
215

Hiding HSM Systems from the User

Hartmut Reuter
Rechenzentrum Garching der Max−Planck−Gesellschaft (RZG), Germany

hartmut.reuter@rzg.mpg.de

Abstract

File life−times longer than the life−time of HSM−
systems make it necessary to move files from one
HSM−system to another. Such a migration takes a long
time and cannot be hidden from the user unless an addi−
tional layer of software is put in between. RZG is using
MR−AFS as such a layer. The features of MR−AFS are
presented once again. RZG’s experiences with HSM−
migrations and the usage patterns of MR−AFS are dis−
cussed.

Introduction

Today not only high energy physics or science in
general, but also the digitalization of libraries, archives
and any kind of documents produce a vast amount of
data which has to be kept for a very long time. Much
attention is being paid to the question of how to
organize the data in such a way the information can be
retrieved later.

Here another − more trivial − problem is ad−
dressed: file life times in these archives exceed life time
cycles of HSM systems. Thus the files have to migrate
during their life time several times to new HSM hard−
and software. While on most HSM−systems a migration
to new peripherals such as new tape drives and media
can be handled transparently to the user, it is not that
easy to hide the migration to a new HSM system.

Replacing a mass storage system by a new one is a
long running process because the data have to be
brought on−line and copied. Such a migration may take
several months to complete. While the migration is in
progress part of the files are still in the old system and
part already in the new one. The user having access to
the data in the HSM system by the "classical" means of
FTP or NFS will be affected by the migration because
the path−names of his files change. The situation is even
worse for application software where a concept of data
access based on path−names was implemented.

Therefore application software and users must be
screened from the knowledge about details of the HSM
environment. This can only happen if an additional
software layer exists between the HSM system and the
user or the application. This layer could be a database
system in which the actual location of each file is stored
and updated during the migration process. Using a
database is a typical approach for data mining software,
but the more general solution is to have a filesystem as
the intermediate layer.

AFS and DFS are both filesystems with an archi−
tecture that in principal would hide details of the
underlying HSM systems. Presently, however, AFS in
its special implementation called MR−AFS is the only
one to really do that. The HSM interface used by DFS
[1] is still too simple, but additions to its concept can be
thought of which would allow for the same functionality
MR−AFS already has. The following therefore will
concentrate on MR−AFS.

Multiple Resident AFS

MR−AFS (Multiple Resident AFS) is a distributed
hierarchical filesystem with the client side being
Transarc’s widely spread AFS while the server side was
developed at Pittsburgh Supercomputer Center (PSC).
The server side also started from Transarc’s source
code, but the number and amount of changes and
additions is such that the original code now is less than
half. MR−AFS was presented in talks at the 1993 and
1994 IEEE mass storage symposia [2] [3]. In 1995,
however, the three main authors (Jonathan Goldick, Bill
Zumach and Chris Kirby) left PSC, two of them to join
Transarc. Since then MR−AFS has been maintained and
further developed by RZG.

The concept of shared residencies

Shared residencies which gave the name to MR−
AFS are disk partitions which can be shared by all MR−
AFS fileservers. If e.g. during the writing of a file a
fileserver sees a shortage in disk space in the partition
where the AFS−volume lives, it can write the file in−
stead into one of the shared residencies which may be
local or on another machine. In order to allow fileserv−
ers to do I/O operations on another machine a light−
weight daemon called "remioserver" must run on that
machine. The fileserver communicates with this re−
mioserver by remote procedure calls of the same kind as
those used between the AFS−client and the server. A
shared residency can also be a HSM partition on an
archive−server. This is called an archival residency in
the following.

The way HSM−systems work could, however,
conflict with the technique used normally by AFS to
store files and directories. This is because the files and
directories belonging to AFS−volumes are not visible in
the disk partition. Visible is only one small file per
AFS−volume which contains inode numbers leading to
the metadata files. From the metadata files the AFS
fileserver extracts the inode numbers of files and direc−

216

tories inside the volume. To open a file or a directory
the fileserver uses a special AFS−system−call based on
the inode number rather then a path−name in the file−
system’s directory structure. Additional conflicts could
arise from the fact that the AFS−system−call abuses
some fields in the inodes of the filesystem to store
additional (redundant) information.

For HSM−partitions, therefore, MR−AFS uses
simply the Unix filesystem as provided by the vendor.
In such a partition a directory tree of up to 256 * 256
directories is built and the AFS−files (or directories) are
distributed in the tree by a hash algorithm and stored
with names built from their bitfile−ids. By this tech−
nique the HSM−system needs to know nothing about
AFS and vice versa. The only thing AFS must know
about such a partition is that opening of a file may take
a while. Table 1 shows HSM systems that have been
used with MR−AFS.

HSM−system OS AFS−cell

ADSM AIXe cpc.engin.umich.edu

DMF UNICOS ipp−garching.mpg.de
psc.edu

DMF IRIX ipp−garching.mpg.de

EMASS Fileserv IRIX federation.atd.net

Epoch ? ?

SamFS Solaris tu−chemnitz.de

Unitree Solaris rrz.uni−koeln.de
urz.uni−magdeburg.de

Table 1: HSM−systems used with MR−AFS, the Epoch−
support is implemented in the source code, but it is not
known where it has been used.

For some of these HSM−systems 64 bits of the
HSM−metadata are copied into the AFS−vnode

describing the file copy in the HSM−partition. This was
primarily done to add some redundancy, only later it
turned out to be very helpful in the process of migrating
from one HSM system to another.

The residency database

Information about shared residencies is provided
by an additional database on the AFS database servers.
For each shared residency, the following must be
specified

• accepted file size range,

• priority,

• whether it’s wipable (see below),

• wiping thresholds,

• wiping weight factors,

• minimum migration age,

• and others.

The "minimum migration age" is used for residen−
cies on archival servers. On residencies for which the
"minimum migration age" is set the fileservers auto−
matically create copies of all files which have reached
this age. These copies on archival residencies can be
used as backup copies of the files, but they also allow
for a MR−AFS internal data migration.

Wiping: the internal data migration in MR−AFS

The copies of files on an archival residency (typi−
cally on tape) allow MR−AFS to do its internal data
migration: local partitions and shared residencies on
random access storage can be declared wipable. Files in
wipable residencies may be wiped away if they exist in
another residency elsewhere. Wiping is controlled by
high and low water marks specified in the database. If
the high water mark is reached the fileserver removes
files which have another residency until the disk usage
is under the low water mark. The algorithm by which
the fileserver selects candidates to be wiped from the
partition is also defined in the database and can be set
individually for each shared residency.

If an AFS client requests data from a file with only
an archival residency, the fileserver copies the file to
random access storage before delivering any data. The
new random access residency preferably is chosen on
the same fileserver where the AFS−volume belongs in
order to avoid unnecessary network traffic.

The fetch queue

The open for read of a file on an archival residency
can take a long time if the file has to be brought on−line
by the HSM−system. To avoid being blocked in the

Figure 1: The AFS−client is served from a random
access residency (blue arrow). The fileserver copies
files to the HSM−partition (red arrow) where the HSM−
system writes them onto tape (green arrow).

AFS−
fileserver

UNIX UNIX

remio
serverHSM

AFS−client

random
access
partition

HSM
partition

tape
robot

217

open system−call during this time, MR−AFS forks a
new process to do a primary open. Only after this
process has succeeded, the remioserver will try to open
the file. The remioserver keeps information about these
children in the fetch queue which is also used to
schedule fetch requests in order to optimize throughput
on a fair basis.

The response time of the HSM−system to bring
files on−line is strongly non−linear with respect to the
number of requests being processed. MR−AFS therefore
provides a queuing mechanism in order to handle situa−
tions of high load in a graceful way. The position in the
fetch queue where the new request goes depends on the

number of requests the user has already in the queue,
thus allowing for a fair share scheduling of HSM re−
quests. This technique has been adopted from RZG’s
old main−frame based HSM−system HADES [4]. The
queueing mechanism also controls the number of HSM
requests being processed in parallel. This avoids a con−
gestion of the HSM system and allows, on the other
hand, enough parallelism to read multiple files from a
tape once it has been mounted.

This parallelism increases the throughput of the
HSM−system significantly. Therefore the user is en−
couraged to start the prefetching of all the files he needs
in a session or a batch job at the beginning. The
management of the fetch queue guarantees that a user
with a high number of requests cannot block the
requests of all other users. MR−AFS allows the user also
to inspect the actual fetch queue by a command he can
enter on his AFS−client machine (Figure 2).

Scalabilty by use of multiple archival residencies

Small sites and MR−AFS beginners have a single
archival residency where all files bigger than a certain
size are archived. But with the growth of data in many
cases it makes sense to separate different file−size

ranges to individual archival servers with different tape
hardware.

Another reason for having multiple archival resi−
dencies can be scalability. New experiments in high en−
ergy and plasma physics are supposed to produce data at
a rate of one to several TB per day. Here MR−AFS
could also be used as a common filesystem even if the
data streams have to be directed to separate archive
servers. The scalability of AFS in general is guaranteed
by the fact that the fileservers are completely
independent from one another and that the metadata
needed to build the AFS−tree on the client machine are
almost completely decentralized in the fileservers. The
same is true for MR−AFS if you ensure that each
fileserver has a preference for a dedicated archive
server. This can already be enforced by masks for
desired and undesired residencies which are part of the
AFS volume metadata. To separate the different data
streams in order to avoid congestion is then only a
question of network topology.

Scalability is a very important issue today and with
MR−AFS it can be achieved with rather simple and
cheap means without using a single huge high−end
HSM system such as HPSS.

Configuring a MR−AFS−cell

Since file copies on archival residencies generally
are moved off to tape by the underlying HSM system,
these file copies should be considered as tape−files.
MR−AFS then is more a convenient way to create and
access files on tape rather than as a kind of infinite disk
space. That means MR−AFS should be used only by
sites which have real mass storage requirements. Even
for those sites, wiping should be limited to the kind of
files you would store on tape, anyway.

All other files should not be wipable because it is
faster and in many cases also cheaper to have them on
disk. This goal can be reached in different ways:

• The simplest way would be to configure only one
shared residency which is the archival residency. If
the file−size range for this residency starts at a rea−
sonable size for tape files, say several MB, wiping
can be allowed on the local (non−shared) disk parti−
tions of the fileservers. The disadvantage of this ap−
proach would be that it would take the fileserver a
long time to get the list of candidates for wiping be−
cause also the small files (which are safe from being
wiped because they don’t have additional
residencies) are in the same partition.

• You then could separate the small files from the big
ones by having a special shared random−access resi−
dency for big files on each fileserver and declaring
only these wipable. If the size−ranges allowed for

~/texte: fs fetchqueue
Fetch Queue for residency backup (4) is empty.
Fetch Queue for residency stk_tape (16):
Pos. Requestor FileId TimeStamp Rank Cmd. State
 1 ata 536880083.9098.75195 Nov 3 16:36 0 open waiting for tape
 2 hwr 536879945.36.30569 Nov 3 16:37 0 pref waiting for tape
 3 hwr 536879945.400.48423 Nov 3 16:37 1 pref waiting for tape
 4 hwr 536879945.270.55867 Nov 3 16:37 2 pref waiting for tape
 5 hwr 536879945.382.46363 Nov 3 16:37 3 pref waiting for tape
Fetch Queue for residency d3_tape (64):
Pos. Requestor FileId TimeStamp Rank Cmd. State
 1 rln 536878253.30966.113655 Nov 3 16:33 0 pref waiting for tape
 2 afsbackup 536911346.107946.80670 Nov 3 16:34 0 open waiting for tape
 3 hwr 536879945.114.55860 Nov 3 16:37 0 pref waiting for tape
 4 afsbackup 536911349.52448.39391 Nov 3 16:34 1 open waiting for tape
 5 hwr 536879945.474.48661 Nov 3 16:37 1 pref waiting for tape
 6 hwr 536879945.234.53602 Nov 3 16:37 2 pref waiting for tape
 7 hwr 536879945.358.55885 Nov 3 16:37 3 pref waiting for tape
 8 hwr 536879945.370.56301 Nov 3 16:37 4 pref waiting for tape
~/texte:

Figure 2: Output of the "fs fetchqueue" command. On 2
of the 3 archival residencies are fetch requests queued.
All requests are waiting for the HSM−system to bring
the file on−line.

218

the local disk partitions and the shared residencies
are the same on all fileservers, volumes may be
moved around between all servers. Then all files
bigger than a certain threshold are wipable and be−
low not, no matter on which fileserver and where in
the AFS−tree they are.

• But it could also be desirable to allow wiping only in
certain subtrees of AFS and to concentrate wipable
files on a few fileservers. This is the configuration
RZG has chosen. The advantage is that the user can
trust that the files in his home−directory and all the
software is on−line and only in well−known parts of
the tree files may be on tape. The disadvantage then
is that you cannot move each volume to each
fileserver, but you have two classes of fileservers.

In our case only big files originating from obser−
vations in plasma physics and X−ray astronomy or from
supercomputing batch jobs are wipable. These files are
stored on four different fileservers each with 40 to 100
GB of disk space, but the total size of the files stored per
fileserver varies beween 1.5 and 2 TB. The AFS−vol−
umes on these fileservers are mounted in special sub−
trees in AFS for which everyone knows that access to
files may be slow.

One additional wiping fileserver provides the gen−
eral user with HSM storage for archiving: RZG gives
each user additional to his non−wipable home−directory
in AFS a private volume mounted in a special "m−tree"
in AFS, "m" for migrating.

Our AFS−cell "ipp−garching.mpg.de" runs 20 file−
servers and five database servers. To simplify mainte−
nance all fileservers run the same MR−AFS−binaries,
but only six of them make use of the special features of
MR−AFS, all others behave like standard AFS fileserv−
ers.

The reason for the high number of database− and
fileservers is that the cell extends over some remote
sites 500 to 800 km away from Garching. To make sure
that in the case of a network outage these remote servers
can still serve the local AFS−clients a read−only copy of
the database server runs at each remote site.

Experiences with HSM−migrations

RZG has been running MR−AFS since 1994. In the
beginning the HSM system being used was DMF on a
Cray−EL with robot attached D2−drives. In the follow−
ing years two migrations of files from this HSM system
to new ones took place:

• 1996 all tape copies of files < 8 MB were moved
from D2−tapes connected to the Cray−EL system to
STK Timberline tapes connected to a Cray J90 sys−
tem (~ 350,000 files, 0.5 TB, 6 months).

• 1998 the remaining files on D2−tapes were moved to
STK Redwood−tapes connected to a SGI Origin
2000 system (~ 120,000 files, 3.2 TB, 4 months).

After creation of a new archival residency all on−
line files and files being brought on−line which match
the characteristics of this residency automatically get
copies there. But then still a large number of unfre−
quently or never used files remain on the old archival
residency. One could think of bringing them on−line by
prefetching them, but then these inactive files would fill
up the fileserver partitions, wiping off the files the users
are really using. Therefore and for performance reasons
something more needs to be done.

During both migrations a table of contents for each
tape was extracted from the DMF−database. This table
contained for each file on the tape only a so called "file −
handle" instead of the real file name. The "filehandle" is
also stored in the inode of the file. In the DMF case the
HSM metadata mentioned before that is stored in the
MR−AFS volume metadata is exactly this "filehandle".
This allowed us to identify the files in MR−AFS. On the
Cray system a program was then run for each tape
which brought the files on−line in the order they were
written on tape and which triggered MR−AFS to add a
new residency on the new HSM system for that file and
delete the one on the old HSM system. 50 of these DMF
"dmget"−requests and three of the add− and delete−
residency commands were run in parallel in order to
minimize the number of tape mounts and maximize the
through−put. The add−residency command moves the
data directly from the old to the new archival residency
without affecting the random access residencies used as
staging space on the fileservers. During this whole pro−
cedure the AFS users had no interruption in service.

In spring 1998 the STK−Timberline tapes were
moved from the Cray J90 system to a second SGI Origin
2000 system and the whole DMF−system was converted
from Cray−DMF to SGI−DMF format. In this case the
service was interrupted for one day and the only change
in MR−AFS was to update the residency database entry

non−wiping
(standard AFS like)

wiping
MR−AFS

Fileservers 14 6

Files 6.2 million 1.6 million

disk space 0.5 TB 0.5 TB

total data 0.4 TB 7.6 TB

average file size 64 KB 4.9 MB

Table 2: Non−wiping and wiping fileservers. The
approximately 600,000 files in read−only AFS−volumes
are not shown. That accounts on the big difference
between disk space and total data for the non−wiping
fileservers.

219

for this residency.

Usage patterns of MR−AFS

Figure 3 shows that more than 50 % of the files on
non−wiping AFS−fileservers are smaller than 4KB. This
is what can be expected for Unix home−directories. For
this kind of file−size distribution data migration doesn’t
make sense.

On the wiping MR−AFS−fileservers (figure 4) the
file−size distribution maximum is shifted to much

higher files−sizes. There are, however, still a lot of
small objects. This has two reasons:

• AFS makes no difference between files, directories,
and symbolic links, so all these objects appear as
files.

• In the beginning users created in their "m−tree" lots
of small files before we introduced a quota for the
number of files in these volumes.

The residency database allows for each shared
residency to specify a lot of weight factors to calculate
the order in which files should be wiped. Our current
policy does not make use of all these possibilities, but
simply takes the time passed since the last access of a
file as the main criterium. Therefore we see in figure 5
for bigger files a sharp life−time on the staging
residency − in this case of 2**6 = 64 hours. The files
smaller than 2**(5 +11) = 64 KB are always on−line.
The dark stripe in the foreground is a region for files
older than the 2**15 hours which exceeds the age of this
server.

Figure 6 shows that 2/3 of the files in the "m−tree"
have never been read. For the other wiping servers
which are dedicated to individual projects this fraction is
much lower, however.

Figure 7 shows the total data of all files in our cell
by file−size range. The maximum is in the file−size
range of 64 − 128 MB. The on−line portion of all data
(red) is obviously rather small (< 10%) while the online
portion of files is about 85 %.

In the statistic over the wiping fileservers the
percentage of on−line files (figure 8) shows that files

Figure 3: Distribution of files per file−seize range on
non−wiping AFS−servers (columns for [0−4KB] up to
[1GB−2GB]).

Figure 4: Distribution of files per file−size range on
wiping MR−AFS−servers.

Figure 5: Percentage of on−line files per file−size
range and per time since last access. Missing values are
negative (dark).

220

smaller 64 KB could always be kept on direct access
storage. The bigger the files the less probable it is to
find them on disk. This is remarkable because our
migration policy is based primarily on the last access
time rather than on file−size. Therefore it must be the
user’s access pattern which prefers smaller files.

Retrieval and staging times and reliability

We see a staging from tape to disk of about 10
GB/day with peaks up to 50 GB/day. Transfers from

disk to tape are more than twice that high.

Tape drive Daily average of HSM
retrieval time in last 61 days

Type number minimum median maximum

Timberline 7 23 sec 45 sec 142 sec

Redwood 8 107 sec 297 sec 8343 sec

Table 3: Daily average of the retrieval time of files in
the HSM system. Even in the best case longitudinal
recording technique is 5 times faster than helical−scan
technique.

As indicated before retrieval times are strongly
nonlinear to load. They also depend on the kind of tape
drives used. In terms of reliability we see a significant
difference between longitudinal and helical−scan
recording technique. Helical−scan tape drives turned out
to be very sensitive to the quality of the media. We have
never lost any data (having configured the HSM−
systems to keep two independent tape copies of each
file), but the retrieval times sometimes were
unacceptably long due to broken tape drives or
positioning problems. Also the high capacity of
helical−scan media sometimes lead to long retrieval
times if a file is requested from a tape which at the same
time is being written. This, of course, is weak design of
the HSM software.

Staging life−times depend nonlinearly on the
relation between the data volume needed at a time and
the disk space available. We see random access
residencies with file life−times of months and those
where the average file life time is shorter than two days.

Figure 4: Files on the fileserver for the "m−tree" by
number of times they have been read. First column
means: never.

Figure 5: Total data per file−size range over all
fileservers in the cell. The blue columns represent the
total data, the read ones the on−line portion.

Figure 6: Percentage of on−line files per file−size
range on wiping fileservers. All files < 64 KB are on−
line because they are stored in the local disk partition.

221

These very short staging life−times are not a problem
for the user community of this fileserver because the
files are read only once during a batch job. Each batch
job needs other files and prefetches them. So it is just
the classical tape processing such as in the old
mainframe world.

The average time between software crashes is in
the order of some months. Therefore nearly all service
interruptions are caused by hardware failures such as of
tape drives, network interfaces, disks, and routers
(power failures do no harm because all servers and tape
robot systems are battery buffered). Of course, users
with only on−line data are much less affected by failures
than those who need off−line files.

Conclusion

MR−AFS has proven to be mature, stable. It is the
common filesystem for Unix, Windows NT (and via
Samba also for Windows95) at RZG. The reliability of
the whole system is limited mainly by the reliability of
the underlying hardware. The MR−AFS internal data
migration (wiping) gives better control over the
behaviour of the system than can be achieved with most
vendor’s HSM solutions.

For the following reasons MR−AFS can be used as
a common scalable filesystem up to far higher capacities
then are being used today:

• AFS is inherently scalable due to the independency
of fileservers from one another and the
decentralization of the metadata (no hot spots).

• New fileservers for on−line disk space and new
archival servers connected to HSM systems for the
archiving can be integrated at any time.

Finally it allows one to use different vendor’s
HSM−systems at the same time and to exchange them
without interference with the user’s view of the
filesystem. This is very important because it allows one
in the future to revise today’s decisions for HSM
solutions.

References

[1] C. Everhart, HSM for DCE DFS, Proc.
Decorum ’96, February 1996.

[2] J. Goldick, K. Brenninger et al.,An AFS−
Based Supercomputing Environment,Proc. Twelth IEEE
Symposium on Mass Storage Systems, April, 1993.

[3] C. Maher, J. Goldick et al.,The Integration of
Distributed File Systems and Mass Storage Systems,
Proc. Thirteens IEEE Symposium on Mass Storage Sys−
tems, May, 1995.

[4] H. Reuter, The HADES File Server,Proc.

Eleventh IEEE Symposium on Mass Storage Systems,
October, 1991.

