Device Locks Mutud Exclusian for Storage Area Networks

Kenneh W. PreslanSteven R. Soltis Christophe J. Sabo] and Matthew T. O’Keefe
Paralld Compute Systens Laboratory
University of Minnesota

Gery Houlde and Jim Coomes
Seagat Technology

Abstract

DeviceLocksare mechanismausalin distributed environ-
mens to facilitate mutud exclusio of sharel resources.
They cen further be usel to maintan coherene of data
that is cachel in severd locations The locks are imple-
mentel on the storagp devicesand accessgwith the SCSI
devicelock commandDIlock.

This pape preserd the Dlock commanl and discusses
how it can be useal as a mutud exclusion device for Star-
age AreaNetworks and Sharal Disk File SystemsMeth-
ods for the recovey of a Dlock held by a failed initiator
are al presented.

The Dlock commaul is in the proces of being stan-
dardizeal as patt of the SCS 3 specification.

1 Introduction

Device locks are advisok locks implemente on a SCSI
device that allow the mutud exclusion of devices access-
ing a shara@ resource The locks are manipulate using
the Dlock SCS command The Dlock commam is in-
dependenof all otha SCI commandsso devices sup-
porting the locks have no awarenes of the natue of the
resoure that islocked Ead lock requires only a small
amourn of memop allowing devicesto suppot thousands
of the® locks with minimad amouns of memoy.

Ead Dlock can be acquirel in one of two modes,
sharel or exclugve. A sharel lock allows multiple clients
to acces the data protecta by the lock as long as they
don’t change it. This allows multiple reades of a direc-
tory or fileat the sanetime. If aclient needgto changthe
data it acquires the lock in exclusve mode No one else
can rea or write the data for the duration tha the lock is
held.

Dlocks can alsn timeou after aperiad of inacivity. If a
lock isacquirel ard it is not unlodked in a certan amount

of time, the lock automaticaly change to an unlocked
state The next initiator that triesto get the lock will suc-
cedal and be notified that the previous holde let the lock
expire. The actud length of the timeou can be sd in the
Dlock Mode Page This timeout togethe with the Re-
port Expired action (which reporswhichlockshavetimed
out), facilitates a“cleanef’ program that runsin the back-
grourd looking for and fixing the messe left by client
failures.

The Refred Lock action can be usel to resd the timer
on the lock. Thisallows aclient to hold alock for longer
than one timeout period but also allows the lock to time-
out if the client fails.

Ead device lock has a stat field, an acivity bit, and
aversicn numbe. After all Dlock operationsthe current
values are returnel to the initiator where the values are
saved for measuremerof lock aciivity. Activity measure-
mentsare usefd inthe evert of failures for load balancing
share resourcesard for maintainirg data coherence.

Devicelockssuppot six primaty actions Lock Shared,
Lock Exclusve, Unlock, Unlock Increment Force Lock
Exclusve, ard Refre$ Lock. Theactiorsusetest-and-set
and clea operatios to modify the lock state The ver-
sion numbe is incrementd accordirg to the actiors and
actvity bit. The Force Lock action takes a versian num-
ber as an input to be compare with the currert value to
determire if the lock shoutl be taken away from its cur-
rent holde ard se in the Locked Exclusve stat under
ownershp of the new initiator.

Device locks suppot four seconday actions No Ac-
tion, Activity On, Activity Off, and Repot Expired.
Thes actiors do nat modify the lock state The No Ac-
tion action may be usal to read the state acivity, version
numbe, and othe information abou the lock. The Ac-
tivity On and Activity Off actiors se and clea the acfv-
ity bit, respedtely. The Repot Expired action returrs a
bitmap that tells the initiator which locks have expired.

262



The versicn numbes are incremente after successful
Unlock Increment Force Lock Exclusve, ard Activity
Off actions The versicm numbes are al incremented
after successfuUnlock actiors provided the aciivity bit is
set The size of the versian numbe is 32 bits. Theinitia-
tors mud be aware tha the versiacn numbe periodically
rolls-ove fromits maximum valueto zera The minimum
roll-over time can be determiné by time stampirg the ac-
ces of ead lock. If the currert time differs from the last
accestime by someamour lessthan the known roll-over
time, then the clock is guaranted not to have rolled. The
client can use thes versicn numbes to implemen cache
coheregy schemes.

An importart concep in Dlock is the Client ID Num-
ber. A Client ID numbe isaarbitray 32-bit numbe that
identifiesaclient to othe clients Client IDsarean opaque
value to Dlock devices In othe words the device needs
toremembethe Client ID of theinitiator holding aDlock,
but it doesnt neel to understad its contents.

Evely Dlock Lock Action tha is passd to a Dlock de-
vice includes the Client ID of the initiator sendimg the
command The device stores the Client ID ard returns
it to othe initiators accessig the lock as a way of com-
municatirg the nanme of initiator that thelock. Thes other
initiators can then use the Client ID to implemern sophis-
ticated failure recovey schemes.

The Dlock commaul is in the proces of being stan-
dardizel as patt of the SCS 3 specificatia [1], [2].

2 TheDlock Interface

The Dlock interface is definal by three main parts the
CDB, theretum datg and the mode page.

21 Dlock CDB

The Dlock CDB is show in Table 1. The fields of interest
are:

Operation Code The SCS Operation code for Dlock.
Thisis currently AOh, but will very likely chang in
the future.

Action This describs the action being requested The
possibk values of thisfield are shown in Table 2.

Lock Number Thisisthe numbe of the lock to be opea-
ated on.

Client ID A application-defing 32 numbe that identi-
fiesthe client issuirg the Dlock command.

Input Version Number One of the actions Force Lock
Exclugve, only complete successfull if the least
significant byte of thelock’s versicn numbe isequal
to thisfield.

Allocation Length The numbe of bytesthat the initiator
has allocatal for datareturnel from the command.

2.2 Dlock Return Data

The forma of the data returneal by the Dlock command
dependon wha action wasissued.

2.21 TypelReturn Data

Type 1 retumn datis returnel from all actiors except Re-

port Expired The target will retum information abou the
stak of thelock operatél on by the CDB. The information
returnal represergthe stae of the lock after the current
commair was completed The exceptian to thisisthe Ex-

pired Field. The Expired Field indicates the stae of the
lock before the commandlif the action was Lock Shared,
Lock Exclusve, or Force Lock Exclusve. The format of

the datais shown in Table 3.

Return Data Length Thelengt in bytes of thereturned
data.

Resut Thisbitis1if theaction succeeded if theaction
failed.

Activity Thisbitis1if activity monitoringison, Qif itis
off.

Expired This field indicates whethe or not the initiator
tha lag held thislock releasd it cleany or let it time
out The values of thisfield are shown in Table 4

State The values of the Stae of the lock are shown in
Table 5.

Version Number Thisisthe versian numbe of the lock.

Number of Holders This is the numbe of clients cur-
rently holding thislock.

Client ID Numbers Thisis alist of the Client ID Num-
bers of all the initiators currentl holding this Dlock.
2.22 Type2Return Data

Type 2 dat is returnal from the Repot Expired action.
The format of the datareturnel is shown in Table 6. Each
bitinthebitmgpisaoneif theassociatelock hasexpired.

263



| Byte,Bit | 7 | 6 | 5 | 4 | 3 | 2 1 | 0
0 Operatio Code (83h)
1 Reserved | Action
2 (MSB)
3 Lock Number
4
5 (LSB)
6 (MSB)
7 Client ID
8
9 (LSB)
10 (MSB)
11 Allocation Length
12
13 (LSB)
14 Input Version Numbe (LSB)
15 Control
Table 1: Dlock CDB
Code | Action | Description | DataReturned|
Oh Nop No changeretum currert lock state| Typel
1h Lock Shared Acquire sharel lock Typel
2h Lock Exclusve Acquire exclusvelock Typel
3h Force Lock Exclugve | Acquire exclusvelock, Typel
preemptig lock if needed
4h Refred Lock Rese timer on lock Typel
5h Unlock Releag lock Typel
6h Unlock Increment Releas lock and Typel
incremen versian number
7h Activity On Turn on Activity Monitor Typel
8h Activity Off Tum off Activity Monitor Typel
9h Repot Expired Repot which locks have expired Type2
Ah—Fh | Reserved | Reserved |

Table 2: Dlock Actions

264




[ Byte,Bit | 7 (6 (5 [ 4 [3 [2 [1 [0

0 (MSB)

1 Versian Number

2

3 (LSB)

4 Result | Act | Reserved | Expired | State

5 Numbe of Holders

6 (MSB) : -

= Holder List Lengh (n — 7) @SBy
| | List of Holders

8 (MSB) . :

1 Client ID (first) @SBy

n—3 (MSB) ;

Client ID (last I
" lent 1D (last) ((SB)

Table 3: Type 1 Reply Data Format

| Code | Description |

Oh Not Expired

1lh Expired from Locked Shared
2h Expired from Locked Exclusve
3h Reserved

Table 4: Values of the Expired field

| Code | Description |

Oh Unlocked

1h Locked Shared
2h Locked Exclusve
3h Reserved

Table 5: Values of the Stake field

265




| Byte,Bit | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | 0
0 Result | Reserved
1 Reserved
2 (MSB)
3 DataLengh (n — 3) @SBy
| | Bitmap of expired device locks |
2 L7 L6 L5 L4 L3 L2 L1 LO
3 L15 L14 L13 L12 L11 L10 L9 L8
4 L23 L22 L21 L20 L19 L18 L17 L16
n Lm |
| | Wherem = (1 — 3) 8 — 1) |
Table 6: Type 2 Reply Data Format
[Byte,Bit | 7 [6 [5 [4 [3 [2 [1 [0
0 PS | Rewd | Page Code (xxh)
1 Page Lengh (OAh)
2 Reserved
3 Maximum clients per lock
4 (MSB)
5 Numbe of locks
6
7 (LSB)
8 (MSB)
9 Lock Timeou Interval
10 (ms)
11 (LSB)

Table 7: Mode Page Data

266



2.3 ModePage

The mode page returrs information abou lock parame-
ters.

Maximum number of clientsableto sharealock This
isthe numbe of clientstha can simultaneousi hold
alock in the Locked Sharel state.

Number of lockson the device Returrs the numbe of
Dlocks on the device.

Lock Timeout Interval The numbe of milliseconds af-
ter which an refreshé lock wil | timeout If thisvalue
iszerq locks never time out.

3 Dlock Behavior

There are a numbe of detaik of the Dlock specification
that arerit obviousfrom the interface.

3.1 Actions

A more detailel descriptia of the actiors can be see in
Table 8. Importart things to notice are:

e If alock has expired from a Locked Exclugve state,
aLock Sharel requesshout produe a Locked Ex-
clugve state This allows the client acquirirg the
lock to do whatever cleany is necessarwithout ex-
posirg othe clientsto dafin an inconsistehstate.

e |f aclient holdsalock as Locked Exclusve, it should
beabletoisswealock Sharel commam on the same
lock and the lock will be converted to the Locked
Shard state.

o If aclient holdsalock as Locked Sharel and it isthe
only client holding the lock at the time, it shoul be
abletoisswealock Exclusve commarml on the same
lock ard thelock will be converted to the Locked Ex-
cludve state If thelock is sharel by othe initiators,
the Exclusve Pendimg bit (see Section 3.4) is set.

e A client may hold multiple instancs of the same
lock, if it isin aLocked Sharel state Thisisavalid
(if somewha uselesycondition.

e |f aForce Lock Exclusveisissuedthelock is held,
and the low three bytes of the input versian number
is correct the FLE’s retum data shoutl indicat that
the lock expired Exampk— If alock is held by one
client in a Lock Sharel stae and anothe client is-
sues aForce Lock Exclusve, the Expired field in the

retum data shoutl be “Expired from Lock Shared”.
This allows a client to know if recovey is required.
If a Force Lock Exclusve is issua on an unlocked
lock, the Expired field shout be “Not Expired”.

o If aRefred Lock action with alock numbe of all Fs
isissued the targe reses the timer on all the locks
currenty held by tha initiator.

3.2 Version Numbersand Caching

The main reasm to have versicn numbes associate with
ead lock isto provideamears of determinirg the consis-
tercy of aclientslocd data cache Before accessig (ei-
ther readirg or writing) ary datg the appropria¢ device
lock is acquired When finished the lock is released An
Unlock is usal when the data has not been modified dur-
ing the operation Otherwis an Unlock Incremei must
be used to signify that the data was modified.

This data can be cachel in a systems memoy, though
its consisteny is unknown until the next successfliLock
action The consisteny of cachel dat is determined
basel on the versicn numbe of the lock. The datis con-
sistent if the versicn numbe returneal by the Lock opera-
tion is the same as what was returnel from the initiator's
previous Unlock or Unlock Incremen action Otherwise,
the data mug be reread Modified dat can be cached
while the Dlock is held but mug be written thouch to
the device before the Dlock is released This criteria as-
sumes that roll-over of the versicn numbe has not oc-
curred Given roll-over, the cacke mug be treatel as in-
consistent.

Table 9 shows exampék accessgfrom two initiators A
and B. Eath evertisorderal basel onthetimegiveninthe
left mog column The Action columrm represerga device
lock commarnl sert to the device assumig all commands
acces the sane lock. The Stae field gives the lock state
(U=Unlocked S=Lockeal Shared and E=Locked Exclu-
sive) ard the versicn numbe value The acivity monitor
bitisalways 0. Versiacn numbesof x represetivaluesthat
are assumd to haverolled. The stat field is updatel by
the retum of ead commanl and does not chang when
the othe initiator performs a command The Consistent
field states whethe or not the cachel dat is consistent.
Finally, the Lock field givesthe currert stae of the device
lock.

The first two Locks from ead initiator are not con-
sistent becaus the versian numbe has been assumd to
have rolled-ove. The Lock at time 7 guarantesthat the
datis consistentsince the new version numbe is equal
totheold versicnnumbe. An Unlock Incremenisused at

267



State

Action Unlocked | Locked Shared | Locked Exclusve
Nop Returnresult+ 1 Returnresult«+ 1 Returnresult+ 1
Lock Shared Returnresult+ 1 if Lock[N].holders< MaxHolders if Lock[N].ClientID[0] = ClientID

if Lock[N].expired = ExpiredExclus/e
Lock[N].state<— LockedExclusve
else
Lock[N].state«— LockedShared
Lock[N].holders«+ 1
Add ClientID to the list
Rese expire time

Returnresult+ 1
Lock[N].holders++
Add ClientID to the list
Rese expire time

else
Returnresult«— 0

Returnresult+ 1
Lock[N].state«— LockedShared
Rese expire time

else
Returnresult+ 0

Lock Exclusve

Returnresult«+ 1
Lock[N].state«— LockedExclusve
Lock[N].holders«+ 1

Add ClientID to the list

Rese expire time

if (Lock[N].holders =1 and

Lock[N].ClientID[0] = ClientID)

Returnresult«— 1

Lock[N].state<— LockedExclusve

Rese expire time
else
Returnresult« 0

Returnresult+ 0

Force Lock Exclusve

Returnresult+ 1
Lock[N].state<— LockedExclusve
Lock[N].holders«+ 1

Add ClientID to the list

Rese expire time

if Lock[N].versim = version
Returnresult«+ 1

Lock[N].state« LockedExclusve

Lock[N].holders«+ 1
Lock[N].version++
Clear list, then Add ClientID
Rese expire time

else
Returnresult« 0

Refred Lock

Returnresult«+ 0

if ClientID isin thelist
Returnresult«+— 1
if Lock Numter is OXFFFFFFFF

Rese expire time on all locks held by this initiator

else
Rese expire time
else
Returnresult< 0

Unlock

Returnresult«— 0

if ClientID isin the list
Returnresult«— 1
Lock[N].holders——
Renove ClientID fromthe list
if Lock[N].actvity =1
Lock[N].version++
if Lock[N].holdes =0
Lock[N].state«— Unlocked
else
Returnresult< 0

Unlock Increment

Returnresult«— 0

if ClientID isin the list
Returnresult+ 1
Lock[N].holders——
Renove ClientID fromthe list
Lock[N].version++
if Lock[N].holdes =0
Lock[N].state<— Unlodked
else
Returnresult< 0

Activity On Returnresult+ 1
Lock[N].acivity < 1

Activity Off Returnresult+ 1
Lock[N].actvity < 0
Lock[N].version++

All Actions Returnacivity < Lock[N].acivity

Returnexpired <— Lock[N].expired
Returnstate«— Lock[N].state
Returnversion<— Lock[N].version

ReturnClientID[] < Lock[N].ClientID[]

Table 8: Device Lock Actions

268




Initiator A L ock Initiator B
Action State| Consistent Action State| Consistent
0 U,x u,0 U,x
1 Lock Shared | S,0 No S,0 U,x
2 No Modify S,0 S,0 U,x
3 Unlock u,0 (UN0) U,x
4 u,0 S,0 Lock Shared S,0 No
5 u,0 S,0 No Modify S,0
6 u,0 (UN0) Unlock u,0
7 u,0 E,O Lock Exclusve | E,O Yes
8 u,0 E,O Modify E,O0
9 u,0 Ul Unlock Incr Ul
10| LockShared | S,1 No S,1 Ul
11 Modify S,1 S,1 u,1
12 Unlock Incr u,2 u,2 ul
13 u,2 S,2 Lock Shared S,2 No
14 u,2 S,2 No Modify S,2
15 u,2 u,2 Unlock u,2
16 | Lock Exclusve | E,2 Yes E,2 u,2
17 No Modify E,2 E,2 u,2
18 Unlock u,2 u,2 u,2

Table 9: Device Lock Example

time 9 to signify that daawas modified The Lock at time
10 makes no guarantetha the datais consistentsinein
this ca®e the versicn numbes differ. The next Lock again
assumethe cacte to be inconsistehon the bass that the
versilm numbes differ. The final Lock shows the data
is consistentsince the versicn numbe has nat changed
sincetime 12.

In general Locked Sharel actiors will not be followed
by Unlock Incremem actions Lock Sharel impliesaread
of the datg without a modify, so there is no neel to in-
validaie the cache of the othe initiators Therisno rea-
saon to prohibit a Locked Shared/Unlok Incremen pair,
though Similarly, Locked Exclugve can be foll owed by
eithe Unlock or Unlock Increment.

3.3 Handling Client Failures

Much of thework that hasbeen put into the Dlock specifi-
cation deabk with recoverirg from initiator failures With-
out thes failure detection schemegsan initiator tha fails
could leave Dlocks in locked states indefinitely. This
would be bad.

The gener& Dlock philosoply has always been to try
to avoid having to make clients aware of ead othe. This
mears tha clients shoubl be able to deted the failures of

othe clients solely by interactirg with the Dlock device.
There are currently two method of doing this, Activity
ard Dlock Timeouts.

Ther is al a methal of detectiry failures when the
clientstalk to ead othe directly. Since Dlock commands
retum alist of the Client ID Numbes of the hoss holding
alock, it is possibé to implemert failure detection at a
higher level. The ability of the three failure detection
schemes offers a gred ded of flexibility to systens that
use Dlock.

3.31 Activity/ForceLock Exclusive

An initiator attempting to acquie alock that is owned by
afailed initiator can identify tha the lock hasnat been ac-
cessd by checkirg the acivity of the lock’sversian num-
ber. A changirg versilm numbe indicates that the lock
is acively being used A unchangig versian numbe is
a symptan of a failed client The numbe will also not
chang if athelock is continually being acquirel and re-
leasel with an Unlock command.

If nolock acivity is observedthe initiator turns on the
acfvity monitoring by the Activity On actions The ver-
sion numbe now isincrementd for both Unlock ard Un-
lock Incremen operations If the version numbe shows

269



actvity, the initiator turns off the acivity monitoring and
attemps to acquie the lock knowing it is not held by a

failed initiator. If the versicn numbe remairs unchanged,

theinitiator perfornsa Force Lock Exclusve on the lock.

The Force Lock Excludve action ensurs that the lock
will only be rese by the initiator that can identify the
value of the currert versicn numbe. This solves the the
ca® wheretwo separatinitiators simultaneousl attempt
to resé the same lock. The first initiator forces the lock,
which incremens the versian numbe. The secom initia-
tor'sForce action isignored.

Only the three leag significart bytes are passd in to
the device in the Force Lock Exclusve action This is
suficient becaue aForce Lock Exclusveactionisalways
precedd by attemps at acquirirg the lock using a lock
action The retum data from thes attemps provides the
initiator with the currert version numbe. The initiator
then usestha valuein the Force Lock Exclusve. Theonly
way the versian numbe can chang betwea thes two
actiorsisif it isincremente by anothe initiator's Force
Lock Exclugveor Unlock Increment The low three bytes
of the version numbe are suficient to determire this.

When an initiator eventuallyy succeed with the Force
Lock Exclusve, it is told wha stak the lock was in. It
can then perfom recovey on the lock's data Recovery
from a Locked Shara stak may be vetry differert from
recovey from aLocked Exclugve state.

3.32 Dlock timeouts/Ref e Lock/Report Expired

The new methal of detectirg failed clientsemploys Dlock
timeouts Clients dorit have to keep tradk of which other
clients have failed becaue the Dlock device does it for
them If ainitiator ever leaves a Dlock locked for more
than atimeou period the Dlock deviceassumsthe client
has failed and unlocks the lock.

When the lock times out, the device ses a expired flag
on the lock. The flag contairsinformation on whethe the
lock was held in sharel or exclusve state When a new
client tries to acquie the lock, it succeed becaus the
lock was reset It can then examire the expired flag and
perfomm the appropria¢ recovey operation.

An initiator can prevernt a Dlock from timing out by
using the Refred Lock action Thisactionresesthetimer
on thelock. A client who acquiresalock and perfornsa
refred lock action on it periodicaly to prevent timeout
can hold tha lock indefinitely.

The Dlock mode page contairs a field for settirg the
Dlock timeou interval. This value can be sd to zero,
which disables Dlock timeout This allows even greater
flexibility.

The Repot Expired action returrs a bitmap of all the
locks If a bit is ong the correspondig Dlock has ex-
pired This mechanim allows a dedicaté progran that
runs in the backgroud on the initiator to ched for ex-
pired locks and recove them The progran doesnht have
to go linearly thoudh the locks acquirirg and unlocking
them One Repot Expired action allows the progran to
get alist of all the expired locks.

A “cleanef progran like this is desirabé becaus it
can limit the maximum amour of time a file system can
bein an inconsistenstak after aclient failure If the pro-
gram does a Repot Expired once a minute the cleaner
will know abou an expired lock in less than a minute.
Without the cleane, acliert failure on ainfrequenty used
lock could go undetectd for along time.

3.33 Client ID Numbers

Dlock command aways retum allist of Client ID Num-

bers of the initiators holding the Dlock. This allows

an arbitrawy failure detection schene to be implemented.
Once a client has the Client ID of the client holding a

lock, a non-SC$ failure detectiom protocd can be used.
The client can determire for itself whethe or not another
client is down. It can then use the Force Lock Exclusve

actionto rese the lock, if necessar

3.4 Shaed and Exclusive Locks

As statel before a Dlock can be acquirel in one of two
modesSharel or Exclusve. A numbe of clientscan hold
thesanelock at thesanetimeif it’sin asharel state This
allows mary differert clients to read the same piece of
datat the sanmetime. If aclient wanssto write, it acquires
an Exclusve lock. This allows a multiple readers/single
write schene to be implemented.

The problan with this scenarm is tha a progressia of
reades can cau® a writer to wait indefinitely. Two or
moreclientscan hold alock in asharel stae forever, even
if they are constanty releasiiy and re-acquirirg the lock.
The first client gets the lock, the secoml client get the
lock, the first client releass the lock, the first client re-
acquires the lock, the seconl client release the lock, and
so on. Ther is no time when the lock is unlodked The
lock isconstanty being locked and unlodked, so it doesrit
time out A client tha want to get the lock exclusvely
waits forever.

The solution to this problemisto implemern an “exclu-
sive pending bit. If alock isheld in the share stae and
a Lock Exclugve action comesin, the exclusve pending
bit is set This mearstha all Locked Sharel actiors will

270



fail until the lock switches to an unlocked state All the
currert reades drain off until the writer gets a chane at
the lock.

Thereis one problematt detail Imagire tha there are
a bundh of initiators sharirg a lock. A Lock Exclusve
action then comes in and fails, which ses the Exclusve
Pendirg bit. No new Lock Sharel request succed and
eventually the court reachs zera In a perfed world, the
client wanting the lock exclusvely then gets the lock and
all clients go merrily on their way.

In an imperfed world, anothe client will try to do a
Lock Sharel before the client that want the exclusve
lock can retry. At this point, there are three different
strakgiestha can beimplemented:

1. The Dlock device forgets that a Lock Exclusve is
pendirg ard clearss the bit. The Lock Sharel suc-
ceed ard the client tha wants the lock exclusvely
has to wait for all of the share clients to drain off
again.

2. All Lock Sharel actiorsarerejectal until aLock Ex-
clusvesucceedsWhenalock Exclusveaction suc-
ceed the Exclusve Pendimg bit is cleared This is
bad becaus the client trying to do the Lock Exclu-
sive might havefailed or change itsmind. It doesnt
g€ the lock exclusvely ard all the “Lock Shared”
clients have to wait until sonme othea randon client
decidesit wansthe lock exclugvely.

3. Allow one Lock Sharel action to succeedbut keep
the Exclusve Pendimg bit on. Clients requestig a
sharel lock are allowed to get it, but only one client
at atime. This kees “Lock Shared clients from
starving but provides the maximun chane for the
“Lock Exclusve’ client tocompleeitswork. Oncea
Lock Exclusve succeedsthe Exclusve Pendimg bit
is clearel and multiple Locked Sharel actiors can
succed again.

This specificatio proposstha option numbe threebe
implementedThisallowsthe maximun fairnesswith the
minimum slowdown in cas of afailure. A staetransition
diagran for this algorithm is shown in Figure 1.

35 Client IDsand GFS

The new Globd File Systen [3] architectue wil | take ad-
vantag of the fad tha Dlock commandg retum Client
ID Numbers Clients will hold Dlocks for long periods
of time (using Refre$ Lock to prevent timeout) While
the client holds the Dlock, it can do write cachirg of the

data protectd by that Dlock. Thislets GFS relax its syn-
chronow natue ard improve write performance.

When a seconl client need to use the lock, it attempts
to acquie the lock, but fails. In the retum data from the
failed lock action the Client ID of the Dlock holde is
returned The secoml client can then mep this Client ID
into a nework addresslt can then make arequesto the
first client, asking it to relea® the Dlock. The first client
then writes bad its cachel data and release the lock.

Later versiors of GFS can be even more aggreswe
and use this out-of-bamd communicatia to do thingslike
Third—Party Transfe. The client holding a Dlock doesrnit
even haveto write ba its cacteto allow othe clientsac-
ces to the same data If the secoml client is requesting
somethimg that is naot in the first client's cache the first
client can just give permissim to the secom client per-
missian to read the datafrom disk. If thedatrequestdis
smal enoudn and in thefirst client's cachethe first client
could even forward the data directly to the secoml client.

3.6 Dlock Persistence

Dlocks are intendel to be light weight locks that provide
a quick respons time. Having a hold on a Dlock that
persis acros the power cycle of a device would be nice,
but it’snot necessar. Lock states do not need to be stored
in non-volatilememoy. Specift conditiorsand how they
shoutl be handlel are shown in Table 10.

If an initiator is loggead out of a device becaus there
are too mary othe devices it shout naot lose its Dlocks.
When the initiator next logs in to the device it shout be
able to perfomm all the actiorsit could if it didn't log out.
Thisdoesnt affect the timeout however. If thetimer on a
Dlock expires when the initiator that holdsit isn't logged
in, the Dlock is put in the expired state just asit would if
theinitiator was logged in.

4 Implementation Details

There are anumbe of detaik to the Dlock concep that
can improwe its efficiency without changirg the interface.
Soneof thee are:

4.1 Out-of-Queue Dlocks

One of thethingstha hurtsthe performaneof GFSisthe
fad that Dlock operatioms can be studk behird large data
transfes in a drive’s commarm queue The client has to
wait for unrelate disk operatiors to happa before it can
continue.

271



EXP
Unlocked LS LE L ocked
(Expired) Exclusive
U
LE EXP U
U* L ocked
Unlocked Shared
(Exclusive LS (Exclusive
Pending) Pending)
EXP LE*
U
LE
U*
L ocked
Unlocked
LS Shared

Figure 1. A stak transitin table that takes into accoum the Exclusgve Pendimg bit. Stat transitiors are described
by thes abbeviations EXP=Lodk Expiration LS=Lock Sharel Action, LE=Lock Exclusve Action, LE*=Lock
Excludgve Action from anothe initiator, U=Unlock Action, U*=Last Unlock Action on asharel lock

272



Condition

Condition handling |

Mode Selec¢ on Dlock

Isste Unit Attention All Device Locks Cleared for all initiators

Dlock Mode Page All lock values are zeroed

Power Cycle Isste Unit Attention Power On for all initiators
All lock values are zeroed

SC3 Rese* Isste Unit Attention Power On for all initiators

All lock values are zeroed

Bus Device Resé *

Lock values nat affected

Tak Managemet**
Target Reset

Lock values naot affected

Initiator Logout **

Locks held by tha initiator remai held.

Table 10: Dlock Power Cycles Resetsand Mode Selects* Paralld SCS only, ** Fibre Channéonly

The Dlock commaml has low processp overhead.

There are no disks accesseinvolved Ther are no large
calculatiors involved The Dlock SCS command could
be implemente outsice of the commarl queue Dlock
commang could be actel on as they are pulled off the
wire. This may slightly increag the devicess firmware

compkxity, but it would be a big win performance-wise.

42 Event—driven Timeouts

A Dlock device can deted Dlock timeous in one of two
ways:

1. A threal in the Dlock device could wake up period-
ically and ched to ses if ary of the locks have ex-
pired The threal would scan linearly thouch all the
locks checkirg the time stams and marking the ex-
pired locks as unlodked and expired If there were a
large numbe of Dlocks on a device, this could take
a fair amoun of proces time for ead scan Scans
would have to be frequent so alot of time would be
wasted.

2. Make timeou checkirg evert driven Only check
the time stams on a lock when you g&t a request
for tha lock. Thisdistributes the workload so that it
doesnt happe all at once It also mearstha the de-
vice doesnt have to wase time checkirg locks that
arerit being used Thisisamud bette approach.

43 Client ID Numbers

Storing alist of Client IDsfor eat Dlock can use up too
much memoy. Jug storing an offset into a device wide
list of Client IDs is enoudh to reconstrutthe Client ID
list for the Type 1 Retun DataBlock. This savesmemoy.

Care mug be taken though so that the list is still valid if
ainitiator gets loggel off of the device becaus there are
too mary othessloggealin.

5 Future Work — Multipl e Actions
Per Command

In the currert Dlock Specificationall deadlo& detection
and avoidan@ mug be dore by the initiators. If aclient
need to hold two Dlocks it mug get them one at atime.
If anothe client wantssthe sarmetwo Dlocks but getsthem
in the opposit orde, deadlo& can result.

GFS handles this problem by implementirg a compli-
cated systen of back-dfsand retries If aclient isholding
one Dlock and want anothe, it tries to get the new lock
for a certan amour of time. If it doesnt get the lock in
this time, it assume a deadlo& condition exists It re-
lease the first lock, slees for arandan amourt of time,
and then retries the whole operation This systen solves
the deadlo& problem but it is not fun to implemert and
itisnottime optimal.

A bette solution would be to this problem would be
toimplemern a Dlock commaul that allowed multiple ac-
tions In the abow situation an initiator would isste a
commauml that containel two lock actions The command
would be atomt so that 1) Either both actiors would
succed ard theinitiator would now hold both locks, or 2)
both actiors would fail and the client would hold neither
of the locks This eliminatesthe deadlo& problem.

The Multiple Action idea could be expandd to al-
low mary unrelatel Dlock actiors to be issual in one
atomic Dlock command This could be a very powerful
tool. There are problenswith implementirg this scheme,
though.

273



Packing multiple actiors into one commaurl requires
more spae than is currenty available in a 12 byte CDB.
The curren possibé work-around are: 2]
1. Implemer one Commal with both a data-n ard a
data-otiphase Thisispossibéin Fibre Channelbut
frowned upon in Paralld SCSI Using paralld SCSI
as atestbel is a very nice thing, so we would prefer 3]
naot to implemert this option.

2. Implemen two separat commandsone with adata-
in pha® and one with a data-ot phase This ap-
proad would cau® synchronizatia problems How
would a device matd the “Issue Action” command
with the “Reque$ Result comman@ Also, this
technique forcesthe initiator to issue two commands
pe lock request Dlock is intendel to be a light-
weight commarm and this doubles the overhea of
the lock/unlok process.

In the future, athird option would allow the advantages
of multiple actiors per command but at the currert time
itismoretroublethat it isworth.

6 Acknowledgments

Marny peopk have contributed code ard ideas to The
Dlock Specification over the years The peopk we can
remembeat the momert are:

e From the University of Minnesota
Andrew P. Barry, Jonatha E. Brassw, Grart M.
Erickson Benjamh |. Gribstad Erling Nygaard,
Thoma M. Ruwart, Aaron Sawdey, David C. Tei-
gland

e From Seagaé Technolog, Inc.
Dave AndersonTony Hecke, Nate Larson Michael
H. Miller, Troy Wheeler

o From NASA Ames Reseach Center
Alan PostonJom Lekashman

e From Ciprico, Inc.
Raymond Gilson, Edward A. Soltis

References
[1] Matthew T. O’'Keefe Kenneh W. Preslan Christo-
phe J. Sabo) ard Steven R. Soltis X3T10SCS com-

mittee documen T10/98-225R — Proposd SCSI
Device Locks. http:// ftp.symbios.corm ftp/ pub/

274

standards io/ x3t10 document.98 98-225r0.pdf,
Septembe1998.

X3T10 SCS committee.  Documen T10/98-
225RL — Proposd SCS Device Locks. http:/
ftp.symbios.corhftp/ puly standardsio/ x3t1Q' doc-
ument.9898-225r1.pdfOctobe 1998.

Presla et al. A 64-bit, sharel disk file systen for
linux. In The Sixteent IEEE Mass Staage Systems
Symposim held jointly with the Seventh NASA God-
dard Confeene on Mass Staage Systera & Tech-
nologies San Diego, California March 1999.



