
Implementation of a Fault-Tolerant Real-Time Network-Attached
Storage Device

Ashish Raniwala, Srikant Sharma, Anindya Neogi, Tzi-cker Chiueh
Experimental Computer Systems Laboratory

Computer Science Department
State University of New York at Stony Brook

Stony Brook, NY 11794-4400
fashish, srikant, neogi, chiuehg@cs.sunysb.edu

tel +1-516-632-8436
fax +1-516-632-8334

Abstract

Phoenix is a fault-tolerant real-time network-attached storage device (NASD). Like
other NASD architectures, Phoenix provides an object-based interface to data stored
on network-attached disks. In addition, it features many functionalities not available in
other NASDs. Phoenix supports both best-effort reads/writes and real-time disk read
accesses required to support real-time multimedia applications. A standard cycle-
based scan-order disk scheduling algorithm is used to provide guaranteed disk I/O
performance. Phoenix ensures data availability through a RAID5-like parity mech-
anism, and supports service availability by maintaining the same level of quality of
service (QoS) in event of single disk failures. Given a spare disk, Phoenix automat-
ically reconstructs the failed disk data onto the spare disk while servicing on-going
real-time clients without degradation in service quality. Phoenix speeds up this re-
construction process by dynamically maintaining additional redundancy beyond the
RAID5-style parity on the unused space left on the disks. Phoenix attempts to im-
prove the reliability of the disk subsystem by reducing its overall power consumption,
using active prefetching techniques in conjunction with disk low-power modes. This
paper describes the design and implementation details of the first Phoenix prototype.

1 Introduction

An emerging network file system architecture, called Network-Attached Storage Device
(NASD) architecture, separates the processing of metadata such as access permission check
and file directory lookup, from actual data movement between disks and client machines.
Storage devices that are directly attached to the network off-load the data movement pro-
cessing burden from network file servers, and thus improve the overall system scalability.
This architecture contrasts with the conventional network file-systems in which there is no
separation of metadata processing and data-storage. In NASD architecture, clients still send
their access requests to network file servers, which after necessary checks and translations

89

Phoenix units

High Speed Network

Network File Server

Clients

Figure 1: Instead of attaching disk drives to the backplanes of the network file server machines, the
NASD architecture uses storage devices that can be directly attached to high-speed LANs, and thus
is able to exploit the aggregate bandwidth on the LAN for data transfers between disks and client
machines.

return cryptographically secure object capabilities. From this point on, clients use object
capabilities to directly access the data residing on network-attached storage devices with-
out involving network file servers. By distributing the bandwidth-intensive data transfer
function across the network, the NASD architecture becomes more scalable than tradi-
tional server-attached storage architecture, both with the number of client machines as well
as with the increasing link speed of the LANs. Figure 1 shows how NASD devices inter-
act with client machines directly. Phoenix units constitute the storage system part of the
NASD architecture. The complete NASD architecture is realized by augmenting Phoenix
units with a file-server.

Phoenix is a Linux-based network-attached storage device built from off-the-shelf PC hard-
ware, Fast Ethernet adapter and a set of Ultra-SCSI disks. Phoenix supports the following
features:

� An object-based SCSI-like API.

� Bandwidth-guaranteed disk access, which is essential to real-time multimedia appli-
cations, e.g. MPEG streams in video-server applications.

� Both real-time disk reads and best-effort disk reads/writes.

� QoS guarantees that remain valid across single disk failures, specifically reconstruc-
tion of the contents of the failed disk onto a new disk while maintaining QoS for the
existing streams.

� Utilization of unused space on disks to speed up the reconstruction process.

� Active prefetching and use of disk low-power mode to reduce disk failure probability.

This paper presents the detailed design and implementation decisions that went into the
construction of the first Phoenix prototype. Section 2 reviews related projects in the area of
NASD. Section 3 describes the data access interface which Phoenix provides to its client

90

applications. Section 4 presents an overview of the design of Phoenix and its major archi-
tectural features. Section 5 discusses in detail the implementation of the Phoenix prototype
under Linux. Section 6 discusses optimization features implemented in Phoenix. Section 7
reports performance measurements from the first Phoenix prototype. Finally, we conclude
with a summary of major innovations in Phoenix and an outline of the planned work in
Section 8.

2 Related Work

One of the early systems that adopted the idea of network-attached storage device is the
RAID-II system built at Berkeley [1]. The focus of this work was to address the bus/memory
bandwidth limitations of the disk array’s host machine, by moving data directly between
the network and the disks with minimal host involvement. Katz [2] discussed the concept
of network and channel-based storage systems where networking and storage access are
tightly integrated as a single entity. van Meter [3] provided a survey on the research ar-
eas of network-attached peripherals and the impacts of such devices on operating system
design. Petal [4] uses a set of block-level storage servers that collectively manage a large
set of physical disks to provide clients the abstraction of distributed virtual disks that tol-
erate and recover from disk, server and network failures. Frangipani [5] is a distributed
file system that is built on top of Petal’s distributed virtual disk service to provide scalable
network file service. GFS [17] aims at providing a serverless file-system that integrates net-
work attached storage and fibre-channel-based storage area network. This setup provides
client computers full access to all storage devices on the network resulting in higher data
availability.

The idea of separating high-level file system processing from low-level storage manage-
ment opened up the possibility of customized optimization for file metadata processing
and file data movement. The NASD project at CMU [6, 7] focused on the reduction of the
file server load by providing clients an object-based access interface, which is more general
and flexible than the file-based and block-based interfaces supported by file systems and
disk devices, respectively. This project also addressed the important security issues in the
NASD architecture. More recently, projects at U.C. Berkeley [8], CMU [9] and University
of Maryland / U.C. Santa Barbara [10] all explored the idea of performing a limited form
of computation inside disk drives to improve the overall system performance by reducing
the data traffic between disk devices and clients. Similar ideas have been used to improve
the efficiency of the disk storage system itself rather than that of the clients, for example,
HP’s AutoRAID system [11].

There have been several real-time storage server projects such as SUNY Stony Brook’s
SBVS [12], Microsoft’s Tiger server [14], Starlight’s StarWorks [13], and IBM’s Tiger
Shark parallel file system [15]. All the above systems took the more traditional network
file system architecture rather than the NASD architecture. Some of these enhanced their
scalability by deploying a clustered system architecture, but all data transfers had to go
through the file servers.

91

Power management by reducing disk power consumption has been studied for mobile com-
puters [20, 21], however, the primary goal there is to extend the battery life. Similar ideas
applied to NASD can reduce heating effects by optimizing power consumption, potentially
increasing the reliability of the disk subsystem [22].

Phoenix is heavily influenced by SBVS in terms of its overall architecture and internal
design. It is one of the first, if not the first, NASDs that support fault-tolerant real-time
object-based accesses. It provides high level of service availability as well as data avail-
ability. It also attempts to improve the reliability of the overall system by use of prefetching
techniques. In addition, it supports both server push and client pull file accesses to accom-
modate the requirements of distributed multimedia applications.

3 Data Access Interface

The programming abstraction exposed to the clients by a Phoenix device is a set of logi-
cally contiguous objects whose internal structure such as disk layout is completely hidden
from user applications. Clients may create, delete, access and modify objects. Each object
has associated attributes like object-id, size, etc. The mapping from files and directories to
objects is performed by a separate machine that serves as a network file server.

Phoenix supports both best-effort and real-time bandwidth-guaranteed disk accesses. The
clients specify the data items of interest via a tuple: a unique object identifier, a block offset
within the object and the number of blocks. For real-time disk accesses, an additional pa-
rameter, the bandwidth requirement in terms of 4K blocks/sec, must be specified. Clients
can access data in either the client-pull or server-push mode. In the server-push mode, data
may build up and thus exhaust buffers on the client side due to software/hardware glitches
or mismatches in disk/network bandwidth scheduling granularities. To address this prob-
lem, Phoenix supports a general skip command interface with which a client application
could request the Phoenix server not to send any data for N cycles, where N is a user-
supplied parameter.

Table 1 summarizes the list of commands supported by Phoenix. createsp is used to
create special objects at installation time and is the only one that cannot be done remotely.
Executing this command is similar to creating a partition table on a fresh disk. Special
objects maintain metadata information about a Phoenix device and the objects it contains.
User objects are created and deleted with create and delete. Attributes of an object
are set and read with setattr and getattr commands. All clients, real-time as well
as non-real-time, use the read command to read data objects. The type parameter can
have values server-push, client-pull and best-effort, denoting the mode of
data access. For real-time clients in the client-pull mode, read command performs just the
initial set-up for reads. To actually read the data in the object, they use the pull command.
Data is written to an object using the write command. An object’s size has to be declared
in advance and cannot be changed dynamically. However, this restriction is not important

92

Command Parameters Return Value

createsp/create attributes, perms objid/status
delete objid, perms status
read objid, offset, range, rate, perms, type strmid/status
write objid, offset, range, perms, data status
getattr objid, perms attributes/status
setattr objid, attribute name, value status
pull strmid, range, perms data/status
skip strmid, cycles, perms status
getdeviceinfo perms deviceInfo
shutdown/bootup perms status

Table 1: The set of commands supported by Phoenix, their arguments and return values.

because a conventional file is organized as a chain of objects with new objects added on file
growth. Commands shutdown and bootup perform the remote shutdown and bootup of
a Phoenix system.

4 Phoenix System Architecture

4.1 Basic Design

In Phoenix each storage object is striped across a software-controlled disk array in a se-
quentially interleaved fashion, with a RAID-5 style of parity to protect data against single
disk failures. Two special objects keep the metadata about a Phoenix device and individ-
ual objects on the device. The DeviceInfo object contains the device type, capacity, free
space, block size, permissions, the starting location and size of the ObjectList object, etc.
The ObjectList object contains a list of attributes for each object striped on the disk array
including its size, starting offset, permissions, etc. Phoenix uses a fixed stripe unit size of
4 KBytes, which is independent of objects and the requested access rates to them.

Phoenix uses a cycle-based disk scheduling algorithm to provide disk bandwidth guaran-
tees. In each I/O cycle, Phoenix retrieves from disks an amount of data for each real-time
stream corresponding to its bandwidth reservation. Within an I/O cycle, initially real-time
disk access requests are serviced in the scan order based on blocks accessed from the disks,
and then the best-effort access requests are served in a partial scan order (explained in sec-
tion 5.2). This ordering reduces the disk head seek overhead, simplifies the scheduling of
non-real-time accesses and also makes it possible to perform I/O cycle utilization measure-
ments required for admission control. A fixed percentage of the I/O cycle is reserved for
best-effort traffic to guarantee that best-effort requests never starve. An explicit dynamic
measurement-based statistical admission control, similar to the one used in SBVS, ensures
that Phoenix can admit as many requests as possible while meeting the QoS guarantees to
its clients. To maintain the continuity of data flow, Phoenix employs a double buffering
scheme where the disk subsystem fills up one set of buffers with data while the other set is
being emptied out onto the network.

93

4.2 Failure-Tolerant Real-Time Disk Service

An innovative feature of Phoenix is its ability to maintain the QoS guarantee to real-time
clients across single disk failures. In contrast, conventional disk arrays put more emphasis
on data availability and render the disks’ service unavailable during the failure recovery
period. Phoenix, on the other hand, continues to provide guaranteed disk bandwidth to
real-time applications by treating reconstruction-related disk accesses as best-effort traffic.

Disk failures are detected by associating a timeout with each request issued to the disk
array. On failure detection, Phoenix switches to failure mode. In failure mode, the reads
which should be served by the failed disk are redirected to the corresponding block on
the parity disk. After reading a complete stripe group, Phoenix re-builds the block on the
failed disk through parity. The parity computation leads to an increase in the I/O cycle time.
However, the parity computation is partially overlapped with the disk accesses to improve
the performance.

4.3 Failure Recovery

While in failure mode, Phoenix sends periodic SCSI inquiry commands to detect the ex-
istence of spare disk. On successful detection, a switch is made to the recovery mode.
To shorten the recovery phase, Phoenix denies all best-effort access requests in this mode.
During the recovery period, a dummy stream called reconstruction stream is started to re-
construct the data of the failed disk onto the spare disk by making use of parity. Disk I/Os
associated with the service of the client real-time streams also computes the portions of
data on the failed disk using parity. The question is whether to write such computed data
back to the spare disk (called the piggyback approach) or not (called the non-piggyback ap-
proach). Experiments with both the approaches were conducted and finally the piggyback
approach was chosen for implementation [19]. The piggyback approach reuses the efforts
involved in servicing real-time streams to do the disk reconstruction.

5 Implementation

5.1 Hardware Components

The first Phoenix prototype has been implemented on a PentiumPro 200-MHz PC with 128
MBytes of physical memory. The prototype has a 1-GByte IDE disk to hold the Phoenix
kernel, swap space, and basic utilities programs. In addition, it is connected to an array
of five Seagate ST34371W 4-GByte Ultra Wide SCSI disks physically mounted within an
external disk case via an Adaptec 2940 Ultra-Wide SCSI adapter sitting on a 33-MHz PCI
bus. Data is striped across the SCSI disk array, with a striping unit of 4 KBytes (which is
also the minimum retrieval size for all disk accesses) and one of the disks designated as
the parity disk. The prototype is connected to a switched Fast Ethernet through an Intel
PRO/100+ PCI adapter.

94

Upper-half

StripeLower-half

RequestQ

done

SCSI Controller and Disk Array

User Level Process

Schedule

Request Mgr

BE_Schedule

Disk Manager
issue

generic driver

Disk Scheduler

Device-specific driver

data

Client Real-Time Queues
(RTQs)

BEWriteQ

ControlQ
BEReadQ

ReconstructionQ

Buffer Manager

data

Clients
Network

requests

data/statusSubsystem
Network

StreamInfo
RequestInfoObjectList

DeviceInfo
BestEffReqQs

Adm Ctrl

Figure 2: Software Architecture of Phoenix depicting various modules, data structures and inter-
actions between them. The arrows depict the basic data flow.

5.2 Software Architecture

The Phoenix kernel is based on Linux 2.2.12. The interaction between the Phoenix sub-
system with the Linux kernel is limited to memory management for allocation of buffers,
scheduling of timers, kernel socket code for the network subsystem, and the generic SCSI
controller driver for sending SCSI commands to the disk. The device-specific portion of
the SCSI driver was left untouched. Because of the modular software architecture, it is
expected that porting Phoenix to other hardware/OS platforms and Linux versions should
be relatively straightforward.

The software architecture of the Phoenix kernel is shown in figure 2. Phoenix kernel code
is activated by a startup user-level program that makes a system call with some configura-
tion parameters. From this point onwards, Phoenix remains in the kernel mode. The kernel
consists of a timer-driven upper-half which comprises the disk scheduler, the request man-
ager and the admission controller, and the disk interrupt-driven lower-half comprising the
low-level disk manager. The buffer manager supports other subsystems. The network sub-
system is a timer-driven module that is invoked once every network cycle [16] to send data
to the clients, and to accept new requests from the clients.

To implement cycle-by-cycle disk scheduling, the upper-half is invoked once every I/O
cycle to prepare the disk schedule for every disk and initiate the lower-half to start disk
request processing. Thereafter, the lower-half issues the next disk request from the SCSI
callback function once the previous request finishes, until the access requests for all the
disks are completed.

Since the disk scheduler can not determine in advance the number of non-real-time requests

95

to be scheduled for service, it prepares a separate schedule, called best-effort-schedule, for
these requests. Once the lower-half is done with the real-time requests for an I/O cycle,
it invokes the best-effort scheduler to dynamically schedule requests from the best-effort
schedule. Best-effort access requests that remain unserviced at the end of the current I/O
cycle are processed in later I/O cycles. New best-effort requests are added to the best-effort
schedule in scan order after these left-over requests. The ordering of left-over requests is
not altered to avoid their starvation. Thus, the set of requests arriving within an I/O cycle
are put in scan order and those arriving across I/O cycles are put in FIFO order. This
ordering is termed as partial scan order.

5.2.1 Data Structures

StreamInfo and RequestInfo lists maintain the information regarding the on-going
real-time streams, and best-effort read and write requests. The DeviceInfo and the
ObjectList structures are in-memory copy of the DeviceInfo and ObjectList stored on
the disks (refer to section 4.1). RequestQ is used by the network subsystem to queue
new client requests. The corresponding ReplyQ is the ControlQ of the buffer man-
ager. After processing the best effort requests, the request manager queues them up in
the BestEffReqQs which are then picked up by the disk scheduler. Schedule is the
schedule prepared by the upper-half to be used by the lower-half in the next disk I/O cycle.
BE Schedule, also prepared by the upper-half, is used to hold the best-effort requests
scheduled to be sent to the disks. The various queues maintained by the buffer manager are
discussed in section 5.2.5. The network subsystem, the upper-half and the lower-half all
are executed from bottom halves of the timer or disk interrupt service routines. Since no
two bottom-halves can execute concurrently, the consistency of any shared data structure
among bottom-half processing modules is guaranteed.

5.2.2 Admission Control

The admission control module implements a measurement-based statistical admission con-
trol algorithm to determine whether to admit a new real-time stream. The module exports
admit stream() function which uses the following equation to predict the total service
time after admitting the new (N+1th) stream based on the past service time measurements
for the on-going N streams.

Pred Service N+1 = Current Service N + Std dev N + Increase Seek Time+

(Current Service N � (Requested Rate=Total Rate N))

Std dev N is the standard deviation from the current service time (averaged over past few
I/O cycles), Current Service N , for N streams. Increase Seek Time is the increase in
the seek time per I/O cycle if the new stream is admitted. Total Rate N is the summation
of rates of all the on-going real-time streams. If the predicted service time for N + 1

streams is less than the I/O cycle share reserved for real-time streams, then the new stream
is admitted, otherwise it is rejected. While Phoenix is operating in the failure or recovery
mode, the admission control simply rejects all new stream/best-effort read/write requests.

96

5.2.3 Request Manager

This module exports the function process requests(), which takes client requests
from the RequestQ and processes them based on their types. Table 1 lists all the pos-
sible requests. All requests are first validated. createsp, create, delete and se-
tattr involve updating the DeviceInfo and ObjectList data structures. getattr
and getdeviceinfo just access these structures for sending information to the clients.
Best-effort read and write requests are processed and queued in the BestEffReqQs
list and an entry is made in the RequestInfo list. Client Write requests are bro-
ken into stripe group writes and for each such stripe group write, OLD DATA READ and
OLD PARITY READ requests are put into the BestEffReqQs. These reads in turn trig-
ger the actual writes. The parity block is read to keep it updated with new block writes.

Every real-time read request is validated by the admission control and then an entry is
inserted into the StreamInfo list. pull and skip simply update a counter in the
StreamInfo structure, which is periodically checked by the network subsystem to de-
cide whether to send data to the client or not. shutdown closes down Phoenix by writing
the in-core copy of the DeviceInfo and ObjectList structures to the disks, cleaning
up all required data structures. Bootup initializes Phoenix by reading the disk-copy of
these data structures into memory.

5.2.4 Disk Scheduler

The disk scheduler exports the function update schedule() which prepares the next
I/O cycle’s disk schedule to be served by the lower-half. The disk scheduler first puts the
real-time requests in the Schedule data structure. It reads StreamInfo structure to re-
trieve the rate and current pointer information for on-going real-time streams. For each real-
time stream, the disk scheduler schedules 2*data rate-unconsumed buf size
amount of reads (rounded off to complete parity groups). To reduce disk seek overhead,
the disk scheduler tries to use a retrieval size as close to the maximum retrieval size (64
KBytes) as possible.

Unlike real-time requests, the exact number of non-real-time requests which will make the
I/O cycle utilization optimal can not be pre-determined. To handle this, the disk sched-
uler fills up enough non-real-time requests in a separate BE schedule in a partial scan
order. When all real-time requests scheduled in an I/O cycle are completed, the disk
scheduler invokes get next BE request() to get the next best-effort request from
the BE schedule into the Schedule. This allows the lower-half to get as many non-
real-time requests as it can serve and thus keep the I/O cycle optimally utilized.

In failure mode, the disk scheduler shifts the requests which should be served by the failed
disk to the parity disk. It also puts inquiry commands in the disk schedule to probe pre-
configured I/O locations to detect if a spare disk is available. On detection of a spare disk,
the system switches to recovery mode. In the recovery mode, the disk scheduler sched-
ules reads associated with data reconstruction, which in turn trigger reconstruction-related

97

writes. The ranges of the disk blocks which the current streams are accessing are stored in
the AutoReconstRanges and are termed as active blocks. The reconstruction of active
blocks is piggybacked with the continual service of real-time streams. The disk scheduler
schedules stripe-group reads for reconstruction of inactive blocks (not accessed by the ex-
isting real-time clients). Once the reconstruction of such inactive blocks is over and that
of active blocks is not complete, the reconstruction stream starts with the reconstruction of
the active blocks.

5.2.5 Buffer Manager

Figure 2 shows various queues maintained by the buffer manager. Each on-going stream
has an RTQ structure, which is allocated using allocate rtq(). This points to the
linked list of the data buffers (shown in figure). Each node in the list can store a complete
parity group, i.e., num disks*retrieval size bytes. These buffers are allocated us-
ing bmgr get buffer(). RTQ[0] is a special stream used to store the data read by the
reconstruction stream. Write requests are allocated write buffers linked in the BEWriteQ
using bmgr allocate write buffer(). Each such buffer has 4 parts - OLD DATA,
NEW DATA, OLD PARITY and NEW PARITY. Best-effort reads are allocated a data buffer
linked in the BEReadQ. ReconstructionQ stores the reconstruction data to be written
to the spare disk. Both the best-effort read buffers and the reconstruction buffers are allo-
cated using bmgr get buffer() routine. ControlQ stores the control messages for
the clients.

5.2.6 Disk Manager and Generic SCSI Driver

The disk manager exports the dmgr start() function, which is called by the upper-half
to trigger the next disk I/O cycle. This function issues the first set of requests to all the
disks and then immediately returns. The completion of these requests is indicated by a call
to scsi done() which is the main part of this module. scsi done() issues the next
request and processes the reply received from the disk.

Issuing a disk request involves getting the next request from the disk schedule based on
diskid and slotid of the reply, constructing the next command to be sent to the disk,
and then sending out the actual disk request (with an associated timeout to detect possible
disk failures). Processing a reply involves checking the reply for error codes, switch-
ing to failure mode in case of disk failure detection, and then performing further reply
processing termed as post-processing. Switching to failure mode involves schedule recom-
putation for the current I/O cycle where the real-time reads scheduled for failed disk are
shifted to the parity disk. The next request is issued just before the post-processing stage so
as to overlap the post-processing (e.g. parity computation, etc.) with the next disk access.
The post-processing constitutes queueing up the required buffers with the buffer manager,
updating relevant data structures, performing parity computations if required and queueing
up further disk requests.

98

A subtle change was made to the disk request issue scheme described above based on recon-
struction experiments. The request processing rate is not uniform across the disks. Thus,
some disk might have processed more reconstruction-read requests than other ones, leading
to accumulation of buffers. To avoid this buffer accumulation, Phoenix tries to balance the
number of reads across the disks. In effect, in every I/O cycle, the first set of requests to the
disks is sent out in the reverse order of the length of the disks’ pending requests queues.

Another technique used to ensure uniform disk service progress is to slow down the leading
disk. The leading disk is defined as the disk which has processed maximum number of
requests from its schedule. This leading disk keeps changing dynamically as an I/O cycle
proceeds. No more requests are sent to this disk as long as it remains the leading disk. Since
4 disks are sufficient to optimally utilize an UltraWide SCSI bus, not scheduling the fifth
disk does not have significant impact on performance. In a typical setting, the number of
leading disks can be determined based on supported SCSI bus bandwidth, the total number
of disks and the difference between the processing rates of the disks. The main concept is
to avoid request scheduling for the disks which are going faster than the other disks without
affecting the overall performance.

5.2.7 Network Subsystem

The function do net io cycle() of the network subsystem is invoked once every net-
work cycle. It looks at the StreamInfo and RequestInfo structures, dequeues data
from the buffer manager and sends it to the clients. It also sends them the new control
messages queued in the ControlQ of the buffer manager. It processes the new client
requests and puts them in the RequestQ. This module works by making socket-layer sys-
tem calls from within the kernel to send out UDP packets over the network. This subsystem
is relatively independent of the rest of the system and can be fairly easily replaced by other
real-time network subsystems, e.g., Rether [16].

6 Optimization Features

6.1 Dynamic Replication to Reduce Reconstruction Time

To reduce the data reconstruction time, Phoenix employs a dynamic replication scheme that
uses unutilized storage space in the disk array to mirror a part or all of the utilized portion
of the disk array. The extent of the disk array’s utilized portion that gets replicated depends
on the size of the unused space. Here, a disk array consists of three parts viz. utilized
& mirrored (UTM), utilized & parity-protected (UTP), and unutilized & mirrored (UUM)
(figure 3). Both the UTM and UUM are reconstructed via 1 : 1 reads and writes, whereas
the UTP portion is reconstructed via (N � 1) : 1 reads and writes, where N is the parity
group size, plus a parity computation. The mirroring scheme chosen, called Declustered
Replication, distributes the replication for each disk across all other disks to increase read
parallelism. To minimize seek overheads, replication unit is chosen to be the disk’s maxi-
mum retrieval size (64 KBytes).

99

UTM

UTP 1 UTP 2 UTP 3 UTP 4

Replication unit
UUM

UTP

 1.1

 1.2

 1.3

 2.1

 2.2

 2.3

 3.1

 3.3

 3.2

 4.1

 4.2

 4.3

 1.1

 4.2

 3.3

 2.1

 1.2

 4.3

 3.1

 2.2

1.3

 4.1

 3.2

 2.3 =Max Retrieval size

Figure 3: Dynamic Declustered Replication. Each disk in the array is partitioned into 3 parts:
UTM, which is reconstructed from the mirrored copy replicated across other disks, UTP, which
is reconstructed from parity, and UUM, which stores mirror copies of other disks’ UTM portions.
UTM and UTP together represent the part of a disk that is being utilized.

To implement dynamic replication, additional replication writes are scheduled for client
writes to maintain the replication consistency. During the reconstruction phase, the disk
scheduler tries to use the existing mirror copy to reconstruct the data. Reconstruc-
tionQ is used to temporarily store this data. The reconstruction of UTM and UTP is done
in parallel to ensure optimal performance. Also, excessive UTM reads in short time may
lead to write buffer accumulation and are therefore thwarted appropriately. Reconstruc-
tion related measurements on Phoenix prototype indicate significant performance gains
achieved by the use of this approach. The benefits are expected to increase further as the
number of disks in the parity group increases.

6.2 Active Prefetching to Lower the Power Consumption

To reduce the probability of disk failures due to overheating [22], Phoenix tries to reduce
the overall power consumption of the disk subsystem. Phoenix employs an active prefetch-
ing technique by exploiting real-time applications’ regular data access patterns. Rather than
leaving the unused bandwidth in each I/O cycle wasted, Phoenix uses the spare bandwidth
to prefetch data for each real-time stream, in order to skip some I/O cycles every once in
a while. In these skipped I/O cycles, Phoenix puts the disks in the low-power mode and
thus lowers the power consumption of the disk array. Switching between low-power and
normal operating modes involves only electronic components rather than mechanical parts
[18]. Therefore, mode switching power consumption is negligible as compared to power
saving achieved. Consequently, active prefetching can ensure that the power consumption
of a Phoenix device is proportional to the number of active streams being serviced at that
time.

As Phoenix switches to the low-power mode, the upper-half no longer remains timer-
driven. When the disk manager is done with its I/O cycle, it invokes the upper-half directly.
The scheduler now schedules read requests for all the streams making sure that streams
are prefetched fairly. When enough data is accumulated, the disk manager puts the disks
in low-power mode and does not invoke the upper-half. The network subsystem keeps
consuming the data and when the data level falls below a certain threshold, the network
subsystem invokes the upper-half.

100

0 20 40 60 80 100

% Disk Utilization

0

500

1000

1500
R

ec
on

st
ru

ct
io

n
T

im
e

in
 s

ec
.

Dynamic Replication
Parity Based

Figure 4: Variation of reconstruction time
with increasing disk utilization.

0 10 20 30 40

Number of MPEG−1 Streams

600.0

800.0

1000.0

1200.0

1400.0

1600.0

R
ec

on
st

ru
ct

io
n

T
im

e
in

 s
ec

. At 66% disk utilization

Figure 5: Variation of reconstruction time
with increasing number of active streams

7 Performance Measurements

The throughput of the system was measured in terms of the number of MPEG-1 streams it
can support. Phoenix supports a maximum of 52 streams in normal mode, 42 streams in
failure mode and 36 streams in reconstruction mode. Thus, Phoenix services a maximum
of 36 guaranteed RT streams across failures/reconstruction and an additional 16 guaranteed
RT streams but not across failures.

Figure 4 shows the variation of raw reconstruction time (no streams in the system) as the
disk utilization increases. A significant gain in reconstruction performance suggests use of
dynamic replication. Reconstruction up to 50% disk utilization is totally based on replica-
tion and then onwards, reconstruction uses parity as well as mirrored data.

Figure 5 shows the variation of reconstruction time as the number of MPEG-1 streams
increases. The length of these streams is constant and the streams are uniformly spread
across the disks. The disk utilization is kept at 66% (equal UTM and UTP portions). When
there are no client streams, the reconstruction is solely due to the reconstruction stream.
The reconstruction time is minimum in this case. The reconstruction time increases with
the number of real-time clients because of seek and request processing overheads.

Simulations were done to gauge the potential reduction in power consumption, and thus
the increased reliability that can be achieved using active prefetching. The fraction of total
time available for keeping the disks in low-power mode is shown in figure 6. As the number
of streams reduces, the power consumption can also be reduced almost linearly.

8 Conclusions

This paper described in detail the design and implementation of a Linux-based network at-
tached storage device, which exports an object based API, supports real-time reads and

101

0 10 20 30 40
Number of MPEG−1 Streams

0.0

0.2

0.4

0.6

0.8

F
ra

ct
io

na
l S

le
ep

 T
im

e

Figure 6: Variation of fractional sleep time with increasing number of streams.

best-effort reads/writes, provides uninterrupted real-time disk service in the event of a
single disk failure, performs on-line disk reconstruction while using the active real-time
streams, exploits full disk bandwidth and disk space all the time to speed up failed disk
reconstruction, and increases the reliability of the disk subsystem by reducing its power
consumption. Extensive measurements on the first Phoenix prototype were made to vali-
date the design decisions (described in [19]). In future, the prototype will also be integrated
with a real-time network subsystem [16] and a file-system.

References

[1] Drapeau A.L.; et. al., “RAID-II: a high-bandwidth network file server,” Proc. of the
21st Annual Intl. Symp. on Computer Architecture, p. 234-44, Chicago, IL, 1994.

[2] Katz R.H., “High-performance network and channel-based storage,” Proceedings of
the IEEE, vol.80, no.8, p. 1238-61, Aug. 1992.

[3] Van Meter R., “A brief survey of current work on network attached peripherals,” Op-
erating Systems Review, vol.30, no.1, p. 63-70, Jan. 1996.

[4] Lee E.K.; Thekkath C.A., “Petal: distributed virtual disks,” 7th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
p. 63-70, Cambridge, MA, Oct. 1996.

[5] Thekkath C.A.; Mann T.; Lee E.K., “Frangipani: a scalable distributed file system,”
16th ACM Symposium on Operating Systems Principles, p. 224-37, Saint Malo,
France, Oct. 1997.

[6] Gibson G.A.; et. al., “A cost-effective, high-bandwidth storage architecture,” Eighth
International Conference on Architectural Support for Programming Languages and
Operating Systems, p. 92-103, San Jose, CA, Oct. 1998.

102

[7] Gibson G.A.; et. al., “File server scaling with network-attached secure disks,” 1997
ACM International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS 97), p. 272-84, Seattle, WA, June 1997.

[8] Keeton K.; Patterson D.A.; Hellerstein J.M., “A case for intelligent disks (IDISKs),”
SIGMOD Record, vol.27, no.3, p. 42-52, Sept. 1998.

[9] Riedel E.; Gibson G.; Faloutsos C., “Active storage for large-scale data mining and
multimedia,” Proceedings of the 24th VLDB Conference, New York, NY., Aug. 1998.

[10] Acharya A.; Uysal M.; Saltz J., “Active disks: programming model, algorithms and
evaluation,” Eighth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, p. 81-91, San Jose, CA, Oct. 1998.

[11] Wilkes J.; Golding R.; Staelin C.; Sullivan T., “ The HP AutoRAID hierarchical stor-
age system,” ACM Trans. on Computer Systems, vol.14, no.1, p. 108-36, Feb. 1996.

[12] Chiueh T.; Vernick M.; Venkatramani C., “Integration of Real-Time I/O and Network
Support in Stony Brook Video Server,” IEEE Network Magazine, April 1999.

[13] Tobagi F.A.; Pang J.; Baird R.; Gang M., “Streaming RAID - a disk array manage-
ment system for video files,” Proceedings of First ACM International Conference on
Multimedia, p. 393-400, Anaheim, CA, Aug. 1993.

[14] Bolosky W.J.; Fitzgerald R.P.; Douceur J.R., “Distributed schedule management in
the Tiger video fileserver,” 16th ACM Symposium on Operating Systems Principles,
p. 212-23, Saint Malo, France, Oct. 1997.

[15] Haskin R.L., “ Tiger Shark-a scalable file system for multimedia,” IBM Journal of
Research and Development, vol.42, no.2, p. 185-97, March 1998.

[16] Venkatramani C.; Chiueh T., “Design, Implementation, and Evaluation of A
Software-Driven Real-Time Ethernet Protocol,” ACM SIGCOMM, 1995.

[17] Perslan K. W.; et. al., “A 64 Bit, Shared Disk File System for Linux,” IEEE Mass
Storage Systems Symposium, March 15-18, 1999, San Diego, California.

[18] “IBM Travelstar 6GT,” http://www.storage.ibm.com/hardsoft/diskdrdl/prod/6gtprod.htm.

[19] Neogi A.; Raniwala A.; Chiueh T., “Phoenix: A low-power fault-tolerant network-
attached storage device,” ACM Multimedia, 1999.

[20] Li K.; Kumpf; Horton P.; Anderson T., “A quantative analysis of disk drive power
management in portable computers,” Proc. of the 1994 Winter USENIX, p. 279–291.

[21] Douglis F.; Krishnan P.; Marsh B., ”Thwarting the power-hungry disk,” Proc. of the
1994 Winter USENIX Conference, Jan. 1994.

[22] Herbst G., “IBM’s drive temperature indicator processor (drive-TIP) helps ensure
high drive reliability,”
http://www.storage.ibm.com/hardsoft/diskdrdl/technolo/drivetemp/drivetemp.htm

103

