
262

DeviceLocks: Mutual Exclusion for StorageAreaNetworks

Kenneth W. Preslan, Steven R. Soltis, Christopher J. Sabol, and Matthew T. O’Keefe
Parallel Computer SystemsLaboratory

University of Minnesota

Gerry Houlder and Jim Coomes
Seagate Technology

Abstract

DeviceLocksaremechanismsused in distributedenviron-
ments to facilitate mutual exclusion of shared resources.
They can further be used to maintain coherence of data
that is cached in several locations. The locks are imple-
mented on thestoragedevicesand accessed with theSCSI
device lock command, Dlock.

This paper presents the Dlock command and discusses
how it can be used as a mutual exclusion device for Stor-
ageAreaNetworksand Shared Disk File Systems. Meth-
ods for the recovery of a Dlock held by a failed initiator
arealso presented.

The Dlock command is in the process of being stan-
dardized aspart of theSCSI 3 specification.

1 Int roduction

Device locks are advisory locks implemented on a SCSI
device that allow the mutual exclusion of devices access-
ing a shared resource. The locks are manipulated using
the Dlock SCSI command. The Dlock command is in-
dependent of all other SCSI commands, so devices sup-
porting the locks have no awareness of the nature of the
resource that is locked. Each lock requires only a small
amount of memory allowing devicesto support thousands
of these lockswith minimal amountsof memory.

Each Dlock can be acquired in one of two modes,
shared or exclusive. A shared lock allowsmultipleclients
to access the data protected by the lock as long as they
don’t change it. This allows multiple readers of a direc-
tory or fileat thesametime. If aclient needsto changethe
data, it acquires the lock in exclusive mode. No one else
can read or write the data for the duration that the lock is
held.

Dlockscan also timeout after aperiod of inactivity. If a
lock isacquired and it isnot unlocked in acertain amount

of time, the lock automatically changes to an unlocked
state. The next initiator that tries to get the lock wil l suc-
ceed and be notified that the previous holder let the lock
expire. The actual length of the timeout can be set in the
Dlock Mode Page. This timeout, together with the Re-
port Expiredaction (whichreportswhich lockshavetimed
out), facilitatesa “cleaner” program that runs in theback-
ground looking for and fixing the messes left by client
failures.

The Refresh Lock action can be used to reset the timer
on the lock. This allows a client to hold a lock for longer
than one timeout period, but also allows the lock to time-
out if theclient fails.

Each device lock has a state field, an activity bit, and
a version number. After all Dlock operations, the current
values are returned to the initiator where the values are
saved for measurement of lock activity. Activity measure-
mentsareuseful in theevent of failures, for loadbalancing
shared resources, and for maintaining datacoherence.

Devicelockssupport six primary actions: Lock Shared,
Lock Exclusive, Unlock, Unlock Increment, Force Lock
Exclusive, and Refresh Lock. Theactionsusetest-and-set
and clear operations to modify the lock state. The ver-
sion number is incremented according to the actions and
activity bit. The Force Lock action takes a version num-
ber as an input to be compared with the current value to
determine if the lock should be taken away from its cur-
rent holder and set in the Locked Exclusive state under
ownership of thenew initiator.

Device locks support four secondary actions: No Ac-
tion, Activity On, Activity Off, and Report Expired.
These actions do not modify the lock state. The No Ac-
tion action may be used to read the state, activity, version
number, and other information about the lock. The Ac-
tivity On and Activity Off actions set and clear the activ-
ity bit, respectively. The Report Expired action returns a
bitmap that tells the initiator which lockshaveexpired.

263

The version numbers are incremented after successful
Unlock Increment, Force Lock Exclusive, and Activity
Off actions. The version numbers are also incremented
after successful Unlock actionsprovided theactivity bit is
set. The size of the version number is 32 bits. The initia-
tors must be aware that the version number periodically
rolls-over from itsmaximum valueto zero. Theminimum
roll-over timecan bedetermined by timestamping theac-
cess of each lock. If the current time differs from the last
accesstimeby someamount lessthan theknownroll-over
time, then the clock is guaranteed not to have rolled. The
client can use these version numbers to implement cache
coherency schemes.

An important concept in Dlock is the Client ID Num-
ber. A Client ID number is a arbitrary 32-bit number that
identifiesaclient toother clients. Client IDsarean opaque
value to Dlock devices. In other words, the device needs
to remember theClient ID of theinitiator holdingaDlock,
but it doesn’ t need to understand its contents.

Every Dlock Lock Action that is passed to a Dlock de-
vice includes the Client ID of the initiator sending the
command. The device stores the Client ID and returns
it to other initiators accessing the lock as a way of com-
municating thenameof initiator that thelock. Theseother
initiatorscan then use the Client ID to implement sophis-
ticated failure recovery schemes.

The Dlock command is in the process of being stan-
dardized aspart of theSCSI 3 specification [1], [2].

2 The Dlock Interface

The Dlock interface is defined by three main parts, the
CDB, the return data, and themodepage.

2.1 Dlock CDB

The Dlock CDB is show in Table 1. The fieldsof interest
are:

Operation Code The SCSI Operation code for Dlock.
This is currently A0h, but wil l very likely change in
the future.

Action This describes the action being requested. The
possiblevaluesof thisfield areshown in Table2.

Lock Number This is thenumber of the lock to beoper-
ated on.

Client ID A application-defined 32 number that identi-
fies theclient issuing theDlock command.

Input Version Number One of the actions, Force Lock
Exclusive, only completes successfully if the least
significant byteof thelock’sversion number isequal
to thisfield.

Allocation Length Thenumber of bytesthat theinitiator
hasallocated for data returned from thecommand.

2.2 Dlock Return Data

The format of the data returned by the Dlock command
dependson what action was issued.

2.2.1 Type1 Return Data

Type1 return data is returned from all actionsexcept Re-
port Expired. The target wil l return information about the
stateof thelock operated on by theCDB. Theinformation
returned represents the state of the lock after the current
command wascompleted. Theexception to this is theEx-
pired Field. The Expired Field indicates the state of the
lock before the command, if the action was Lock Shared,
Lock Exclusive, or Force Lock Exclusive. The format of
thedata isshown in Table3.

Return Data Length The length in bytesof the returned
data.

Result Thisbit is1 if theaction succeeded, 0 if theaction
failed.

Activity Thisbit is1 if activity monitoring ison, 0 if it is
off.

Expired This field indicates whether or not the initiator
that last held thislock released it cleanly or let it time
out. Thevaluesof thisfield areshown in Table4

State The values of the State of the lock are shown in
Table5.

Version Number This is theversion number of the lock.

Number of Holders This is the number of clients cur-
rently holding this lock.

Client ID Numbers This is a list of the Client ID Num-
bersof all the initiatorscurrently holding thisDlock.

2.2.2 Type2 Return Data

Type 2 data is returned from the Report Expired action.
Theformat of thedata returned isshown in Table6. Each
bit in thebitmap isaoneif theassociated lock hasexpired.

264

Byte,Bit 7 6 5 4 3 2 1 0

0 Operation Code(83h)
1 Reserved Action
2 (MSB)
3 Lock Number
4
5 (LSB)
6 (MSB)
7 Client ID
8
9 (LSB)
10 (MSB)
11 Allocation Length
12
13 (LSB)
14 Input Version Number (LSB)
15 Control

Table1: Dlock CDB

Code Action Description DataReturned

0h Nop No change, return current lock state Type1
1h Lock Shared Acquireshared lock Type1
2h Lock Exclusive Acquireexclusivelock Type1
3h ForceLock Exclusive Acquireexclusivelock, Type1

preempting lock if needed
4h Refresh Lock Reset timer on lock Type1
5h Unlock Release lock Type1
6h Unlock Increment Release lock and Type1

increment version number
7h Activity On Turn on Activity Monitor Type1
8h Activity Off Turn off Activity Monitor Type1
9h Report Expired Report which lockshaveexpired Type2

Ah–Fh Reserved Reserved

Table2: Dlock Actions

265

Byte,Bit 7 6 5 4 3 2 1 0

0 (MSB)
1 Version Number
2
3 (LSB)
4 Result Act Reserved Expired State
5 Number of Holders
6 (MSB)
7

Holder List Length (n� 7)
(LSB)

List of Holders

8 (MSB)
11

Client ID (first)
(LSB)

:
:

n� 3 (MSB)
n

Client ID (last)
(LSB)

Table3: Type1 Reply DataFormat

Code Description

0h Not Expired
1h Expired from Locked Shared
2h Expired from Locked Exclusive
3h Reserved

Table4: Valuesof theExpired field

Code Description

0h Unlocked
1h Locked Shared
2h Locked Exclusive
3h Reserved

Table5: Valuesof the Statefield

266

Byte,Bit 7 6 5 4 3 2 1 0

0 Result Reserved
1 Reserved
2 (MSB)
3

DataLength (n� 3)
(LSB)

Bitmap of expired device locks

2 L7 L6 L5 L4 L3 L2 L1 L0
3 L15 L14 L13 L12 L11 L10 L9 L8
4 L23 L22 L21 L20 L19 L18 L17 L16

:
n Lm

Wherem = ((n� 3) � 8� 1)

Table6: Type2 Reply DataFormat

Byte,Bit 7 6 5 4 3 2 1 0

0 PS Resvd PageCode(xxh)
1 PageLength (0Ah)
2 Reserved
3 Maximum clientsper lock
4 (MSB)
5 Number of locks
6
7 (LSB)
8 (MSB)
9 Lock Timeout Interval
10 (ms)
11 (LSB)

Table7: ModePageData

267

2.3 Mode Page

The mode page returns information about lock parame-
ters.

Maximum number of clientsable to sharea lock This
is thenumber of clients that can simultaneously hold
a lock in theLocked Shared state.

Number of lockson thedevice Returns the number of
Dlockson thedevice.

Lock Timeout Interva l The number of milliseconds af-
ter which an refreshed lock wil l timeout. If thisvalue
iszero, locksnever time out.

3 Dlock Behavior

There are a number of details of the Dlock specification
that aren’ t obviousfrom the interface.

3.1 Actions

A more detailed description of the actions can be seen in
Table8. Important things to noticeare:

� If a lock has expired from a Locked Exclusive state,
a Lock Shared request should producea Locked Ex-
clusive state. This allows the client acquiring the
lock to do whatever cleanup isnecessary without ex-
posing other clients to data in an inconsistent state.

� If aclient holdsalock asLockedExclusive, it should
beableto issueaLock Shared commandon thesame
lock and the lock wil l be converted to the Locked
Shared state.

� If aclient holdsa lock asLocked Shared and it is the
only client holding the lock at the time, it should be
ableto issueaLock Exclusivecommandon thesame
lock and thelock wil l beconverted to theLocked Ex-
clusivestate. If the lock is shared by other initiators,
theExclusivePending bit (see Section 3.4) is set.

� A client may hold multiple instances of the same
lock, if it is in a Locked Shared state. This is a valid
(if somewhat useless) condition.

� If a Force Lock Exclusive is issued, the lock is held,
and the low three bytes of the input version number
is correct, the FLE’s return data should indicate that
the lock expired. Example – If a lock is held by one
client in a Lock Shared state and another client is-
suesaForceLock Exclusive, theExpired field in the

return data should be “Expired from Lock Shared”.
This allows a client to know if recovery is required.
If a Force Lock Exclusive is issued on an unlocked
lock, theExpired field should be “Not Expired”.

� If aRefresh Lock action with a lock number of all Fs
is issued, the target resets the timer on all the locks
currently held by that initiator.

3.2 Version Numbers and Caching

Themain reason to haveversion numbersassociated with
each lock isto provideameansof determining theconsis-
tency of a client’s local data cache. Before accessing (ei-
ther reading or writing) any data, the appropriate device
lock is acquired. When finished the lock is released. An
Unlock is used when the data has not been modified dur-
ing the operation. Otherwise an Unlock Increment must
beused to signify that thedatawasmodified.

This data can be cached in a system’s memory, though
its consistency is unknown until the next successful Lock
action. The consistency of cached data is determined
based on theversion number of the lock. Thedata iscon-
sistent if the version number returned by the Lock opera-
tion is the same as what was returned from the initiator’s
previousUnlock or Unlock Increment action. Otherwise,
the data must be reread. Modified data can be cached
while the Dlock is held, but must be written though to
the device before the Dlock is released. This criteria as-
sumes that roll-over of the version number has not oc-
curred. Given roll-over, the cache must be treated as in-
consistent.

Table 9 showsexampleaccesses from two initiators, A
andB. Eachevent isorderedbasedon thetimegiven in the
left most column. The Action column representsa device
lock command sent to thedeviceassuming all commands
access the same lock. The State field gives the lock state
(U=Unlocked, S=Locked Shared, and E=Locked Exclu-
sive) and the version number value. The activity monitor
bit isalways0. Version numbersof x represent valuesthat
are assumed to have rolled. The state field is updated by
the return of each command and does not change when
the other initiator performs a command. The Consistent
field states whether or not the cached data is consistent.
Finally, theLock field givesthecurrent stateof thedevice
lock.

The first two Locks from each initiator are not con-
sistent, because the version number has been assumed to
have rolled-over. The Lock at time 7 guarantees that the
data is consistent, since the new version number is equal
to theoldversionnumber. An Unlock Increment isused at

268

State
Action Unlocked Locked Shared Locked Exclusive

Nop Return.result 1 Return.result 1 Return.result 1
Lock Shared Return.result 1 if Lock[N].holders<MaxHolders if Lock[N].ClientID[0] = ClientID

if Lock[N].expired = ExpiredExclusive Return.result 1 Return.result 1
Lock[N].state LockedExclusive Lock[N].holders++ Lock[N].state LockedShared

else Add ClientID to the list Reset expire time
Lock[N].state LockedShared Reset expire time else

Lock[N].holders 1 else Return.result 0
Add ClientID to the list Return.result 0
Reset expire time

Lock Exclusive Return.result 1 if (Lock[N].holders = 1 and Return.result 0
Lock[N].state LockedExclusive Lock[N].ClientID[0] = ClientID)
Lock[N].holders 1 Return.result 1
Add ClientID to the list Lock[N].state LockedExclusive
Reset expire time Reset expire time

else
Return.result 0

Force Lock Exclusive Return.result 1 if Lock[N].version = version
Lock[N].state LockedExclusive Return.result 1
Lock[N].holders 1 Lock[N].state LockedExclusive
Add ClientID to the list Lock[N].holders 1
Reset expire time Lock[N].version++

Clear list, then Add ClientID
Reset expire time

else
Return.result 0

Refresh Lock Return.result 0 if ClientID is in the list
Return.result 1
if Lock Number is 0xFFFFFFFF

Reset expire time on all locks held by this initiator
else

Reset expire time
else

Return.result 0
Unlock Return.result 0 if ClientID is in the list

Return.result 1
Lock[N].holders��
Remove ClientID from the list
if Lock[N].activity = 1

Lock[N].version++
if Lock[N].holders = 0

Lock[N].state Unlocked
else

Return.result 0
Unlock Increment Return.result 0 if ClientID is in the list

Return.result 1
Lock[N].holders��
Remove ClientID from the list
Lock[N].version++
if Lock[N].holders = 0

Lock[N].state Unlocked
else

Return.result 0
Activity On Return.result 1

Lock[N].activity 1
Activity Off Return.result 1

Lock[N].activity 0
Lock[N].version++

Al l Actions Return.activity Lock[N].activity
Return.expired Lock[N].expired
Return.state Lock[N].state
Return.version Lock[N].version
Return.ClientID[] Lock[N].ClientID[]

Table8: DeviceLock Actions

269

Initiato r A Initiato r B
Action State Consistent

Lock
Action State Consistent

0 U,x U,0 U,x
1 Lock Shared S,0 No S,0 U,x
2 No Modify S,0 S,0 U,x
3 Unlock U,0 U,0 U,x
4 U,0 S,0 Lock Shared S,0 No
5 U,0 S,0 No Modify S,0
6 U,0 U,0 Unlock U,0
7 U,0 E,0 Lock Exclusive E,0 Yes
8 U,0 E,0 Modify E,0
9 U,0 U,1 Unlock Incr U,1
10 Lock Shared S,1 No S,1 U,1
11 Modify S,1 S,1 U,1
12 Unlock Incr U,2 U,2 U,1
13 U,2 S,2 Lock Shared S,2 No
14 U,2 S,2 No Modify S,2
15 U,2 U,2 Unlock U,2
16 Lock Exclusive E,2 Yes E,2 U,2
17 No Modify E,2 E,2 U,2
18 Unlock U,2 U,2 U,2

Table9: DeviceLock Example

time9 to signify that datawasmodified. TheLock at time
10 makesno guaranteethat thedata isconsistent, since in
thiscase the version numbersdiffer. The next Lock again
assumes the cache to be inconsistent on the basis that the
version numbers differ. The final Lock shows the data
is consistent, since the version number has not changed
since time 12.

In general, Locked Shared actionswil l not be followed
by Unlock Increment actions. Lock Shared impliesa read
of the data, without a modify, so there is no need to in-
validate thecachesof theother initiators. There isno rea-
son to prohibit a Locked Shared/Unlock Increment pair,
though. Similarly, Locked Exclusive can be followed by
either Unlock or Unlock Increment.

3.3 Handling Client Failures

Much of thework that hasbeen put into theDlock specifi-
cation dealswith recovering from initiator failures. With-
out these failure detection schemes, an initiator that fails
could leave Dlocks in locked states indefinitely. This
would be bad.

The general Dlock philosophy has always been to try
to avoid having to make clients aware of each other. This
means that clients should be able to detect the failures of

other clients solely by interacting with the Dlock device.
There are currently two methods of doing this, Activity
and Dlock Timeouts.

There is also a method of detecting failures when the
clients talk to each other directly. SinceDlock commands
return a list of theClient ID Numbersof thehostsholding
a lock, it is possible to implement failure detection at a
higher level. The ability of these three failure detection
schemes offers a great deal of flexibility to systems that
useDlock.

3.3.1 Activity/ForceLock Exclusive

An initiator attempting to acquirea lock that is owned by
afailed initiator can identify that thelock hasnot been ac-
cessed by checking theactivity of the lock’sversion num-
ber. A changing version number indicates that the lock
is actively being used. A unchanging version number is
a symptom of a failed client. The number wil l also not
change if a the lock is continually being acquired and re-
leased with an Unlock command.

If no lock activity isobserved, the initiator turnson the
activity monitoring by the Activity On actions. The ver-
sion number now is incremented for both Unlock and Un-
lock Increment operations. If the version number shows

270

activity, the initiator turns off the activity monitoring and
attempts to acquire the lock knowing it is not held by a
failed initiator. If theversion number remainsunchanged,
the initiator performsaForceLock Exclusiveon the lock.

The Force Lock Exclusive action ensures that the lock
wil l only be reset by the initiator that can identify the
value of the current version number. This solves the the
casewhere two separate initiatorssimultaneously attempt
to reset the same lock. The first initiator forces the lock,
which increments the version number. The second initia-
tor’sForceaction is ignored.

Only the three least significant bytes are passed in to
the device in the Force Lock Exclusive action. This is
sufficient because aForceLock Exclusiveaction isalways
preceded by attempts at acquiring the lock using a lock
action. The return data from these attempts provides the
initiator with the current version number. The initiator
then usesthat valuein theForceLock Exclusive. Theonly
way the version number can change between these two
actions is if it is incremented by another initiator’s Force
Lock Exclusiveor Unlock Increment. Thelow threebytes
of theversion number are sufficient to determinethis.

When an initiator eventually succeeds with the Force
Lock Exclusive, it is told what state the lock was in. It
can then perform recovery on the lock’s data. Recovery
from a Locked Shared state may be very different from
recovery from aLocked Exclusivestate.

3.3.2 Dlock timeouts/Refresh Lock/Report Expired

Thenew methodof detecting failedclientsemploysDlock
timeouts. Clients don’ t have to keep track of which other
clients have failed because the Dlock device does it for
them. If a initiator ever leaves a Dlock locked for more
than atimeout period, theDlock deviceassumestheclient
has failed and unlocksthe lock.

When the lock times out, the device sets a expired flag
on the lock. Theflag containsinformation on whether the
lock was held in shared or exclusive state. When a new
client tries to acquire the lock, it succeeds because the
lock was reset. It can then examine the expired flag and
perform theappropriaterecovery operation.

An initiator can prevent a Dlock from timing out by
using theRefresh Lock action. Thisaction resetsthetimer
on the lock. A client who acquiresa lock and performsa
refresh lock action on it periodically to prevent timeout
can hold that lock indefinitely.

The Dlock mode page contains a field for setting the
Dlock timeout interval. This value can be set to zero,
which disables Dlock timeout. This allows even greater
flexibility.

The Report Expired action returns a bitmap of all the
locks. If a bit is one, the corresponding Dlock has ex-
pired. This mechanism allows a dedicated program that
runs in the background on the initiator to check for ex-
pired locks and recover them. The program doesn’ t have
to go linearly though the locks, acquiring and unlocking
them. One Report Expired action allows the program to
get a list of all the expired locks.

A “cleaner” program like this is desirable because it
can limi t the maximum amount of time a file system can
be in an inconsistent stateafter a client failure. If the pro-
gram does a Report Expired once a minute, the cleaner
wil l know about an expired lock in less than a minute.
Without thecleaner, aclient failureon a infrequently used
lock could go undetected for a long time.

3.3.3 Client ID Numbers

Dlock commands always return a list of Client ID Num-
bers of the initiators holding the Dlock. This allows
an arbitrary failure detection scheme to be implemented.
Once a client has the Client ID of the client holding a
lock, a non-SCSI failure detection protocol can be used.
Theclient can determinefor itself whether or not another
client is down. It can then use the Force Lock Exclusive
action to reset the lock, if necessary.

3.4 Shared and ExclusiveLocks

As stated before, a Dlock can be acquired in one of two
modes, Shared or Exclusive. A number of clientscan hold
thesamelock at thesametimeif it’s in asharedstate. This
allows many different clients to read the same piece of
dataat thesametime. If aclient wantsto write, it acquires
an Exclusive lock. This allows a multiple readers/single
writeschemeto be implemented.

The problem with this scenario is that a progression of
readers can cause a writer to wait indefinitely. Two or
moreclientscan hold alock in ashared stateforever, even
if they are constantly releasing and re-acquiring the lock.
The first client gets the lock, the second client gets the
lock, the first client releases the lock, the first client re-
acquires the lock, the second client releases the lock, and
so on. There is no time when the lock is unlocked. The
lock isconstantly being locked and unlocked, so it doesn’ t
time out. A client that wants to get the lock exclusively
waits forever.

Thesolution to thisproblem is to implement an “exclu-
sive pending” bit. If a lock is held in the shared state and
a Lock Exclusive action comes in, the exclusive pending
bit is set. This means that all Locked Shared actions will

271

fail until the lock switches to an unlocked state. Al l the
current readers drain off until the writer gets a chance at
the lock.

There is one problematic detail. Imagine that there are
a bunch of initiators sharing a lock. A Lock Exclusive
action then comes in and fails, which sets the Exclusive
Pending bit. No new Lock Shared requests succeed and
eventually the count reaches zero. In a perfect world, the
client wanting the lock exclusively then gets the lock and
all clientsgo merrily on their way.

In an imperfect world, another client wil l try to do a
Lock Shared before the client that wants the exclusive
lock can retry. At this point, there are three different
strategies that can be implemented:

1. The Dlock device forgets that a Lock Exclusive is
pending and clears the bit. The Lock Shared suc-
ceeds and the client that wants the lock exclusively
has to wait for all of the shared clients to drain off
again.

2. Al l Lock Shared actionsarerejected until aLock Ex-
clusivesucceeds. WhenaLock Exclusiveactionsuc-
ceeds the Exclusive Pending bit is cleared. This is
bad because the client trying to do the Lock Exclu-
sivemight havefailed or changed itsmind. It doesn’ t
get the lock exclusively and all the “Lock Shared”
clients have to wait until some other random client
decides it wants the lock exclusively.

3. All ow one Lock Shared action to succeed, but keep
the Exclusive Pending bit on. Clients requesting a
shared lock are allowed to get it, but only one client
at a time. This keeps “Lock Shared” clients from
starving, but provides the maximum chance for the
“Lock Exclusive” client to completeitswork. Oncea
Lock Exclusive succeeds, the Exclusive Pending bit
is cleared and multiple Locked Shared actions can
succeed again.

Thisspecification proposesthat option number threebe
implemented. Thisallowsthemaximumfairness, with the
minimum slowdown in caseof afailure. A state transition
diagram for thisalgorithm isshown in Figure1.

3.5 Client IDs and GFS

Thenew Global FileSystem [3] architecturewil l takead-
vantage of the fact that Dlock commands return Client
ID Numbers. Clients wil l hold Dlocks for long periods
of time (using Refresh Lock to prevent timeout). While
the client holds the Dlock, it can do write caching of the

data protected by that Dlock. This lets GFS relax its syn-
chronousnatureand improvewrite performance.

When a second client needs to use the lock, it attempts
to acquire the lock, but fails. In the return data from the
failed lock action, the Client ID of the Dlock holder is
returned. The second client can then map this Client ID
into a network address. It can then make a request to the
first client, asking it to release the Dlock. The first client
then writesback its cached dataand releases the lock.

Later versions of GFS can be even more aggressive
and use this out-of-band communication to do things like
Third–Party Transfer. The client holding a Dlock doesn’ t
even haveto writeback itscacheto allow other clientsac-
cess to the same data. If the second client is requesting
something that is not in the first client’s cache, the first
client can just give permission to the second client per-
mission to read thedatafrom disk. If thedatarequested is
small enough and in thefirst client’scache, thefirst client
could even forward thedatadirectly to thesecond client.

3.6 Dlock Persistence

Dlocks are intended to be light weight locks that provide
a quick response time. Having a hold on a Dlock that
persist across the power cycle of a device would be nice,
but it’snot necessary. Lock statesdo not need to bestored
in non-volatilememory. Specific conditionsand how they
should behandled are shown in Table10.

If an initiator is logged out of a device because there
are too many other devices, it should not lose its Dlocks.
When the initiator next logs in to the device it should be
able to perform all the actions it could if it didn’ t log out.
Thisdoesn’t affect the timeout, however. If the timer on a
Dlock expireswhen the initiator that holds it isn’ t logged
in, the Dlock is put in theexpired state, just as it would if
the initiator was logged in.

4 Implementation Details

There are anumber of details to the Dlock concept that
can improveitsefficiency without changing the interface.
Someof these are:

4.1 Out-of-Queue Dlocks

Oneof thethingsthat hurtstheperformanceof GFSis the
fact that Dlock operations can be stuck behind large data
transfers in a drive’s command queue. The client has to
wait for unrelated disk operations to happen before it can
continue.

272

LE EXP

EXP

U

LS, LE

LS

Shared

Pending)

Locked

LE

LS

Pending)

U*

EXP
U

LE*

U
U*

(Exclusive

Shared

Locked

Exclusive

(Exclusive

Locked

Unlocked

(Expired)

Unlocked

Unlocked

Figure 1: A state transition table that takes into account the Exclusive Pending bit. State transitions are described
by these abbreviations: EXP=Lock Expiration, LS=Lock Shared Action, LE=Lock Exclusive Action, LE*=Lock
ExclusiveAction from another initiator, U=Unlock Action, U*=Last Unlock Action on ashared lock

273

Condition Condition handling

ModeSelect on Dlock IssueUnit Attention: All DeviceLocksCleared for all initiators
Dlock ModePage Al l lock valuesare zeroed
Power Cycle IssueUnit Attention: Power On for all initiators

Al l lock valuesare zeroed
SCSI Reset * IssueUnit Attention: Power On for all initiators

Al l lock valuesare zeroed
Bus DeviceReset * Lock valuesnot affected
Task Management ** Lock valuesnot affected
Target Reset
Initiator Logout ** Locksheld by that initiator remain held.

Table10: Dlock Power Cycles, Resets, and ModeSelects: * Parallel SCSI only, * * FibreChannel only

The Dlock command has low processor overhead.
There are no disks accesses involved. There are no large
calculations involved. The Dlock SCSI commands could
be implemented outside of the command queue. Dlock
commands could be acted on as they are pulled off the
wire. This may slightly increase the devices’s firmware
complexity, but it would bea big win performance–wise.

4.2 Event–driven Timeouts

A Dlock device can detect Dlock timeouts in one of two
ways:

1. A thread in the Dlock device could wake up period-
ically and check to see if any of the locks have ex-
pired. The thread would scan linearly though all the
locks checking the time stamps and marking the ex-
pired locks as unlocked and expired. If there were a
large number of Dlocks on a device, this could take
a fair amount of process time for each scan. Scans
would have to be frequent, so a lot of time would be
wasted.

2. Make timeout checking event driven. Only check
the time stamps on a lock when you get a request
for that lock. This distributes the workload so that it
doesn’ t happen all at once. It also meansthat thede-
vice doesn’ t have to waste time checking locks that
aren’ t being used. This isa much better approach.

4.3 Client ID Numbers

Storing a list of Client IDs for each Dlock can use up too
much memory. Just storing an offset into a device wide
list of Client IDs is enough to reconstruct the Client ID
list for theType1 Return DataBlock. Thissavesmemory.

Care must be taken, though, so that the list is still valid if
a initiator gets logged off of the device because there are
too many others logged in.

5 Future Work – Multipl e Actions
Per Command

In the current Dlock Specification, all deadlock detection
and avoidance must be done by the initiators. If a client
needs to hold two Dlocks, it must get them one at a time.
If another client wantsthesametwo Dlocks, but getsthem
in theoppositeorder, deadlock can result.

GFS handles this problem by implementing a compli-
cated system of back-offsand retries. If aclient isholding
one Dlock and wants another, it tries to get the new lock
for a certain amount of time. If it doesn’ t get the lock in
this time, it assumes a deadlock condition exists. It re-
leases the first lock, sleeps for a random amount of time,
and then retries the whole operation. This system solves
the deadlock problem, but it is not fun to implement and
it is not time optimal.

A better solution would be to this problem would be
to implement aDlock command that allowed multipleac-
tions. In the above situation, an initiator would issue a
command that contained two lock actions. The command
would be atomic so that: 1) Either both actions would
succeed and theinitiator would now hold both locks, or 2)
both actions would fail and the client would hold neither
of the locks. Thiseliminates thedeadlock problem.

The Multiple Action idea could be expanded to al-
low many unrelated Dlock actions to be issued in one
atomic Dlock command. This could be a very powerful
tool. Thereare problemswith implementing thisscheme,
though.

274

Packing multiple actions into one command requires
more space than is currently available in a 12 byte CDB.
Thecurrent possiblework-aroundsare:

1. Implement one Command with both a data-in and a
data-out phase. Thisispossiblein FibreChannel, but
frowned upon in Parallel SCSI. Using parallel SCSI
as a testbed is a very nice thing, so we would prefer
not to implement thisoption.

2. Implement two separatecommands, onewith adata-
in phase and one with a data-out phase. This ap-
proach would causesynchronization problems. How
would a device match the “Issue Action” command
with the “Request Result” command? Also, this
techniqueforcesthe initiator to issue two commands
per lock request. Dlock is intended to be a light-
weight command and this doubles the overhead of
the lock/unlock process.

In the future, a third option would allow theadvantages
of multiple actions per command, but at the current time
it ismore trouble that it isworth.

6 Acknowledgments

Many people have contributed code and ideas to The
Dlock Specification over the years. The people we can
remember at themoment are:

� From theUniversity of Minnesota
Andrew P. Barry, Jonathan E. Brassow, Grant M.
Erickson, Benjamin I. Gribstad, Erling Nygaard,
Thomas M. Ruwart, Aaron Sawdey, David C. Tei-
gland

� From SeagateTechnology, Inc.
DaveAnderson, Tony Hecker, Nate Larson, Michael
H. Miller, Troy Wheeler

� From NASA AmesResearch Center
Alan Poston, John Lekashman

� From Ciprico, Inc.
Raymond Gilson, Edward A. Soltis

References

[1] Matthew T. O’Keefe, Kenneth W. Preslan, Christo-
pher J. Sabol, andStevenR. Soltis. X3T10SCSI com-
mittee document T10/98-225R0 – Proposed SCSI
Device Locks. http:// ftp.symbios.com/ ftp/ pub/

standards/ io/ x3t10/ document.98/ 98-225r0.pdf,
September 1998.

[2] X3T10 SCSI committee. Document T10/98-
225R1 – Proposed SCSI Device Locks. http://
ftp.symbios.com/ ftp/ pub/ standards/ io/ x3t10/ doc-
ument.98/ 98-225r1.pdf, October 1998.

[3] Preslan et al. A 64-bit, shared disk file system for
linux. In The Sixteenth IEEE Mass Storage Systems
Symposium held jointly with the Seventh NASA God-
dard Conference on Mass Storage Systems & Tech-
nologies, San Diego, California, March 1999.

