
105

Access Coordination Of Tertiary Storage For High Energy Physics
Applications �

Luis M. Bernardo, Arie Shoshani, Alexander Sim, Henrik Nordberg
Scientific Data Management Research Group

NERSC Division
Lawrence Berkeley National Laboratory

Berkeley, CA 94720
fLMBernardo, AShoshani, ASim, HNordbergg@lbl.gov

tel +1-510-486-5171
fax +1-510-486-4004

Abstract

We describe a real implementation of a software component that manages caching
of files from a tertiary storage management system to a large disk cache developed for
use in the area of High Energy Physics (HEP) analysis. This component, called the
Cache Manager, is a part of a Storage Access Coordination System (STACS), and is re-
sponsible for the interaction with a mass storage system that manages the robotic tapes
(we used HPSS). The Cache Manager performs several functions, including managing
the queue of file transfer requests, reordering requests to minimize tape mounts, mon-
itoring the progress of file transfers, handling transient failures of the mass storage
system and the network, measuring end-to-end file transfer performance, and provid-
ing time estimates for multi-file requests. These functions are described in detail, and
illustrated with performance graphs of real-time runs of the system.

1 Introduction

Like so many other scientific disciplines, HEP experiments produce huge amounts of data
that, given the usual budget constraints, need to be stored in robotic tape systems. For
instance, the STAR experiment at Brookhaven National Laboratory that will start collecting
data by mid 2000, will generate 300 TB of data over the course of three years. Storing such
amounts of data in disks is certainly unreasonable and also a waste of financial resources
since most of the data will not be used often, yet they need to be archived. In practice
all the data will be stored in tapes and the amount of available disk space will amount to
a few percent of the total space needed to store all the data. Given the fact that retrieval
of data from tapes is much slower than from disk, the need for smart cache management

�This work was supported by the Office of Energy Research, Office of Computational and Technology
Research, Division of Mathematical, Information, and Computational Sciences, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

106

systems, that coordinate both the retrieval of data from tapes and the use of the restricted
disk cache, is real [3, 2, 1]. With this goal in mind we developed STACS (Storage Access
Coordination System) [4] to be used by the STAR experiment. STACS was designed to take
advantage of the fact that the particle collisions, recorded by the STAR measuring devices,
are independent of each other, and therefore the processing of each collision’s data can be
done in any order. This provides the ability to choose the order of caching of data from
tape to disk cache, so as to optimize the use of the cache by multiple users. In addition,
since we know ahead of time all the files needed for processing for all the users currently
in the system, we can order the scheduling of file transfers to minimize the number of tape
mounts.

This paper is organized as follows. In section 2, we start by briefly describing the
application domain of High Energy Physics and how the particular needs of that domain
influenced the design of STACS. We briefly discuss the architecture of STACS, and de-
scribe the process of executing queries. In section 3, we describe in detail the component
responsible for interacting with the system that manages the tapes (we used HPSS), called
the Cache Manager. In this paper, we emphasize many of its features, including the support
of a request queue, the reordering of file transfers to minimize tape mount, and the handling
of errors and system failures. We conclude in section 4.

2 The STACS Architecture

We describe in this section the components of STACS, and the reasons for the modular
architecture of the system. First, we need to describe briefly the application domain, the
kind of queries applied to the system, and what is expected from the application’s point of
view.

2.1 HEP Application Domain

In the HEP STAR experiment, gold nuclei are collided against each other inside an accel-
erator and the results of such collisions are recorded by a very complex set of measuring
devices. Each collision is called an event and the data associated with each event is in the
order of 1-10 MB. It is expected that the experiment will generate 108 such events over 3
years. The raw data recorded by the measuring devices are recorded on tapes. They are
organized in files, each about 1 GB in size. The data then undergo a “reconstruction” phase
where each event is analyzed to determine what particles were produced and to extract
summary properties for each event (such as the total energy of the event, momentum, and
number of particles of each type). The number of summary elements extracted per event
can be quite large (100-200).

The amount of data generated after the reconstruction phase ranges from about 10%
of the raw data to about the same size as the raw data, which amounts to about 30 - 300
TBs per year. Most of the time only the reconstructed data is needed for analysis, but the
raw data must still be available. It is against the summary data that the physicists run their
queries searching for qualifying events that satisfy those queries. All queries are range
queries (for example, 5 GeV < energy < 7 GeV, or 10 < number of pions < 20). For each

107

query, STACS has to determine which files contain the reconstructed data (or the raw data
if they are requested), and to schedule their caching from tape for processing.

Given the fact that the different events (collisions) are independent of each other, it is
irrelevant for the physicists whether they receive the qualifying events in the order they
were generated or any other order, as long as they receive all qualifying events. So, what
the physicists need is a away to map their queries to the qualifying events stored in the
tape system and to efficiently retrieve those events from tape to their local disk so that
they can run their analysis programs. STACS was designed with this in mind. It is typical
that physicists form collaborations, where 10-100 users study the same region of the data.
Therefore, there is good likelihood that queries of different users will overlap in the files
that they need. STACS is designed to maximize the use of files once they are cached to
disk, by striving to make each file available to all application programs that need it.

2.2 STACS

The STACS architecture consists of four modules that can run in a distributed environ-
ment: a Query Estimator (QE) module, a Query Monitor (QM) module, a File Catalog
(FC) module and a Cache Manager (CM) module. All the communication between the
different modules is handled through CORBA [5]. The architecture of the system is shown
in Figure 1. The purpose of this paper is to describe in detail the capabilities provided by
the CM. However, to put this in context we describe briefly the function of each module
next.

The physicists interact with STACS by issuing a query that is passed to the QE. The
QE utilizes a specialized index (called a bit-sliced index) to determine for each query all
the events that qualify for the query and also the files where these events reside. This
index was described in [4]. The QE can also provide time estimates before executing a
query on how long it will take to get all the needed files from the tape system to local disk.
The estimate takes into account the files that are currently in the disk cache. If the user
finds the time estimate reasonable then a request to execute the query is issued and the
relevant information about files and events is passed to the QM. The job of the QM is to
handle such requests for file caching for all the users that are using the system concurrently.
Since the users don’t care about the order they receive the qualifying events the QM is
free to schedule the caching of files in the way that it finds most efficient (for instance,
by requesting first the files that most users want). The QM uses a fairly sophisticated
caching policy module to determine which files should reside in cache at any time. The
QM marks each file requested by one or more queries with a dynamic weight proportional
to the number of queries that still need that file. The caching policy uses this weight to
maximize the usage of the cache by queries. Any files that happen to be in cache and can
be used by an application are passed to the application as soon as it is ready to accept the
data (i.e. when it is not busy processing the previous data). Files are removed from cache
only when space is necessary. The files with the lowest weight are removed first. A more
detailed description of the caching policy is also given in [4].

After the QM determines which files to cache, it passes the file requests to the CM one
at a time. The CM is the module that interfaces with the mass storage system, which in
the case of STAR is HPSS. It is the job of the CM to make sure that the files requested

108

Figure 1: The STACS architecture.

by the QM are properly transferred to local disk. When a request reaches the CM a file is
identified by a file id (fid), a logical name. To be able to transfer the file from HPSS to local
disk the CM needs to convert the file logical name into a real physical name. This mapping
can be obtained by consulting the FC, which provides a mapping of an fid into both a HPSS
file name and a local disk file name (the full path of the file). It also includes information
about the file size and the tape id (tid) of the tape where the file resides.

To visualize the operation of STACS, we include here a graph of a real run of the system
processing multiple files (Figure 2) for a single query. The x-axis represents time. Each
jagged vertical line represents the history of a single file. It starts at the bottom at the time
it was requested, to the time it was cached to HPSS cache, to the time is was moved to the
shared cache, to the time it was passed to the requesting query, and terminates (at the top)
after the application finished processing all the events it needs from that file. As can be
seen, initially a request for two files was made (one to process, and one to pre-fetch), and
only after the first file was processed the application made a request to cache another file.

3 The Cache Manager

The CM performs mainly two functions: it transfers files from the mass storage system
(HPSS) to local cache and purges files from local cache. Both actions are initiated by the
QM. The transfer of files requires a constant monitoring. The CM performs a variety of

109

Figure 2: Tracking of files requested by a query.

different actions towards that end. It measures various quantities, such as the transfer rate
of each file, it keeps track of the amount of cache in use, and (whenever a transfer fails) it
detects the type of failure by parsing the PFTP output looking for errors.

3.1 File Transfers

The CM transfers files from the mass storage system (HPSS) to local cache using the paral-
lel file transfer protocol (PFTP). The CM is multithreaded and can handle many file requests
at the same time (in fact, there is a different thread for each PFTP request). Since the num-
ber of PFTPs that HPSS can handle concurrently is limited (by the memory available to
HPSS) the CM needs to make sure that it doesn’t swamp HPSS with too many concurrent
PFTPs. This is a required feature because the HPSS system is a resource shared by many
users and as such all users have to make sure they don’t use more than their share. And
even though the HPSS system administrator can block PFTP requests from any user, the
system will work better if the users stay within their PFTP quotas. The CM handles this
for all its users by queuing the file requests that it receives from the QM and never serving
more than the number of PFTPs allocated to it. Thus, STACS and in particular the CM,
performs the function of serving its users in a fair fashion, by not allowing any single user
to flood the system with too many file caching requests. In STACS the number of allowed
PFTPs can be changed dynamically by the system administrator, while the cache manager
is running. If this limit is reduced, it simply stops issuing PFTPs until the number of PFTPs
in progress reaches the new limit.

110

3.2 Queue Management

Since the CM builds up a queue of file requests that cannot be served while the number of
PFTP requests is at its maximum, opportunities arise for rescheduling the order of requests
in the queue so that files from the same tape are asked together one after another. The
idea is that the transfer rate from HPSS to local cache will increase if the number of tape
mounts is minimized. This is particularly important if the number of tape drives is small
and the network bandwidth between HPSS and local cache is large. The goal is to have
an aggregated transfer rate as high as possible and that can be achieved by minimizing the
“idle” transfer periods during tape mounts. Obviously this gain obtained by rescheduling
the queued requests comes at a cost, the cost of bypassing older requests in the queue and
instead serving younger requests just because they happen to be from a more “popular”
tape. We leave the responsibility of deciding how much rescheduling to do to the STACS
administrator and that can be done by dynamically changing a “file clustering parameter”
that characterizes the clustering of requested files according to the tape they reside in. Thus,
choosing the parameter to be, say, 5 means that if a file from some tape was just transferred
to local cache, then on average 4 more files from the same tape will be requested (this only
holds true in an infinite queue, but it’s a good approximation). Choosing the parameter to
be 1 means that no rescheduling will be done and the files in the queue are served in a first
come first serve order. Figures 3 and 4 show the order the files were requested versus the
tape they reside in for two runs of the same set of queries. The “file clustering parameter”s
used were 1 and 10 respectively. The important thing to notice is that in figure 3 there is a
constant changing of tapes.

3.3 Query Estimates

One of the most interesting, and also the most difficult to implement, features of the CM
is the capability of estimating how long the files needed for a query will take to transfer to
local cache. Even though the users get the time estimate through the QE, the real estimates
are done by the CM and passed to the QE. The estimates are done by checking which subset
of the set of files needed for a query are in cache (call that X), which are already scheduled
to be cached, and are in the CM queue (call that Y) and which still have to be requested
(call that Z). The CM can use the current transfer rate to estimate how long the files needed
will take to transfer. If the current transfer rate happens to be zero, either because no files
are being transferred or because the network is temporarily down, then a default transfer
rate is used. We describe in Section 3.5 how the actual transfer rates are obtained over
time. So far, we used the maximum transfer rates obtained when the system is heavily
loaded as the default transfer rate values. In the future, we plan to tune the default transfer
rate dynamically, averaging the maximum transfer rates for the last 24 hours (or whatever
default period is preferred).

To get a best case estimate, assuming this query gets top priority, we need only to divide
the sum of sizes of files not in cache by the transfer rate Tr, i.e. (s(Y) + s(Z))=Tr where
s(Y) and s(Z) are the sum of sizes of files in set Y and set Z respectively.

However, we also want to get a realistic estimate. We achieve this as follows. For the X
files that are in cache we assume they continue to be available to the application since they

111

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

45

50

T
ap

e
ID

File Request Order

File Clustering Parameter: 1

Figure 3: File request order in the absence of file clustering. Files are requested on a first
come first serve basis. Each point in the x-axis corresponds to a new file request.

will be marked as needed. For the Y files in the CM queue, we have two cases to consider.
If the set Z is empty then we don’t need to consider the set of files in the queue that come
after all the files in set Y . Call the set of remaining files in the queue Y 0 (we only need to
consider the files in the queue from the first file to the last file in Y). Then the estimate is
s(Y 0)=Tr. If on the other hand the set Z is not empty then we need to take into account
that all the files in the queue need to be processed before any files in the set Z . We call
the set of files in the queue T . Let then the number of queries in the system be q. For our
estimate, we assume that each of the queries will be served in a round robin fashion, and
that there is no file overlap between the queries. Then for the Z files we need qs(Z)=Tr,
assuming that all files have similar sizes. So the total time estimate is (qs(Z) + s(T))=Tr.

Of course these estimates are only reasonably good if the system doesn’t run out of
cache space (in which case the file transfers have to stop until some files can be purged)
and if the number of queries stays the same during the period that the query in question is
being processed. Figures 6 and 5 show a comparison between the estimated time and the
real time for the same set of twenty queries run from the same initial state (no files initially
cached), with the difference that in one case the queries come 5 minutes apart and in the
other case they come 20 minutes apart. In these runs the processing time per event (the time
spent processing an event by the application) was chosen very small so that the amount of

112

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

45

50

File Request Order

T
ap

e
ID

File Clustering Parameter: 10

Figure 4: File request order with a file clustering parameter of 10 files per tape. As many
as 10 successive requests from the same tape are made if they are found in the queue.

time the QM holds a file in cache is negligible when compared with the transfer time. The
queries were designed to complete in about 20 minutes each. Figure 5 shows the estimates
when the same set of queries arrive 20 minutes apart. This time is enough to transfer all the
files needed by the query before the new query comes in. As a consequence the estimates
are very accurate. They are biased towards shorter transfer times because the CM used the
default transfer rate to calculate the transfer times, and the default transfer rate was chosen
as the maximum transfer rate that the network supports. That default is not sustained for
longer periods and hence the shorter time estimates.

On the other hand, in figure 6 the queries arrived 5 minutes apart. In addition, we did not
take into account the number of queries that were in the system when a new query started.
Since there was not enough time to finish a query before a new query arrives (we chose
the queries so that they request approximately the same number of files every time), the
requests for files pile up in the CM. This explains why successive time estimates grow larger
and larger; the requests for files pile up faster than the CM can serve them. We can also
see that the estimates were very poor and fell short of the real transfer times, because the
estimate did not account for the number of queries in the system. This gave us the insight to
take the number of queries into account, a feature that is now being implemented. We note
that even so, the fact remains that when an estimate is done the CM knows nothing about

113

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

100

200

300

400

500

600

700

800

900

1000

1100

Query

E
xe

cu
tio

n
T

im
e

(s
ec

)

20 Queries 20 Minutes Apart

actual time
estimated time

Figure 5: Comparison between estimated time and real transfer time when the queries run
alone in the system.

the queries that will come in the future. Because of the round robin policy we currently use,
such queries will request some files before all the files for previous queries were requested.
Nevertheless, our estimates are pretty accurate since they are based on a measured transfer
rate, the files in cache for that query, the number of files in the queue, the actual sizes of
files, and the current load on the system, measured as the number of concurrent queries
being processed.

3.4 Handling PFTP Errors

The most important functionality of the CM is the handling of transfer errors. Sometimes
the PFTP transfer fails, either because HPSS misbehaves or breaks down, or because the
network is down or even because the requested file doesn’t exist in HPSS. So to make sure
that the file was successfully transferred to local disk the CM starts by checking the PFTP
output looking for the string “bytes transferred” (this string also appears at the end of a ftp
transfer). If that string is not found the CM parses the PFTP output looking for possible
error messages, and depending on the result different paths are taken. For instance, if the
file doesn’t exist on HPSS the CM just reports the fact to the QM. If on the other hand, the
transfer error was due to some HPSS error (say, an I/O error) the CM removes the partially
transferred file from disk, waits a few minutes, and then tries again to transfer the same file.

114

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2000

4000

6000

8000

10000

12000
20 Queries 5 Minutes Apart

E
xe

cu
tio

n
T

im
e

(s
ec

)

Query

actual time
estimated time

Figure 6: Comparison between estimated time and real transfer time when there is sharing
of resources between queries.

This functionality of the CM is very important because it insulates the rest of the system
and the user’s application from HPSS and network transient failures. All the user perceives
is that the file may take longer to cache or that it doesn’t exist. This situation is shown in
Figure 2. It shows two gaps in the file transfers, one long and one shorter. This was due to
an HPSS server failure that was then restored. The CM checked HPSS periodically till it
recovered and then proceeded with file transfers.

The possible errors or reasons that cause a PFTP to fail are the following:

� File not found in HPSS. This is an irrecoverable error. The CM gives up and informs
the QM.

� Limit PFTPs reached. This happens if other users use more than their share of allo-
cated PFTPs. When this happens it is impossible to login to HPSS. The CM handles
this by re-queuing the file request and trying again later.

� HPSS error. Some are recoverable (like an I/O error or a device busy error), others are
not (a non existing file, or a wrong read permission). The CM handles the recoverable
errors by trying again up to 10 times. This is a default number that can be changed
dynamically. The assumption is that if a transfer fails 10 times then something is
really wrong with the file. Another approach, which we did not implement, is to

115

Figure 7: This graph shows several quantities that STACS can display dynamically and that
characterize the overall status of the system.

have a timeout mechanism where no more PFTP retrials would be done once the
timeout limit was reached.

3.5 Measurements

The CM keeps track of various quantities that characterize its status at any time. One of
those, and probably the trickiest one to measure, is the transfer rate between HPSS and
local cache. When a PFTP is launched the requested file transfer may not start right away.
This is particularly true if the file happens to be on tape instead of being in the HPSS own
cache. In that case the tape has to be mounted before the transfer can really start. This fact
is not known to the CM. After the transfer occurs the CM can find out how much time was
really used in transferring the file and how much time was used in mounting the tape and
seeking to the right place on tape, but that information comes too late to be of any use in
estimating the instantaneous transfer rate. The CM can give very accurate measurements of
the instantaneous transfer rate by following a different approach: it periodically (say, every
15 seconds or whenever a file transfer ends) checks the local size of all the files currently
being transferred. By measuring the total number of bytes transferred between now and the
previous measurement and the amount of time elapsed, it can give an accurate value for the
transfer rate. To smooth out quick fluctuations, it gives a moving average of the transfer
rate measured over the last, say, 10 measurements.

Other quantities the CM keeps track of are the number of PFTPs pending, the amount
of cache used by the files in local cache, and the amount of cache reserved for the requests
currently in the queue. In addition to these measurements by the CM, the QM keeps track of
information related to the status of queries. Specifically, it keeps also track of the number of
queries waiting to be served or being served, and also the amount of cache actively being
used, i.e., cache used by files that are being currently processed by some query. In this

116

context, a query is considered as being served if it is currently processing a file, or if it has
a file in local cache to process.

All these quantities can be displayed dynamically when the system runs and can be used
by the STACS administrator to tune the policies of the system to overcome bottlenecks. For
example, one of the parameters that can be set dynamically is how much pre-fetching to
perform on behalf of each query. If there is a lot of available disk cache, and the PFTP
queue is small, one can increase the number of pre-fetches, so that queries have at least
one additional file in cache as soon as they finish processing a file. An example of such
measurements displayed for a particular run are shown in Figure 7.

Another reason for keeping track of these measurements performance, is to observe
whether the system resources are “balanced”, i.e. used well for a typical query mix. In
particular, it is important to understand where the bottlenecks are, and if some resources
(tape drives, disk cache, and network resources) are underutilized. Accordingly, this can be
used as a guide for adding the right kind of resources to the system to achieve better system
performance.

3.6 Recovery from Crashes

One of the very important, even if rarely used, features of the CM is the capability to
recover from crashes and return to its state before the crash. By crash we mean a real crash
of the CM, which although very unlikely (we have run the CM for weeks without a glitch)
cannot be put aside, but also the situation where the machine where the CM runs needs
to be rebooted. Given the fact that a set of queries can take days to process it’s of utmost
importance that the system can return to its state before a crash without the users having
to relaunch all the queries again. The CM does this by logging to a “recovery” file the list
of requests that were not served yet. Once a new request arrives, information about it (file
id and query id) is logged to a file, and after a request is served (a file is transferred) the
associated information is removed from the same file. If the CM happens to crash or the
system where it runs needs to be shut down, the CM can easily return to its previous state
by reading the “recovery” file, and checking if the files were correctly transferred and are
currently in cache. For any files not correctly transferred or not transferred at all, the CM
relaunches the logged requests.

4 Conclusions

We described in this paper a real implementation of a storage access queuing and monitor-
ing system to be used in high energy physics applications. The system is practically ready
to be deployed and has been in a testing phase for the last few months. The system has been
tested against a 1.6 TB federated database of synthetic data stored in 170 tapes. We have
demonstrated the value of such a system in insulating the user’s application from the de-
tails of interacting with a mass storage system. Specifically, the system enables the user to
submit a query of what is needed, and the system finds all the files that need to be read from
tape, schedules their caching so that files can be shared by multiple users, minimizes tape
mounts, handles transient errors of the mass storage system and the network, and monitors
performance. Such a system is particularly valuable for long running tasks (many hours)

117

of 100’s of files, where restarting a job because of a failure is not a practical option. Future
plans include the application of the system in distributed multi-site grid infrastructure. In
this setup, there can be multiple sites that have mass storage systems, and each site may
have a shared disk cache for its local users. We envision the Cache Manager’s functions to
be associated with each storage resource in the system. An open (and difficult) problem is
how to coordinate these distributed resource managers in order to support multiple users at
various sites in the most efficient way. We also plan to apply this technology to application
areas other than high energy physics.

References

[1] D. Düllmann. Petabyte databases. In Proceedings of the 1999 ACM SIGMOD, page
506, Philadelphia, Pennsylvania, 1-3 June 1999. ACM Press.

[2] A. Hanushevsky. Pursuit of a scalable high performance multi-petabyte database. In
Proceedings of the 16th IEEE Symposium on Mass Storage Systems, pages 169–175,
San Diego, California, 15-18 March 1999. IEEE Computer Society.

[3] J. Shiers. Massive-scale data management using standards-based solutions. In Proceed-
ings of the 16th IEEE Symposium on Mass Storage Systems, pages 1–10, San Diego,
California, 15-18 March 1999. IEEE Computer Society.

[4] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim. Multidimensional
indexing and query coordination for tertiary storage management. In Proceedings
of the International Conference on Scientific and Statistical Database Management,
pages 214–225, Cleveland, Ohio, 28-30 July 1999. IEEE Computer Society.

[5] A. Sim, H. Nordberg, L. M. Bernardo, A. Shoshani, and D. Rotem. Storage access
coordination using CORBA. In Proceedings of the International Symposium on Dis-
tributed Objects and Applications, pages 168–175, Edinburgh, UK, 5-6 Sept. 1999.
IEEE Computer Society.

