtml.cgi

Figures 2(a) and 2(b): Figure 2(a) shows the structure of a GridPix file. Figure 2(b) shows how image tiles are
displayed in a graphical browser created using HTML

Figures 2(c) and 2(d): The GridPix viewer. Figure 2(c) shows a Picasso art work at 12.5% resolution within the
GridPix viewer. Figure 2(d) shows the artist’s signature at the lower right hand corner of the same image, at 50%
resolution. Since the entire image appears in the viewer at 12.5% resolution, no scrollbars are displayed. Since
JPEG is grid-based, tiles can be placed side by side in an HTML file and appear as if it is a single image.

205

(gettile.cgi). All images are initially displayed at
12.5% resolution. At this size, most images fit entirely
within the window in all viewer sizes. Once the image
becomes too large for the viewing area, the user can
scroll up/down or left/right by clicking on the scrollbars
that appear at the bottom and right of the image window.
When a user zooms-in or scrolls, the necessary tiles are
extracted from the GridPix file and sent to the user. Since
each tile arrives at the browser as a separate JPEG image,
the browser can cache tiles and the storage servers don’t
have to send the same tiles again and again. Figures 2(c)
and 2(d) show the GridPix viewer in action. More
information about the implementation of GridPix and the
GridPix viewer is available in [11].

3.0 Logs and Log Analysis

In this section we describe our logs and how we
visualized the information contained in them. For the
most part, this section lists our assumptions and defines
the terms we use to quantify and describe our results.

Figure 3 shows two lines of our HTTP logs. The
first several fields (client name, date, time) are the same
as what is found in most HTTP logs. While we use this
data in our analysis, most of the information that is
specific to our workload is embedded in the GET
messages. Since our user interface is completely HTML
based, image specific data (such as the image key,
resolution level, navigation info, etc.) are embedded as
arguments in the CGI scripts called by GET.

Two CGI scripts are central to our interface
implementation; they are themkhtml.cgi and
gettile.cgi calls. When a user clicks a zoom or a
scroll button, a new HTML page is created that shows the
new state of the viewer. This page is constructed by
mkhtml.cgi . Each tile is retrieved by calling
gettile.cgi . In addition, several other images (the
zoom icons, scrollbar icons etc.) are also retrieved as
needed.

As Figure 3 shows,mkhtml.cgi has six
arguments. The first argument is the 16 digit image key.
The second is the zoom level of the image; level 2 in this
example is the 50% resolution. Eight zoom levels are

permitted, from 12.5% to 1600%. The third and fourth
arguments, 432x288 in the example, are the dimensions
for the user’s selected screen size. They are used to
calculate the size of the viewer that will be displayed.
The fifth and sixth arguments are x and y coordinates that
specify the area of the image that is being viewed, 0x0 in
the example. These parameters are used to embed the
correctgettile.cgi calls in the HTML page. The
remaining two entries in the line are the status code and
the number of bytes transferred.

We now define some terms that we use in the next
section to describe our results:

Client: Due to the lack of better information in the
log files, we distinguish clients by the IP address.
Although HTTP servers have the option of reporting
the login name as well as the IP address, we have
found that this info is rarely reported by the client.
However, we don’t expect this assumption to create
much error since we only use the client name to
gather summary statistics about user sessions. The
remainder of our measurements use both the client
name and image number. It is unlikely that two
separate users will be accessing the same image
through the same client at the same time.

Session: A session is the unit of access to the web
site for a single user. We assume a session to last for
24 hours. That is, if the same client name is found on
two log entries that are less than 24 hours apart, we
assume that both entries belong to the same session.
This parameter is only used for computing basic
statistics.

ImagePage: An ImagePage is a the display of a
single HTML page. Since the viewer is entirely
HTML, a new HTML page is loaded whenever the
user clicks a zoom or scroll button. Each such load
constitutes a different “view” of the image. Each
mkhtml.cgi call creates a new ImagePage.

TimeForImagePage: This is the time taken to
download a view, that is, for the client to receive the

saffron.cs.berkeley.edu - - [11/Apr/1998:21:17:33 -0700] "GET /cgi-bin/
mkhtml.cgi?3154201307000028&2&432&288&0&0 HTTP/1.0" 200 2994
saffron.cs.berkeley.edu - - [11/Apr/1998:21:17:34 -0700] "GET /cgi-bin/
gettile.cgi?3154201307000028&7&0 HTTP/1.0" 200 2990

Figure 3: Sample HTTP log showingmkhtml andgettile calls

206

HTML page, the icons that make up the graphical
browser, and all the image tiles. We use this time to
study whether the users’ access patterns are affected
by the performance of the web server. We
approximate this time as the difference between the
time of the mkhtml call, and the last tile transferred
to that client to fill the ImagePage.

ImageView: An ImageView comprises all the
ImagePages for a single image in a single user
session. Data about navigation within an image is
contained in the ImageView.

Our log processing software parses each log and gathers
data on sessions, ImagePages and ImageViews. For each
ImagePage, the software also calculates the
TimeforImagePage. All results are obtained by
aggregating the information for Sessions, ImagePages
and ImageViews.

4.0 Results

In this section we describe the results of our log
analysis. We begin by listing some basic statistics and
creating a simple user profile. While this information is
not detailed enough to be of use in creating better caches
or improving system architecture, it is useful for putting
other results in perspective. Next, we characterize access
patterns in two ways,inter-image andintra-image. In
inter-image analysis, we ignore individual tiles and
consider each image as a single access. In intra-image
analysis, we focus on user navigation patterns within an
image. Finally, we describe other factors that affect
access patterns, such as viewer size and download time.

4.1 Basic Statistics and User Profile

Table 1 lists the average values for basic user
statistics in our system. The average time for a session is
a little over seven minutes. During this time, the user
accesses 2.9 images. During one ImageView (as defined
in Section3), 23.5 tiles are transferred, which is on
average about 68KB of image data. The total data
transferred per ImageView is 93KB. The 25KB
difference accounts for the HTML pages that create the
viewer and all icons that complete the viewer. Therefore,
the data transferred to create the viewer imposes a 37%
tax on the image data itself. These transfer sizes are
discussed in more detail in Section 4.2. Since the average
size of a GridPix encoded file in our system is 1.2MB,
only 5.7% of the available data is transferred. This is
because the average user does not zoom into the 50% and

100% resolutions, where the bulk of the image detail is
available. We have found that average user uses the zoom
feature only once, reaching only the 25% resolution.

We also checked whether we could divide users into
different categories (simple and experienced users) by the
number of images accessed. We found that most users
(around 87%) access 5 images or less in one session. Of
the remaining users, more than half access less than 10
images. There are only a very few users who access more
than 10 images in one session.

Table 1: Basic Statistics

4.2 Request Sizes

Even though our file sizes are larger than traditional
web sites, our user requests are still relatively small,
typically 3-5KB each. As stated earlier, all image
requests come as eithermkhtml or gettile calls. Our
system transfers three types of data; image tiles, HTML
files that create the viewer, and icons that complete the
viewer. The last category has only a few distinct files.
There are a fixed number of icons (less than 15) and the
same icons are used for every image served. Therefore, in
this section we focus only on the first two types of
accesses.

Figure 4(a) shows the distribution of tile sizes. As
the figure shows, most image tiles are between 1-6KB.
Figure 4(b) shows the distribution of request sizes for the
mkhtml calls. Over 70% of the HTML pages are less than
1KB in size. The bulk of the data transferred is in the
image tiles and the icons. Section 4.1 showed that the
viewer places a 37% tax, on average, on each

Parameter Average Value

Time/Session (Minutes) 7:02

Images/Session 2.9

Tiles/ImageView 23.5

Image Data Transferred/Ima-
geView

68.4

Total Data Transferred/Image-
View (KB)

93.7

Tile Size (KB) 2.9

Image Size (KB) 1200

Maximum Level Zoomed 25%

207

ImageView. This cost comes mostly from the data
transferred to create the viewer’s zoom and scrollbar
icons.

4.3 Inter-Image Analysis

In this section we present access patterns to images
in our system. Each ImageView is treated as a single
access.

Since all documents on our site are accessed
through a keyword search, many documents on the site
are very rarely accessed, if ever. Although the site has
offered 20,000 to 59,000 images over the five month
period, only 5451 unique images were actually retrieved
over the five month period.

Prior studies of web traffic have found that web
document popularity follows Zipfs Law [12]. Zipfs Law
[13,14], originally applied to the relationship between a
word’s popularity rank and its frequency of use, states the
following: the frequency of occurrence of some event (P),
as a function of the rank (i) when the rank is determined
by the above frequency of occurrence, is a power-law

function Pi ~ 1/ia with the exponent a close to unity. In
our case, if images are ranked by their popularity, Zipf’s
Law states that access frequency and image popularity
will have the following relationship:

In other words, the nth ranked document is twice as

likely to be accessed as the 2nth ranked document;
popular documents are very popular.

When Access Frequency (Number of Hits) and
Popularity Rank are plotted on a log-log scale, a straight
line indicates a Zipf distribution. Figure 5 shows image
popularity based on number of user requests. As the
figure shows, the image popularity appears to follow a
Zipf distribution [5,6]. There are a few very popular
images and a large number of images that are rarely
viewed. Figure 5 also shows that while the more popular
documents appear to follow a Zipf distribution, the less
popular documents do not. There are a very large number
of images that receive only one hit.

Since our document space is flat (no hierarchy of
links), we find that the more popular images correspond
to popular keywords, such aspicasso, monet, and so on.
Some images also become popular for a short time
because they are advertised on the Museum main web
pages. For instance, the "Image of the Month" advertised
in the Fine Arts Museum’s newsletter will be one of the
top ten most accessed images for that month.

Figure 6 shows the popularity levels of the ten most
popular images of each month. For the images that
remained on the "top ten list" from month to month, their
popularity levels are joined by lines. A few images
appear on the top ten list for only one month. This usually
happens because that image has been advertised
somewhere else on the site (like the Image of the Month).
A few images do remain very popular from month to

AccessFrequency
1

PopularityRank
--∼

Figures 4(a) and 4(b): Figure 4(a) shows the distribution of tile sizes for the images. Figure 4(b) shows the size
distribution for the HTML page that constructs the GridPix viewer.

208

Figure 5: This figure shows Number of Hits per image, sorted by Popularity Rank. While the graph is mostly linear for the
more popular images, it becomes a step function for the least popular images.

Figure 6: This figure shows the how the popularity of images varies over time. It shows the access frequency for the ten most
popular images for each month.

209

month. These are the images from popular artists. The
figure also shows that the percentage of total ImageViews
that are due to these ten images decreases over time. In
the first month, the top ten images account for almost
30% of all images seen by users. By the fifth month, they
account for less than 15%. This is most likely because the
size of the on-line collection has almost tripled within the
five month period.

4.3 Intra-Image Navigation

This section examines how users navigate within a
single image. All images start at the 12.5% resolution,
and most images fit within the viewer window at that
resolution. Although the maximum available resolution is
1600%, no new information is available after 100%.
Once the image becomes too big to fit entirely in the
viewer’s window, scrollbars are available to navigate
north, south, east and west (see Figure 2(d)).

Figure 7 shows the percentage of ImageViews that
stopped at each zoom level. Since there is no way for a
user to reach a high zoom level without visiting all the
previous levels, the users that reach a given level are a
subset of all users that reached the previous level. The
figure shows that the zoom feature is used on
approximately 48% of the images viewed. The remaining
52% are viewed only in the 12.5% resolution. As the
resolution increases, the number of ImageViews
decreases. However some users do zoom all the way to
the highest allowed level.

At higher resolutions, users can navigate an image
by zooming in, zooming out, and panning. We define
panning as scrolling up, down, left or right. Table 2
summarizes statistics on zooming and panning. We find
that most ImageViews use zooming as the primary way to
navigate within an image. Of all ImageViews that
actually do some form of navigation (~50%), more than
half only use zoom-in. Only about one third do any form
of panning along with zoom-in. The explanation for this
behavior could be as simple as the design of the interface.
Zooming in only requires that the user click somewhere
within the image, a fairly intuitive task and what most
users will try first. All other types of navigation (zoom-
out, panning) require the user to click either the zoom-out
button or one of the scrollbars.

Of the ImageViews that use zoom-in and panning,
we have found that most navigation happens at the 50%
and 100% resolution. At 12.5% resolution, none of the
ImageViews do any panning. At 25% resolution, less
than 10% of all ImageViews do panning. At the 50% and
100% resolutions though, 50% of the ImageViews do
some panning. There are several possible reasons for this

behavior. The first is simply that at the 50% and 100%
resolutions, enough detail is available that further zoom-
in may not be necessary. The second is that at 50% and
100%, most images will not fit entirely in the viewer
window in any screen size.

When panning is being used, it is easy to predict
which image tiles are to be retrieved next; they will be the
tiles that lie along the four edges of the image. Similarly,
with zoom-out, it is quite likely that the tiles that will be
needed are tiles that have been viewed before during the
same session, since all user’s must start viewing the
image at the lowest resolution. In our case, since each tile
is a separate JPEG file, these tiles will automatically be
cached by the user’s browser. Zoom-in, however, is not
quite that easy. A user can click anywhere within the
window area to zoom-in. Therefore, we examined tile
access frequencies to determine whether there were any
"interesting areas" within an image, areas that were more
likely to be zoomed into more than others.

As an example of interesting areas within an image,
Figures 8(a) and 8(b) show the average tile access
frequency for the two most popular images over 5
months. The tiles are numbered in row-major order,
starting from the upper left hand corner of the 12.5%
resolution version to the lower right hand corner of the
100% resolution version. Only tiles up to the 100%
resolution are shown, because all views at higher
resolutions are generated from the same tiles. Vertical
lines separate the tiles from each resolution. The figures
show that at the first (12.5%) level, there is little
difference between the tile access frequencies. However,
as the zoom level increases, the gap between the most
accessed and least accessed tiles also grows. For both
images, at 50% resolution, the most popular tile is
accessed more than 15 times as often as the least accessed
tile. This example shows that images do have "interesting
areas" that are observable at certain zoom levels.
However, the figures also show how the overall access
frequency decreases as the zoom level increases.
Therefore, while there is a disparity between the most
popular and least popular tile at each level, the disparity
becomes less and less significant as the access frequency
of both decreases. The knee of the curve for both images
appears to be at the 50% resolution. At this level, the
overall access frequency is still between 10 and 20
percent, and the disparity between the most accessed and
least accessed tile is more than a factor of 15.

Figures 9(a) and 9(b) describe aggregate statistics
on tile popularity. Figure 9(a) shows the average ratios
between the access frequencies of the most popular and
least popular tiles at each resolution. This data is
calculated from all images in the log with 100 hits or

210

0

20

40

60

80

100

0 50 100 150 200 250 300 350

12.5%

100%

25%

50%

0

20

40

60

80

100

0 50 100 150 200 250 300 350

%
 o

f A
cc

es
se

s

Tiles

12.5%

25%

50%

100%

Figures 8(a) and 8(b): Frequency of tile access for the top two images. Tiles are numbered starting from the top
left hand corner of the 12.5% resolution version. Vertical lines separate the tiles from each resolution

Figures 9(a) and 9(b): Access frequency ratio between the most popular and least popular tile of each
resolution. These values are calculated from all images that received 100 hits or more. Figure 9(a) shows the
average values and Figure 9(b) shows the standard deviations.

Activity % of ImageViews

View only (No zoom) 51.8%

Zoom in only 30.8%

Zoom in and out only 2.3%

Zoom in and pan 10.1%

Zoom in, out and pan 4.8%

Figure 7 and Table 2: Figure 7 shows average zooming activity. Table 2 lists the percentage of image views over
which zooming and panning occurred.

211

more. Figure 9(b) shows the standard deviations. The
greatest ratios between most popular and least popular
tiles happen at the 50% and 100% resolutions (in
agreement with Figures 8(a) and 8(b).

4.4 Factors affecting Access Patterns

In this section we try to determine other factors that
may affect user access patterns, in particular screen size
and download time. Recall that the GridPix system has
five screen sizes available:14’, 15’, 17’, 20’, 24’. We
grouped ImageViews by screen size and analyzed the
intra-image navigation patterns of each group separately.
The 14’, 17’ and 24’ screen sizes are more popular than
the other two; each of the three was used for 22-26% of
all ImageViews while the remaining two screen sizes
each accounted for 13-14% of all ImageViews. We found
that ImageViews done with a 14’ screen contained much
less zoom-ins: 63.5% of these ImageViews stopped at
12.5% resolution while only 44-50% of ImageViews
done with the other screen sizes stopped at 12.5%. After
manually inspecting the logs, we suspect that the reason
for this behavior is that some users choose a different
screen size after viewing one image with the 14’ screen.
We also found that the number of ImageViews doing
zoom-in only increases with larger screen sizes. The
amount of panning, on the other hand, decreases with
larger screen sizes. This behavior is not surprising, as
more of the image is visible in the windows of the larger

screen sizes.
Next, we investigated the relationship between

access patterns and download time. We estimate the
download time (TimeForImagePage) as the time between
the load of the first and last tiles for an ImagePage. We
assume that the download of the first tile begins
immediately after the HTML page that constructs the
viewer has been downloaded. Since the HTML file is
much smaller than the tiles themselves (see Figures 4(a)
and 4(b)), the error introduced by not accounting for the
time to download the HTML file is minimal.

Figure 10 shows the relationship between the time
taken to download an image view and the probability of a
user continuing to zoom-in/navigate within that image.
As the figure shows, user access patterns are affected by
the image download time. As the file download time
increases, the probability of a user interacting with that
image further decreases quite dramatically between 1 and
50 seconds. After about 100 seconds, the probability
levels off. We also noticed that 92% of all ImagePages
were loaded in less that 50 seconds. In fact, 15% of all
TimeForImagePages were 1 second or less, 50% were 10
seconds or less. Therefore, most users are very sensitive
to download time.

5.0 Discussion

The prior section described our log analysis results.
Now we discuss how these results can be used to design

Figure 10: This figures shows the effect of download time on the navigation pattern within a single image. On the X
axis is the time to download all the tiles for a single ImagePage. The Y axis is the percentage of users who zoomed/
panned within the image after waiting this much time for the page to download.

212

systems that exploit the nature of this type of workload.
While any quantitative analysis comparing system
designs is beyond the scope of this paper, we outline
some ideas for improving performance based on the
characteristics of this workload. To begin, the analysis
revealed some properties that we expect will carry over
to other web accessible image collections:

(1) Most images are never accessed: Of the 50,000
images on the site, less than 10% were accessed over a
five month period. This is not surprising when the
collection is so large, and many art works are little
known. The collection behaves the same way as a library,
with a few popular books and a vast collection of little
known works.

(2) Zipf model of document popularity: Studies have
shown document popularity on traditional web sites tends
to follow the Zipf model well [12]. In our case, the Zipf
distribution models the more popular images quite well,
but does not hold up for the least popular images. Since
this behavior is most likely because our collection is
large and only accessible through keyword search, this
feature should carry over to other large web-accessible
archives that use keyword search.

(3) Intra-Image navigation patterns: Our analysis of intra-
image navigation patterns revealed a few trends. Users
very rarely zoom to the maximum image resolution
offered. Only 50% of views go beyond the first
resolution. Since most users tend to browse, this is not
surprising. Also, we noticed that images tend to have
"interesting areas" and some tiles are downloaded a lot
more frequently than others

(4) Effects of download time: If an image takes a long
time to download, the chances of a user interacting with
it further decreases very rapidly. This suggests the value
of a tile-based image format with multiple resolutions.

What do these observations imply for system
design? (1) and (2) imply that such an archive could be
implemented using a hierarchy of disk and tape systems
(good news for many archives whose data is too large to
be kept entirely on disk). Since the more popular
documents follow the Zipf model for access frequency, a
small fraction of the documents could be kept in
secondary storage, with the remaining in tertiary storage.
Tertiary storage could also hold the majority of the
documents, which may never be accessed. One the other
hand, (4) has bad news for archival systems; users are
very sensitive to access time.

Observations (1) and (3) are useful for caching.
Since web site documents are known to fit the Zipf
distribution for popularity, work has already been done
on caching policies that exploit this behavior [15, 16].
Observation (3) provides a new dimension to this
problem for tile based images. Since 50% of users never
view an image beyond its first available resolution,
lowest resolution tiles should be kept on-line as much as
possible. Since the bulk of the image detail (and hence
the data) is in the higher resolutions, the size of the
smallest resolution is very small compared to the total
file size. For instance, Section 4.1 showed that the
average user transfers only 68KB of tile data, 6% of the
average file size of 1.2MB. Also, since some tiles are
more popular than others, tile-based caching will be more
efficient than image based caching.

These observations indicate that there is an
opportunity to reduce system cost by using archival
storage for the least accessed images or least accessed
parts of images. The trade-off is the user’s download
time, which must be kept low using caching. Exploring
these issues further is left for future work.

6.0 Related Work

There are many studies on access patterns of web
sites. We reference only a few of them here [2,3,4,5]. Our
study differs from these in several ways; the size of the
objects stored on the site, and the tile based nature of the
content. To our knowledge, we present the first study of
access patterns for a web service that has both a large
number of large images and a tile based approach to
delivering images.

7.0 Summary

This paper presented an analysis of user access
patterns to a large collection of tile-based images. We
used five months of web site logs to determine how users
use a library of images. The images were accessed
through a keyword search and available in resolutions
from 12.5% to 1600%. We discovered several interesting
characteristics of this workload. First, less than 10% of
all available images were accessed in a five month
period. Popularity appears to follow a Zipf distribution
for the more popular images. However, the least popular
images deviate from this distribution; there are a very
large number of images that received only one hit. While
analyzing navigation patterns within images, we
discovered the following: 50% of all image views
stopped at the first available resolution and the remaining

213

images had "interesting areas" that were viewed more
than other areas. Finally we discovered that users’
navigation patterns are very sensitive to download time.

These observations suggest that a disk-tape
hierarchy could be used to serve such a workload,
although caching will be needed to reduce download time
to acceptable levels. The study of intra-image navigation
patterns suggested that a tile-based caching scheme could
help keep the more popular tiles available on-line.
Further investigation of these ideas is left for future work.

We plan to make the logs used in this study publicly
available. Anyone interested in obtaining them should
contacttd@stampede.cs.berkeley.edu

8.0 Acknowledgments

We would like to thank Bob Futernick, Dakin Hart
and Sue Grinols, from the Fine Arts Museums of San
Francisco, who made this project possible by
photographing all their art work. Thanks also go to
Gabriella Hernandez, Nicholas Hyunh, Kile Zhong,
Victor Wong, Abby Thompson, Lila Tretikov, and Tony
Le, for preprocessing the images.

This project is funded by the DARPA Roboline
grant N00600-93-K-2481, donations of disk drives and
machines from IBM and Intel, and the California State
MICRO program.

9.0 References

[1] Internet Trendshttp://www.genmagic.com/Internet/

[2] Catledge, L. and Pitkow,J. Characterizing Browsing
Strategies in the World-Wide Web, Proceedings of the
3rd International World Wide Web Conference.
Darmstadt, Germany, Apr. 1995

[3] Arlitt, F. Williamson, C.L. Web Server Workload
Characterization, The Search for Invariants. Proceedings
of the 1996 SIGMETRICS Conference on Measurement
and Modeling of Computer Systems,Philadelphia, PA,
USA, 23-26 May 1996.

[4] Manley, S., Seltzer, M., Web Facts and Fantasy
Proceedings of the 1997 USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, December
1997.

[5] Woodruff, A. Aoki, P. Brewer, E. Gauthier, P. Rowe,
L. An Analysis of Documents from the WWW.
Proceedings of the 4th Annual World Wide Web
Conference, Paris, France, May 1996.

[6] Davis-Brown, B. Sound, Images and Video in the
Global Digital Library: Visions and Challenges.
Presented at the NISC Storage Users Symposium: Image
and Sound in Storage. Monterey California, July, 1998.

[7] Crovella, M.E Bestavros, A. Self Similarity in World
Wide Web Traffic: Evidence and Possible Causes.
Proceedings of 1996 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems,May
1996.

[8] Flashpix information at Kodak.http://
www.kodak.com/country/US/en/digital/flashPix/

[9] Talagala, N. Asami. S. Patterson, D. Futernick, B.
Hart, D. The Berkeley - San Francisco Fine Arts
Database.Proceedings of the 1998 IEEE Symposium on
Mass Storage Systems.

[10] Talagala, N. Asami, S. Anderson T, Patterson, D.
Tertiary Disk: Large Scale Distributed Storage.
UC Berkeley Technical Report UCB CSD 98-989.

[11] Asami, S. GridPix: A Method for Presenting Large
Image Files Over the Internet.
http://now.cs.berkeley.edu/Td/Papers/.

[12] Cunha, C. Bestavros, A. Crovella, M. Characteristics
of WWW client based traces. Technical Report TR-95-
010, Boston University Department of Computer
Science, April 1995.

[13] Description of Zipfs Law,http://
linkage.rockefeller.edu/wli/zipf/

[14] G.K. Zipf, Human Behavior and the Principle of
Least Effort Addison-Wesley, 1949

[15] Almeida, V. Bestavros, A. Crovella, M. Oliveira, A.
Characterizing Reference Locality in the WWW.
Technical Report TR-96-11, Department of Computer
Science, Boston University, 1996.

[16] Glassman, S. A Caching Relay for the World Wide
Web,Proceedings of the First International World Wide
Web Conference, 1994.

214

