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Abstract

This paper shows the suitability of a “self-maintaining”
approach to Tertiary Disk, a large-scale disk array system
built from commodity components. Instead of incurring
the cost of custom hardware, we attempt to solve various
problems by design and software. We have built a cluster
of storage nodes connected by switched Ethernet. Each
storage node is a PC hosting a few dozen SCSI disks, run-
ning the FreeBSD operating system. The system is used
as a web-based image server for the Zoom Project in co-
operation with the Fine Arts Museums of San Francisco
(http://www.thinker.org/ ). We are designing a
self-maintenance extension to the OS to run on this cluster
to mitigate the system administrator’s burden.

There are several components required for building a
self-maintaining system. One is decoupling the time of
failure from the time of hardware replacement. This im-
plies the system must have some amount of redundancy,
and has no single point of failure. Our system is fully re-
dundant, and everything is constructed to avoid a single
point of failure. Another is correctly identifying failures
and their dependencies. The paper also outlines several
approaches to lower the human cost of system adminis-
tration of such a system and making the system as au-
tonomous as possible.

(The table of contents are provided here for your conve-
nience only; it will not appear in the final version of the
paper.)
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1 Introduction

Maintenance is a big problem for large disk-based stor-
age systems. For instance, a 1993 survey by Strate-
gic Research Corp. shows that the annual cost of sys-
tem administration is almost 3 times that of the annual
cost of hardware[1]. Also, John Wilkes has mentioned
recently that there is a 2–12 factor of difference be-
tween storage and management, depending on the defi-
nition of management[2]. In addition to the cost, proper
maintenance is critical for storage systems because the
consequence of a failure can be loss of valuable data.
Packaged solutions such as hardware RAID boxes and
turnkey server systems such as Tandem[3] and Network
Appliance[4] have been successful in the marketplace be-
cause of these reasons. However, this approach does not
scale well past the terabyte mark, both in price and main-
tenance complexity, as having to purchase multiple of
these boxes greatly increase the complexity of adminis-
tration.

Our system uses commodity hardware to solve these
problems[5]. We have built a cluster of storage nodes to
be used as a web-based server. The storage nodes are con-
nected by switched 100Mbps Ethernet internally and have
an ATM connection to the outside world. Each storage
node is a PC hosting a few dozen SCSI disks, running the
FreeBSD operating system. The system is used as a web-
based image server for the Zoom Project in cooperation
with the Fine Arts Museums of San Francisco[6]. We are
designing a self-maintenance extension to the OS to run
on this cluster to mitigate the system administrator’s bur-
den.

There are two aspects of the system we have to consider
when discussing administrative issues: the system admin-
istrator’s perspective, and the user’s perspective. They
will be discussed separately.
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For the system administrator, it is clearly desirable that
the system continue functioning in the administrator’s ab-
sence. However, all systems require human intervention
at some point, for instance, for hardware replacements,
so there is no system that is fully automated in the sense
that there is no human system administrator present at any
time. By “self-maintaining”, we mean that our storage
system will simplify the system administrator’s job in the
following ways:

� Maintenance will only be required at fixed intervals.

� At maintenance time, the required tasks will be
clearly defined.

In addition to reducing the cost, this type of maintenance
will also reduce the chances of operator error by allowing
the person to work under less stressful conditions. Not
having to repair the system right away, as the system is
fully functional even without the repair, reduces the men-
tal stress. Also, an operator working during regular work-
ing hours is less likely to make mistakes than one working
at 4AM.

It is essential to give the impression to the end users
that the system is ‘up’ at all times. However, our users
are connected to the system over the Internet, and thus are
used to hitting ‘reload’. If we can re-route all accesses
within a few seconds of a failure, the user will not be able
to distinguish a transient network problem on the Internet
with a failure on our system. In fact, given the unreliabil-
ity of the Internet, most problems will be caused by the
network.

There are several components required for building a
self-maintaining system. One is decoupling the time of
failure from the time of hardware replacement. This im-
plies the system must have some amount of redundancy,
and has no single point of failure. Our system is fully re-
dundant, and everything is constructed to avoid a single
point of failure. Another is correctly identifying failures
and their dependencies. We are planning to add several
features, such as enclosure monitoring, to Eric Anderson’s
CARD system[7], an extensible monitoring system based
on relational databases, and use it on our servers.

The last major component is repairing. There are three
steps necessary for this; to mask failures so the system can
continue functioning, to take actions to remove the vulner-
ability caused by a failure (e.g., reconstruct contents of a
failed disk) and to prepare precise repair instructions for
the human operator.

The remainder of the paper is organized as follows.
Section 2 described the related work in the field. In Sec-
tion 3, we clarify the concept of self-maintainability and

explain how we approach the problem. Section 4 de-
scribes the application briefly. In Section 5, we illustrate
the architecture of the system we are using for the experi-
ment. Section 6 illustrates the software architecture of our
system, and Section 7 explains our validation methodol-
ogy, and Section 8 describes how the system can be scaled
to a much bigger size.

2 Related Work

There are related work in high-availability servers, net-
work attached storage, and maintenance of large clusters.

2.1 High-availability servers

Tandem manufactures network servers[8, 9]. Their
NonStop servers are fully redundant and have hot-
swappability of most components, thus it is not necessary
to take them down even during repairs. Their architecture,
called “shared nothing”, has no single points of failure.
Any one component can fail and the system will still func-
tion. Their system administration suite is called Tandem
Maintenance and Diagnostic System (TMDS)[10]. It has
an auto-diagnostics feature that uses an AI program that
compares the symptoms of the system to known failure
modes and tries to identify the failures. It can optionally
dial up Tandem technical support with a report which a
remote technician can consult while running diagnostics
of his own.

Network Appliance[4] sells network servers built
around Digital’s Alpha chip. Their NFS servers are ad-
vertised to outperform a 4-way P6-200MHz Windows NT
system by 2 to 10 times. They use RAID 4 (block-
interleaved parity with a dedicated parity disk) with
NVRAMs to increase performance. They have a filesys-
tem that can recover from crashes very quickly.

2.2 Network attached storage

Microsoft Tiger is a video server built from commodity
PCs (called “cubs”)[11, 12]. Their goal is to tolerate the
failure of any one cub or disk without degradation of ser-
vice. They use mirroring for backing up data. This is
because they cannot tolerate the runtime reconstruction
overhead of parity. They locate the “primary” copies of
the data in the outer tracks of the disks for better per-
formance, and the backup copies are declustered to avoid
hotspots during failures. Tiger distributes all files across
all disks on all cubs for maximum striping performance,
but this method has a drawback of having to reconstruct
data on the entire system when a new disk is added. This
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reconstruction is not very expensive as there is no parity
calculation involved.

A single controller serves as entry point from clients.
No image data passes through the controller so it is not
likely that they will become performance bottlenecks.
They take great care to ensure that sufficient bandwidth is
available during the entire course of the playback, and will
delay start of playback if necessary. They use a distributed
schedule management protocol for scalability. Each cub
has a partial, potentially outdated view of the schedule and
they pass the schedule around, updating it along the way.
Cubs use deadman protocol for fault detection—each cub
sends periodic ping to the cub on its right.

Petal[13] is another example of a network attached
storage system. It is a collection of distributed servers,
each containing multiple disks. They use a method called
chained declustering[14] to avoid having the load increase
100% on a machine when its mirrored counterpart fails.
Petal is a block server. The authors of Petal have also
designed a distributed file system called Frangipani[15]
to run on top of Petal. CMU’s NASD (Network Attached
Secure Disks)[16] is another example of network attached
storage. xFS[17] is a combination of network striping and
LFS (Log-structured Filesystem)[18].

Our system avoids the complexity of distributed filesys-
tems by using HTTP redirects and IP masquerading to dis-
tribute user requests and mask failures.

2.3 Maintenance

Eric Anderson of the NOW (Network of
Workstations[19]) Project has been studying several as-
pects of system administration of clusters. His most re-
cent work introduces a system called CARD (Cluster Ad-
ministration using Relational Databases)[7]. He proposes
using relational databases to build an extensible monitor-
ing system. It uses a hybrid push-pull protocol to collect
data from individual machines. His emphasis is on moni-
toring and diagnosis. We are planning to use CARD as a
building block for our monitoring and diagnosis system.

The Storage Systems Program at HP are working on
a system called “self-management” of storage[20]. Their
focus is on automatic assignment of storage devices; hu-
mans do not have to worry where to put what. Their pro-
totype system is capable of assigning several thousands of
objects to devices in a few minutes.

Sun’s Jini[21] makes devices, including disks, identify
themselves as part of their automatic component discov-
ery paradigm.

3 Self-maintaining system

In this section, we will define what “self-maintaining”
means in the context of large disk-based storage systems,
and outline the requirements on how to construct such a
system.

3.1 Definition

There are two aspects to self-maintainability of a system,
depending on whether perspective is that of the system
administrator or that of the user.

3.1.1 System administrator’s perspective. To the
system administrator, a self-maintaining system is one
that does not require constant attention. For the purpose
of our research, we define it as a system that has the fol-
lowing characteristics.

� Maintenance will only be required at fixed intervals.

� At maintenance time, the required tasks will be
clearly defined.

What comprises a reasonable interval is an interesting is-
sue in itself. We are planning to run some simulations
after gathering enough data on failures to see how well
the system will stay up with varying intervals. For the
purpose of this paper, however, we assume an interval to
be one week or so.

There are two major benefits of this approach:

Reduce operator errors It should help the operator’s
performance. Aside from not required to make re-
pairs at odd hours, not being under the pressure of
having to fix the systemright awaywill very likely
reduce the chances of operator errors.

Reduce operator costAnother benefit is that it is not
necessary to pay a full-time wage for a system ad-
ministrator of such a system. We can either hire
someone part-time or have the same person admin-
ister many systems instead of just one or two.

The second reason is similar to the motivation behind Tan-
dem’s TMDS[8, 10]. Tandem has engineers at the sup-
port center 24 hours a day, and when systems are having
problems, they automatically dial up Tandem to contact
one of the support persons. A few hours after the fail-
ure, the support person will show up at the customer’s site
with necessary repair parts. Thus, the companies that pur-
chase support contracts do not have to hire operators by
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themselves; they are in effect “sharing” the operators with
other companies through Tandem.

Our system will take this one step further. There is no
need for anyone to be at anywhere in the middle of the
night; in fact, there is no need for anyone to be at any
central support center. The operators can travel from one
customer site to another throughout the week, or they can
be doing something else during most of the week.

3.1.2 User’s perspective. There are two classes of
users on a web-based storage system like ours.

End users These are the people who use the system from
the Internet. They know nothing about the internals
of the system, will easily get annoyed if something
doesn’t work, and may not come back at all if they
are unhappy. They usually only issue reads to the
system.

Content providers There are relatively few people
whose job is to update the contents of the web server.
They are part of the project, and can be asked to wait
for awhile if the system cannot allow writes at the
moment. They have a good knowledge on how to use
the system, but usually do not know anything about
the internal workings.

To reduce end-user frustration, it is important to reduce
the system’s down-time as seen from across the Internet.
Note that a system that relies on an operator to keep it
running is not as available as one that maintains itself, as
it will take minutes or maybe even hours for the operator
to actually be able to repair the damage[22]. Our goal
is to have the system repair any interruption of service
within a few seconds, and continue to function unattended
until the next scheduled visit by the operator. For a web
server application such as the one we are running, this is
illustrated by the slogan “repair by reload”.

As Mary Baker said in her Ph.D. thesis, “in the limit, as
recovery time approaches zero, a system with fast crash
recovery is indistinguishable from a system that never
crashes at all”[23]. Her research was about file servers
on distributed operating system, and the above statement
was qualified that it is only appropriate in systems that can
tolerate short periods of down-time, as a cluster of work-
stations in a typical engineering or research environment.

I believe our application, a web server, is another ex-
ample where a system with fast crash recovery is just as
good as a system that never crashes. This is based on the
observation that since the Internet is so unreliable, it will
be impossible for the user to distinguish problems on our
servers from the daily transient problems of the network.

Our goal is to recover from any single failure within 5 sec-
onds. We believe that is less than the time an average user
notices a network problem.

For the content providers, the situation is a little differ-
ent. It is permissible to have the system be in a state that
it cannot receive input from them for a short while. How-
ever, repeated problems will affect their productivity as
well as delay the update of the contents, so it is desirable
to keep downtimes as short and as infrequent as possible.

In order to partially shield problems from the content
providers, we offer aportal to which they can upload the
new images. Once the data is in the portal, they can go on
to their work. However, if there is a problem with some
other part of the system that disallows writes, the new im-
ages may not be available on the web until the problem is
fixed.

3.2 Requirements

There are several requirements for building a self-
maintaining system. Here the requirements will only be
listed; the implementation details can be found in Sec-
tions 5 and 6.

No Single Point of Failure Such a system is not allowed
to have any single point of failures. This will make
it possible to decouple the time of repair from the
time of failure, allowing the system to run under an
existence of a failure. Clearly, depending on how
many failures the system should tolerate, it may be
necessary to have more redundancy, but not having a
single point of failure is a minimum requirement for
any system that is designed to function continuously
in an event of a component failure.

Constant and Reliable Monitoring The system should
be constantly and reliably monitored so corrective
actions are taken very quickly after failures. We use
very simple shell scripts for monitoring, and have an
interval of 5 seconds of sleeps between monitoring.
The monitoring scripts are autonomous, so a failure
on one machine will not cause a monitoring script on
another machine to malfunction.

There are some characteristics in our application that
makes it easy to build a self-maintaining system. Al-
though these are not hard requirements, they nonetheless
have helped us simplify the design of the system.

End-users issuing only readsOne important aspect of
our system is the read-mostly nature of end-user ac-
cesses. We believe this is not unique to our applica-
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tion; many other applications with similar terabyte-
capacity scale share the same characteristics. By not
having to allow writes in degraded mode, this has
made the immediate recovery only a matter of lo-
cating the backup and rerouting user requests there
while more lengthy recovery procedures can take
place.

Little internal communication The application needs
very little internal communication to handle user re-
quests (see Section 6.1 for details on how user re-
quests are handled). This simplifies the recovery
as there are only few messages or connections that
might be lost due to a failure. Also, this will enable
the system to scale up nicely in the future.

4 The Application

The main application for the Tertiary Disk prototype is an
image database holding pictures of objects of art. The
“Thinker” site (http://www.thinker.org/ ), run
by the Fine Arts Museums of San Francisco, has been
providing access to art images through the Internet since
October 1996. They implemented a searchable index,
through which the user can query their database for key-
words (artist, title, description). The user will then be pre-
sented with a page of thumbnails of images that fit the
search criteria, and by clicking on the thumbnails they
can view larger versions of the images. The largest im-
ages they provide are about 500 pixels on one side. The
original files were much larger (up to 3,096� 2,048 pix-
els) but due to disk space constraints and lack of a way
to adequately present them to users over the Internet, they
decided to only provide relatively small images.

4.1 GridPix

Understandably, one of the most common complaints
from their users was “can’t you make the pictures big-
ger?” We provide disk space for larger versions of the im-
ages. In addition to providing the space, we also wrote a
viewer called GRIDPIX[24] which is a tiled, layered JPEG
format with multiple resolution levels. There are about
70,000 images occupying about 2.5TB of storage space
when fully mirrored. Each images are stored in several
different formats, from the original PhotoCDs, which are
about 5MB per image, to human-processed TIFFs, which
average 12MB per image, to GRIDPIX, which are about
1.2MB per image.

Figure 1 shows a three-layer GRIDPIX file. Tiles 1 and
2 form the smallest layer; tiles 3 through 8 are the middle
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Figure 1: Three-layer GRIDPIX Image
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Figure 2: GRIDPIX Interface

layer and the largest layer consist of tiles 9 through 23.
Figure 2 shows the interaction between the client and the
server. When the client requests an image, a CGI script
(mkhtml.cgi ) returns an HTML page describing the
page layout. The individual image tiles are retrieved by a
separate CGI script (gettile.cgi ). GRIDPIX is com-
pletely HTML-based, so any graphical web browser can
function as a client.

One thing to note is that the GRIDPIX server requires
very little processing power during runtime. The images
are already divided up into tiles by the TIFF-to-GRIDPIX

converter, so the numerous calls togettile.cgi only
require two accesses to the file; one to get the offset and
size of the tile from the header, and another to retrieve
the tile itself. In particular, there are no JPEG encod-
ing/decoding required on the server side. Moreover, the
GRIDPIX files are very compact, so after a few accesses,
most of the requests will be handled by on-memory disk
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cache, not the disk surface.

4.2 Status

The site has been open to the public since March 2, 1998
with about 20,000 images[25]. We currently have over
70,000 images available. The reason why we couldn’t
simply make all images available is because the pho-
tographs are not of good enough quality to be presentable,
and require manual work to crop, reorient and color cor-
rect them before they can be provided to visitors. Accord-
ing to the people in the museum, the response from the
public has been very favorable. Also, we have not ex-
perienced any down-time yet despite individual machines
crashing or being rebooted many times.

5 Tertiary Disk Architecture

The Tertiary Disk group has built a prototype disk storage
system. Now we are building a self-maintaining system
on top of it. Its total capacity is 3.2 terabytes. Here are
some highlights:

� 20 PCs (200MHz Pentium Pro with 96MB of mem-
ory each) as disk servers

� 396 8.4 gigabyte IBM DCHS-09Y 7,200RPM Ultra-
Wide SCSI disks

� 44 Adaptec 3940UW twin-channel Ultra-Wide SCSI
adapters

� 52 Trimm Technologies model 381 8-disk SCA en-
closures with serial interface

� 2 16-port 100Mbps fast Ethernet switches

� 4 24-port serial terminal servers for PC consoles and
disk enclosure interfaces

� PCs run FreeBSD operating system, with minor
modifications

� Double-ending (Figure 3) with feedthrough termina-
tors for high availability

� Redundant frontends use HTTP redirect to route user
requests

� 6 uninterruptible power supply (UPS) units

� Remotely-controllable power switches on all PC and
enclosure power cables

� 2 PCs (133MHz Pentium) as HTTP frontends

� 2 PCs (200MHz Pentium Pro) as infrastructure
servers (NIS etc.)

It occupies 7 racks, each 7 foot tall and 19 inches wide.
There are two different configurations. 4 PCs are config-
ured in a “disk-heavy” configuration, with 70 disks per 2
PCs. The remaining 16 are in a “CPU-heavy” configura-
tion, with 32 disks per 2 PCs.

Only one of the computers is connected to a video mon-
itor and keyboard; the serial ports act as consoles for the
rest. One of the frontend machines has a standard monitor
and keyboard to provide access to the system when we are
in the machine room.

SCSI Adapter

PC

Terminator Terminator

Disks
PC

SCSI Adapter

Figure 3: Double-Ending of SCSI Disks

Here are the characteristics of the system.

5.1 Commodity Components

The most important feature is that this whole system is
built only from commodity, off-the-shelf, components.
This lowers cost of storage by factors of two to four com-
pared to standard RAID boxes. At the time of construc-
tion of the system (summer of 1997), large RAID arrays
cost about 60 cents per megabyte; our system cost about
20 cents per megabyte using street prices of components.

5.2 Redundancy

In designing the TD prototype, we have taken care to en-
sure it does not have any single point of failure. Below is
the list of places where we avoided creating single points
of failures.

� Multiple UPS units provide power to the racks.
There are power rails on either side of a rack, con-
nected to different UPS units. UPS units also provide
10 minutes of standby power to survive temporary
glitches in power.

� Double-ended PC pairs are connected to different
power rails. They are also connected to different
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network and serial switches. We use external feed-
through terminators so the SCSI bus integrity is pre-
served even when one of the PCs completely loses
power.

� Each enclosure have two power supplies. They are
connected to power rails on opposite sides of the
racks. Each power supply has a built-in fan, and there
is a third fan in the enclosure so the airflow around
the disks will not be reduced to half when one power
supply fails.

� Most data is mirrored. Stable data, not necessary for
the system’s day-to-day operation, is backed up on
tapes or CD-ROMs.

6 Software Architecture

There are several aspects of software architecture that
needs to be discussed.

6.1 Handling user requests

Our main application, as described in section 4, is a web
server for fine art images. The request for an image from
a user first comes in to a frontend machine. The frontend
will look up a table and returns an HTTP redirect mes-
sage to the user’s client, which subsequently connects to
the backend machine holding the image. From that point
on, the client interacts with the backend machine directly
until the user has finished browsing the image. Figure 4
illustrates how requests are passed around.

ImagesSearch

URL of images
HTTP redirect

Request

Users

Fine Arts Museums of
San Francisco

Frontends

Tertiary Disk Project (Berkeley)

Search Engine

Backends

Figure 4: Handling user requests

6.2 Masking failures

There are several levels of masking that can be done to
handle failures. In one extreme, a system can have non-
volatile RAMs holding state information for open TCP
connections so a machine crashing and rebooting will not
cause any connection to be lost. Another, like NFS, is to
have a stateless server with clients retrying until the server
replies. This model causes the client to lock up until the
server comes back up, but will not lose any requests.

Those two kind of models are required in a local-area
network environment where correctness of response is
valued over anything. Our premise, as mentioned in sec-
tion 3, is that since the Internet is so unreliable, it doesn’t
make sense to try to mask 100% of the failures. Our goal
then becomes how to implement the “repair by reload”; in
other words, how to make sure the system will be able to
mask any failure within a few seconds to allow reads from
end-users.

Figure 5 illustrates how we mask machine or SCSI fail-
ures from users. We have two frontends,tarkin.cs.
berkeley.edu and ackbar.cs.berkeley.edu ,
backing up each other using IP aliasing. The canonical ad-
dress,gpx.cs.berkeley.edu , is usually an alias of
tarkin . The other machine,ackbar , checks over the
Ethernet to see iftarkin is up every 5 seconds. When it
can’t findtarkin , it will take overgpx . It will still keep
checking fortarkin every five seconds, and will release
thegpx alias as soon as it findstarkin .

Both tarkin and ackbar check all the GRIDPIX

servers every 5 seconds. This is done by fetching a file
from the machine; the file will not be available if the
HTTP server is down or the disk is having problems.
When it discovers problems on one of the machines, it will
automatically forward any subsequent requests from users
to the backups. Since the CPU load on these machines, as
well as all the servers, are very low, and the scripts are
very simple, it is very unlikely that these scripts do not
detect problems in a prompt manner.

The above two tricks will cover most cases except for
one—users already in a GRIDPIX session when a server
goes down. There are two ways to mask this case: to
do something similar as the frontends, having two servers
back up each other, or have another machine possibly one
of the frontends to take over the IP address temporarily
and forward the request to the backup. We are planning to
implement the latter.

6.3 Operating System Support

In this section, we will describe what part of the operating
system we had to modify in order to build our system.
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Figure 5: Masking failures

6.3.1 SCSI/Disk Subsystems.The SCSI and disk
subsystems were the ones that caused most problems for
us. It is understandable because commodity hardware are
not necessarily designed with a large server system like
ours in mind. This is one place where specialized storage
system manufacturers have an advantage. We have been
able to fix several problems by summoning help from
FreeBSD developers. The actual nature of the problems
are beyond the scope of this paper; please see our home
page for more information.

6.3.2 Disk Identification. One problem with having
several hundred disk drives, all looking identical, is that
it is very easy to confuse them. SCSI disks are identified
by their SCSI IDs within their bus, which are identified
by the host adapter number within the machine, which are
identified by hostnames and IP addresses. The problem
is that if two disks are accidentally exchanged, the oper-
ating system will not be able to tell the difference; it will
try using the disks until something falls over. The SCSI
IDs are set on the disk enclosures, so if a pair of disks are
accidentally swapped, for instance during replacement of
a broken enclosure, their IDs will change with the disk in
the same location appearing to having the same ID as be-
fore. There could be several different consequences rang-
ing from OS crash to application error; some of them are
extremely dangerous.

We are designing a system in which the system will be
able to tell when disks are installed incorrectly. There are
various ways to implement this, with trade-offs in the ef-
fects and complexity of design. Here the few alternatives
we have considered.

Serial Numbers Each disk has a unique serial number in
its permanent memory. By reading this, the operating
system will be aware of disk being moved around
by keeping a list of serial numbers of the disks and
comparing disks to it upon each boot.

Comment: It is easy to implement, but will not let us
do more than simple safe-guarding against operator
errors.

Disklabel Each disk has a “disklabel” which describes
the partitioning of the disks as well as some other
information about the disk (rotational latency, geom-
etry, etc.)[26]. It should be possible to expand the
format of the disklabel to include some more infor-
mation, such as expected bus/SCSI IDs and mount-
points.

Comment: We can do more than the previous op-
tion; it can be used for simple safe-guarding with
bus/SCSI IDs (note it doesn’t even require a table
to be kept on the system, as the disks “know” where
they are supposed to appear on the system) to more
complex tasks such as automatic mounting. How-
ever, since the disklabel has a fixed size, there is a
limit on the complexity of what we can do. For in-
stance, we’ll need to add special fields to describe
if the disk is part of a striped set, and if it is, how
many other disks are there, where in the set this disk
appears, etc.

Script The last option is for each disk to have a “known”
partition on which there is a filesystem where there
exists a script that is to be executed in turn when the
system boots.

Comment: What we can do with this option is vir-
tually unlimited. It can be used to check the disk’s
identity (the system boot process should call the
disk’s script with its bus/SCSI IDs as arguments), it
can be used to auto-mount necessary filesystems, or
it can be used to construct more complicated enti-
ties such as striped arrays. Note that in either case,
there is no modification whatsoever required on the
boot disks themselves; the boot disks just read in the
scripts and execute them in turn. If the scripts are
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written cleverly, it may even not matter what order
the disks are inserted in a particular enclosure. If a
disk is moved to a different machine, it is not possi-
ble for our system to rectify the situation without an
aid of an operator; we will need some kind of dis-
tributed filesystem to handle such cases.

We have implemented the third option, the script
method. It is possible to move disks around within the
same machine and still have them mounted correctly, both
for the single filesystem case and striped array case.

6.3.3 Fastfsck . It is important to reduce the time
required for rebooting the system in order to minimize
the window of vulnerability. We have implemented some
methods outlined in Mary Baker’s Ph.D. thesis[23], but
the largest amount of time taken on a reboot has always
been thefsck [27] time. It takes about 20 minutes to run
on our 15-disk striped arrays after a system crash.

Dr. McKusick, the author offsck , has been working
on a project called “soft updates”, in which by chang-
ing the way dirty data is written to the BSD filesystem,
the performance and reliability improves greatly. These
filesystems also do not needfsck to be run even af-
ter a crash, as it may lose some space, but they will be
consistent[28]. We still need to runfsck from time to
time to reclaim the space, but it can be done at any time,
not right after a crash.

There has been snapshots of soft updates being released
for FreeBSD. We have been using it on our machines for
a few months with no ill effects.

7 Validation

We are planning to run simulations to validate the feasi-
bility of our approach. The objective is to collect enough
data on failures and prove by simulation that the system
will actually run continuously and flawlessly in the ex-
istence of failures. We would like to be able to predict
the expected downtime depending on several parameters,
most notably the repair interval.

7.1 Collecting data

We have been keeping a log of all the failures we expe-
rienced. Many of them have distinct entries in system
logs (which I have modified the system to keep for much
longer than the default). In addition to observing the com-
ponents under normal use, we are subjecting some disks
to artificial loads to see if it will make any difference in

failure rates. This in part augments the low loads we’re
seeing on the Museum project.

7.1.1 Logs. There are various logs in the system that
can be used to observe component failures. The main sys-
tem log (/var/log/messages ) is where all the kernel
messages, as well as messages from any process using the
syslog facility, go. Disk failures show up here as a loud
and continuous stream of retries and failures. You can also
see processes getting killed due to various reasons. Most
of them are segmentation faults due to programming bugs,
while there are some of them, such as swap pager faults,
are caused by hardware problems.

The HTTP servers have their own logs. There is one
file for access logs (httpd-access.log ) and one file
for error logs (httpd-error.log ). The latter can be
used to determine when the servers are restarted, etc.

7.1.2 Error frequencies. The frequency of errors we
have seen so far in 20 months of operation is shown below.
The failures do not include components that were already
bad as installed. Components without any failures, such
as CPU and enclosure fans, are not shown.

Component Total Failed %
SCSI adapter 44 1 2.3
SCSI cable 39 1 2.6
SCSI disk 396 7 1.8
IDE disk 24 6 25.0
Enclosure (SCSI) 46 13 28.3
Enclosure (power) 92 3 3.3
Ethernet adapter 20 1 5.0
Ethernet switch 2 1 50.0
Ethernet cable 42 1 2.4

Here are some observations:

� The Ethernet switch obviously has too small a sam-
ple size to draw any meaningful conclusions.

� On the other hand, the disk enclosures’ SCSI bus in-
tegrity and IDE hard drives are major causes of con-
cern. These are also the two hardest components to
replace, causing a major headache for the system ad-
ministrators. We are investigating methods to boot
the machines with CD-ROMs as system disks, to
avoid the problem with IDE hard disks altogether.

One thing to note is that it is very hard to diagnose
SCSI bus integrity problems. It can be any of the
SCSI host bus adapter, cable, disks, enclosures or
the terminator. As can be seen from the table above,
most of our problems have been due to enclosures.
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� Compared to the IDE drives, SCSI drives have been
surprisingly reliable, the MTBF works out to about
400,000 hours. We suspect the difference is due to
two factors: IDE drives being of lower quality in
general, and the superior cooling of external disk en-
closures that house the SCSI drives.

7.2 Simulation

We are planning to write an event-driven simulator to use
the data we collected to experiment with various design
parameters. The design parameters include: different re-
pair intervals, systems with and without double-ending,
systems with and without fast reboot optimizations, dif-
ferent disk failure rates, and different enclosure failure
rates. It will also allow us to investigate radically differ-
ent designs, such as having significantly more disks per
machine.

8 Scaling to the next level

Our machine room, 10 meters on a side, has enough space
to hold about 10 of our 400-disk systems. Using the re-
cently introduced 50GB 3.5 inch drives such as the Sea-
gate Barracuda 50, that will give us a total capacity of
200TB. That system will be able to hold 150 million
GRIDPIX images or 15 million TIFF images of similar
quality as ours.

Will our design scale well past the current size given the
nature of the application, a web-based image server? We
believe the answer is yes. Since each machine has its own
web server, there is no real performance bottleneck except
for the frontends and network connections to the outside
world, as long as we keep the PC-to-disk ratio constant.

8.1 Performance

Our system’s performance is already limited by the exter-
nal bandwidth. Using a synthetic workload, we’ve mea-
sured that one of our FreeBSD system with 32 disks can
sustain 2,000 8KB random reads per second, which trans-
lates to about 16MB/sec or 128 Megabits/sec. (With 1MB
random reads, the number goes up even higher, to about
70 MB/sec.) Compared to the internal network bandwidth
of 100Mbps switched Ethernet or external bandwidth of
an 155Mbps ATM link, it is clearly impossible for the
users across the Internet to generate loads anywhere near
the maximum workload that a few dozen PCs can han-
dle unless the load is extremely unbalanced. Having more
machines in the system is not going to make the situation
change.

The frontends will not be a bottleneck either. The loads
on the frontends are extremely low—the request from the
user passes through the frontend only once per image,
when the user is first transferred from the museum, and
the rest of the transactions, including all themkhtml and
gettile calls are handled by the backend servers. What
the frontend does is a simple table lookup to determine the
right server. Since the images are organized by their orig-
inal PhotoCDs, each of which contain about 100 images,
the size of the table is small too (only 800 lines so far—
there are only 800 PhotoCDs).

We expect the frontends to handle the load of ten times
as much servers easily. However, if the situation changes
it is easy to add more frontends and have them work in
parallel.

All of this, of course, depends a lot on the nature of the
application. Our application does not require much pro-
cessing power to handle user requests. Part of it is the na-
ture of being the backend of an image database—the mu-
seum site handles all the database queries. Another reason
is the design of the application. As mentioned in section 4,
the GRIDPIX server requires very little processing power.
For a more CPU-intensive application, particularly those
that require more internal communication, might not scale
nearly as well.

8.2 Maintenance overhead

Given that the performance scales well into the next or-
der of magnitude in terms of number of disks, the cost of
maintenance will be the main problem. Our system started
out with one system administrator spending about 4 hours
per day to keep it running; with the improvements we have
made so far, it is now down to about 1 hour per day. When
the self-maintaining system is fully in place, we expect
this to come down to a couple of hours per week. With
that workload, we believe it will be fully possible for one
operator to handle a system ten times the size of ours eas-
ily.

The other aspect is the simplicity and modularity of our
tools. Our monitoring is done by small, simple programs,
running locally on each node, so adding more nodes will
have little effect on their functionality. Also, by having
pairs of machines back up each other as the first level of
redundancy, there is not much additional overhead associ-
ated with increasing the number of nodes.

9 Summary

We built a 3TB storage system using only commodity
components and have been using it as a web-based image
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database for a few months. Despite frequent component
failures, we have been able to give the illusion to users
over the Internet that the system has never failed. We are
improving the system to reduce the system administration
cost. We believe our design scales well into larger sizes.
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