
135

Towards Mass Storage Systems with Object Granularity

Koen Holtman
CERN – EP division

CH - 1211 Geneva 23, Switzerland
Koen.Holtman@cern.ch

Peter van der Stok
Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven,

The Netherlands
wsstok@win.tue.nl

Ian Willers
CERN – EP division

CH - 1211 Geneva 23, Switzerland
Ian.Willers@cern.ch

Abstract

Many applications, that need mass storage, manipulate data sets with KB – MB
size objects. In contrast, mass storage devices work most efficiently for the storage
and transfer of large files in the MB – GB range. Reflecting these device charac-
teristics, mass storage systems typically have a file level granularity. To overcome
the impedance mismatch between small objects and large files, we propose a move
towards mass storage systems with object granularity. With an object granularity sys-
tem, the application programmer stores and retrieves objects rather than files. The
system internally maps and re-maps these objects into files. The system can adapt to
changing object access patterns by re-mapping objects. This allows the application
to be more efficient than if it were built on top of a traditional file granularity mass
storage system, employing a fixed mapping of objects to files.

In this paper we report on investigations on the potential benefits of object granu-
larity systems. We present an architecture that incorporates solutions to the scalability
and fragmentation problems associated with object granularity.

1 Introduction

For some applications, the application dataset is so large that data storage on tape is an
economic necessity. Examples where datasets can be in the Terabyte scale are high energy
physics data analysis and satellite image analysis. Such applications can be built on top
of a mass storage system, which controls data movement between tape storage and a disk
farm that serves both as a staging pool and as a cache, this disk farm is called thedisk cache
below.

Tape drives work efficiently if the data on them are accessed in terms of MB – GB size
files. Reflecting these hardware characteristics, mass storage systems generally have a file
granularity, with the expectation of managing large files. Conversely, in many mass storage
applications, the application-level data consist of objects with sizes in the 1 KB – 1 MB

136

range. The application designer must map the application-level objects to files on tape, with
every file containing many objects. This mapping is usually done when the mass storage
system is being filled, and no re-mapping is done over the lifetime of the dataset. Though
such a fixed mapping to large files allows the mass storage system to function efficiently,
it can cause application-level inefficiencies. The inefficiency will be especially high if the
application often needs a small subset of the objects in a file.

To overcome the impedance mismatch between small application level objects and the
large files desired on tape, we propose a move towards mass storage systems with object
granularity, that hide the underlying files.

In a mass storage system with object granularity, the application programmer stores and
retrieves objects rather than files. Caching and migration inside the system are also object-
based. The system internally maps and re-maps objects to files. By re-mapping objects,
the system can adapt to changing application-level object access patterns. This allows the
application to be more efficient than if it were built on top of a mass storage system with
file granularity, employing a fixed mapping of objects to files.

While the potential benefits of an object granularity system are clear, so are its potential
problems. The size of the indexing and scheduling tasks associated with managing objects,
rather than files, will be some orders of magnitude larger. Also, there is an obvious danger
of data fragmentation on tape and in the disk cache.

In this paper we report on investigations on the potential benefits of object granularity
systems. We present an architecture that incorporates solutions to the scalability and frag-
mentation problems associated with object granularity. This architecture incorporates a
commercial object database, Objectivity/DB [1] and a traditional file granularity mass stor-
age system (for example HPSS). By using these standard components, the implementation
cost of our object granularity mass storage system is kept low.

We show that object granularity systems outperform file granularity systems for appli-
cations in which the following conditions are met.

1. Sparse access condition: The application data access patterns have to be so diverse
or unpredictable that a fixed mapping of objects to files will lead to inefficiencies. We
quantify this condition as follows. Take the initial, fixed mapping to files as created
(and optimised) by the application designer. Any query will ’hit’ a certain number
of files in this initial set. Now consider the objects, in these hit files, that are actually
needed by the query. These objects should make up 30% or less of all objects in the
files, on average, for the sparse access condition to hold.

2. Repetitive access condition: The application data access patterns should also be
such that object (sub)sets selected at the application level are read not once, but a few
times over a period of time.

Our work was driven by the problem of Petabyte-scale data analysis in the next-generation
high energy physics experiments at CERN (see for example [2]). This is one application
area where the above two conditions hold.

2 Overview of the architecture

We developed an architecture for an object granularity mass storage system that contains
solutions to the scalability and fragmentation problems mentioned above. This architecture

137

should be seen as an existence proof for a system with object granularity. Systems which
employ different solutions to the object granularity problems may also be feasible. We have
investigated some alternatives, but do not claim to have surveyed all possible solutions.

2.1 Software components

Our work is part of a larger research project, aimed at exploring database technology op-
tions for the storage and analysis of massive high energy physics datasets [3]. Our ar-
chitecture is based on software solutions being pursued in this project [4]. We use the
Objectivity/DB object database product [1], which is interfaced [5] to a generic file gran-
ularity mass storage system, like HPSS. We develop new software components that 1) add
an abstraction layer, which provides object granularity mass storage, on top of the object
database, and 2) control file movement between disk and tape, and the management (re-
mapping, deletion) of data in the disk cache. In line with the work in [5], HPSS only acts
as a file stager, its disk pool management functions are not used. As such, the choice for
HPSS as a software component is not critical, and it could be interchanged with another
file granularity mass storage system.

2.2 Filling the system with objects

Our object granularity mass storage system provides an ‘append only’ storage model, in
which new objects can be added at any time, but in which objects become read-only once
added. The application programmer fills the mass storage system by supplyingchunksto
it. A chunk is a set of objects (typical size 10 MB - 10 GB), which is initially mapped, by
the system, to a single file on tape. This chunk model gives the application programmer a
degree of control over the initial mapping to files on tape that is similar to that found with
a traditional file granularity mass storage system. We found that retaining such control
is important. Object re-mapping can in principle compensate fully for a bad or random
initial mapping of objects to files. But performing such a re-mapping will take significant
system resources. It is better to save these resources in advance by allowing the application
programmer to encode advance knowledge about access patterns into the chunks.

The mapping of an objectto a chunkis retained throughout the lifetime of the object.
During this lifetime, the object can be (re)mapped to many different files.

2.3 Object addressing

. . . .2,1 2,2 2,3 2,4 2,5

Chunk 2Chunk 1

 Chunk 1, object 2

1,21,1 1,3 1,51,4

Figure 1: Example of logical
object addressing

Once stored, an object is uniquely identified by
its chunk identifierand itssequence numberin-
side the chunk. Sequence numbers run from 1 to
n for a chunk withn objects, and reflect the ob-
ject storage order inside the original chunk file,
which was determined by the application pro-
grammer. Figure 1 shows a visual example of
object addressing.

138

1,21,1 1,3 2,1

Chunk 1, file 2

Chunk 1, file 1
Chunk 2, file 1

Chunk 2, file 2

2,3 2,5

2,2 2,4

. . . .

. . . .1,2 1,3 1,4 1,5

1,5

. . . .

Same object!

Figure 2: Example of physical
mapping of objects to files

Our system maps the objects in chunks to
physical files. Figure 2 shows an example of
such a mapping. The system allows many files
to be present for any chunk. Every file present
for a chunk holds a subset of the objects in that
chunk. In a running system, the number of files
per chunk typically ranges from 1 to 20, de-
pending on the access patterns to the objects in
the chunk. The subsets of objects held by the
different files may overlap, and generally do overlap, so that some objects in a chunk are
physically present in multiple files.

Files never mix objects from two or more chunks. This strict chunk-level separation
makes indexing and scheduling problems much more manageable. The system does not
maintain a single global index for looking up in what files an object is contained. Instead,
there is a file-level index for each file, which can be used by sub-queries to read objects
from the file, and by schedulers to quickly determine the exact set of objects in a file. All
file-level indices are kept on secondary storage.

Our system does not require that the above ’files’ are actual files managed by a filesys-
tem. In our prototyping efforts using the software components described in section 2.1, the
’files’ are actually (sets of) ODMG containers in the Objectivity/DB database.

2.4 Object access

The application programmer can access stored objects by executing aqueryagainst the
store. A query specifies a setS of object identifiers, with the intention that all these objects
must be visited, and aquery function, which is a piece of executable C++ code (typically
a loadable shared library). To execute the query, the system first computes the setC of all
chunks that contain one or more objects identified inS. For every chunk, the system runs
a sub-queryover the objects in this chunk. This sub-query iterates through all objects inS
which are in its chunk. For every object, the programmer-supplied query function is called.
The query function is handed the object identifier and a reference to an in-memory copy of
the object. The application programmer can optionally supply code that is to be executed
at the start and the end of the query and of any sub-query.

Iteration by a sub-query always happens in the order of the sequence numbering of the
objects in the chunk, this order was determined by the application programmer when the
chunk was added to the system. The fixed iteration order allows the system to ensure fast
data access and to prevent fragmentation.

The scheduling of sub-queries is outside the control of the application programmer: this
is done by the system to ensure that the sub-query is synchronised with any necessary file
staging operations preceding it. Many queries, and their sub-queries, can run in parallel. In
applications with highly CPU-intensive application code, as found in high energy physics,
tens to hundreds of sub-queries may be running in parallel on a CPU farm.

When a sub-query is scheduled to start its iteration, it first determines which files on
disk should be accessed in order to read all objects that it needs to visit. To choose this
set of files, the sub-query compares the set of objects it needs to the sets of objects present

139

in the different files of its chunk. These set comparisons are implemented as comparisons
between sets of object identifiers, the object identifiers of all objects in a file are obtained
by accessing the file-level index of that file. Sometimes, because of an overlap in the object
sets contained in the files, there are many options in choosing a set of files which together
contain the needed objects. If there is a choice, the sub-query will always choose the set of
files with the smallest sum of file sizes. This choice minimises any disk efficiency losses
because of sparse reading when accessing the files, and, more importantly, it yields the best
possible input for the cache replacement algorithm (section 4.3), in which file access statis-
tics play an important role. When the sub-query comes to visiting a particular object that
is contained in several of the chosen files, it will read that object from the smallest of these
files. The choice for the smallest file is immaterial to the cache replacement algorithm,
which works with file level access statistics and ignores object-level details. The smallest
file is chosen based on the assumption that this usually minimises the overall sparseness of
reading, so optimising the I/O performance.

2.5 Re-mapping of objects

Many mechanisms are possible for the re-mapping of objects to files. We chose a mecha-
nism based on an objectcopy, rather than an objectmoveoperation. Using a copy operation
has some advantages: in particular, a copy operation does not affect concurrently running
sub-queries accessing some of the objects being copied. The use of move operations would
require a strong synchronisation between these sub-queries: this makes the implementation
more complex and might be a source of performance loss, caused by lower concurrency and
more locking traffic. A disadvantage of copying is that the resulting duplication implies less
efficient use of scarce storage space, in particular in the disk cache.

Object copy operation

Existing file

New file

Figure 3: Simplest case of object re-
mapping: the (grey) objects read by a
sub-query are copied into a new file

Object re-mapping is done during
sub-query execution, while the sub-
query iterates through its objects. Re-
mapping is always from a file (staged)
on disk to another file on disk. In the
simplest case, shown in figure 3, some
objects from a single existing file are
copied into a new smaller file. The
original file can then be deleted. The
end result of such a re-mapping and
deletion is that disk space previously occupied by the cold (non-queried, white) objects
is freed, while all hot (queried, grey) objects are still present. Thus, we can effectively
cache more hot objects on disk.

Re-mapping decisions are based on the ’densities’ of the hot objects in the existing files.
For example, if an existing file contains 95% hot and 5% cold objects for a sub-query, then
the hot objects in this file will never be copied to a new file, as the storage efficiency in the
existing file is already near-optimal. The densities are determined at the start of the sub-
query, using the file indices. From this information, a re-mapping function is computed,
which can be used to quickly decide, for each object accessed by the sub-query, whether
this object should be re-mapped.

140

storage

. . . .
storage

Staging

Original chunk files
Pool of small files

Small files with subsets
of the objects in a chunk

Re-mapping

Migration

created by
re-mapping

Staging and
Disk

Tape

Figure 4: Overview of the complete storage architecture

Figure 3 shows the simplest case of re-mapping. In more complicated cases, the copy-
ing of some objects into the new file can be suppressed because they are already present in
another small file. More details on the optimisation problems involved can be found in [6].

2.6 Complete storage architecture

Figure 4 shows the complete storage architecture of our system, with both the tape and
disk storage layers. The tape contains two different pools of files: 1) the original chunk
files and 2) smaller files created by re-mapping. The original chunk files are created on
tape when the application programmer adds chunks to the system (section 2.2). These files
are never updated or deleted. As the original chunk files are always retained, all other files
on disk and tape can be deleted, whenever more space is needed, without running the risk
of loosing objects. The smaller files on tape are all first created on disk, by re-mapping
operations, and later migrated down to tape.

As shown in figure 4, re-mapping operations can be done recursively: if a new query
yields a smaller set of hot objects, a still-smaller file can be made, and the larger file can be
deleted.

3 Bursty sequential reading

As noted in section 2.4, the high energy physics requirement of using highly CPU-intensive
query function code implies that the system should allow for tens to hundreds of sub-queries
running concurrently on a CPU farm, all accessing files containing objects. Re-mapping
operations may scatter the objects needed by a sub-query over many files. In tests with our
system, a sub-query generally reads objects only from a single file, but sometimes from a
few files, and in extreme cases from up to 10 files.

Taking everything together, in a running system there could be concurrent access to a
few hundreds of files on disk. We use an optimisation we callbursty sequential readingto

141

guarantee a good parallel I/O performance. This optimisation works at the file level, and
has two parts. First, the objects in a file are always read sequentially, possibly sparsely, in
the order in which they are stored in the file. This sequential reading is easy to achieve:
in the original chunk files the object ordering is by definition the same as the sub-query
iteration order, and all re-mapping operations preserve the object ordering. The second
part of the optimisation is that, in every file, the sub-query reads the needed objects in
bursts of about 1 MB. The objects read in these bursts are buffered in memory until they
are delivered to the query function. The bursty sequential reading optimisation, which we
implemented on top of the Objectivity/DB database C++ binding, is sufficient to achieve
good parallel I/O performance. Disk throughputs are near the maximum possible through-
puts achievable with pure sequential reading, as specified by the disk manufacturers. It
should be noted that the Objectivity/DB architecture, which employs no central database
engine, also contributes to the good I/O scalability we found.

0 50 100 150 200 240
0

10

20

30

40

50

60

Number of sub−queries running

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

B
/s

)

1 * 103 MIPSs/MB
2 * 103 MIPSs/MB

Figure 5: I/O scalability with bursty sequential reading

Figure 5 shows the results of some parallel I/O tests of our sub-queries with bursty
sequential reading. The tests were performed on a 256-CPU HP Exemplar supercomputer.
We ran up to 240 sub-queries concurrently. Each sub-query uses almost all of the power of
a single CPU to execute application code. The two curves are for application code spending
1 ∗ 103 MIPSs per MB read, and2 ∗ 103 MIPSs per MB read. Each sub-query reads its
objects interleaved from 3 files, while also re-mapping (copying) every tenth object into
a new file. Every sub-query is executed on its own in a private UNIX process. Multi-
threading inside UNIX processes was not used, though it is in principle supported by the
database and OS software used.

Both curves in figure 5 show very smooth I/O scaling, indicating efficient use of the
available disk resources. In the lower curve, the system remains CPU bound. In the up-
per curve, with less computation per MB read, the system becomes I/O bound above 160
concurrently running sub-queries: at that point, the available I/O resources (16 disks in 4
striped file-systems) are saturated.

Note that these good scalability results were achieved with only a single optimisation
layer on top of a commercial object database product. A special purpose parallel I/O library
was not needed.

142

. . . .

delete

delete

read read

create

create
read

File Migrator

Query

(cache replacement)
Space Allocator

Requests space
to stage files Requests writing

Requests new space for re-mapping

of files to tape

Notifies when staging
is complete

Looks at blocked

files to stage
decide which
sub-queries to

per chunk to
Creates one

Sub-query

be read from
create (re-map)

read
Disk storage

Tape storage

Figure 6: System components and their interactions

4 Components and policies of the architecture

Figure 6 shows the different active components (rounded rectangles) in our architecture,
and their responsibilities and interactions with each other. The components invoke schedul-
ing algorithms (not shown) to make optimisation and scheduling decisions. The query
component, and its production of sub-queries, have already been discussed in section 2.4.
Below, the remaining components are discussed, along with some of the scheduling algo-
rithms.

4.1 Sub-query

As already discussed in section 2.4, a sub-query performs the reading of selected objects
in a single chunk, and executes the query function against them. The sub-query can also
perform a re-mapping operation when it is running. When started by its parent query, a sub-
query will immediately examine the (indices of) the files on disk to determine if all objects
it needs are present on disk. If not, the sub-query ’blocks’, it will suspend its execution to
wait until all objects are present. It is the responsibility of the file migrator (see below) to
ensure that blocked sub-queries eventually become un-blocked.

When a sub-query, possibly after having been blocked, finds all needed objects present
on disk, it computes from which files to read these objects, and whether to do any re-
mapping. After locking these files against deletion by cache replacement, the sub-query
requests permission from a central scheduler (not shown in figure 6) to start reading objects.
The central scheduler ensures that not too many sub-queries will do intensive disk I/O at
the same time. For example, on the system configuration in section 3, a good limit would
be to bound concurrency to some 400 sub-queries. When permission to read is obtained,
the sub-query will first request some free disk space if re-mapping is to be done. Then, the
sub-query iterates over the needed objects in its chunk. Objects are read from existing files,
fed to the query function, and possibly written to a new file in re-mapping.

143

4.2 File migrator

The file migrator manages the tape drive(s) in the system, and migrates files disk and tape.
The file migrator examines all blocked sub-queries to decide which file to stage next.

Many hundreds of sub-queries may be blocked at the same time. Sometimes, many sub-
queries (of different queries) are all blocked, waiting for the staging of objects from the
same chunk. The file migrator partitions the blocked sub-queries into clusters. Every
cluster is a group of blocked sub-queries waiting for objects in the same chunk. For every
cluster, the file migrator identifies a single file on tape, whose staging would allow all sub-
queries in the cluster to un-block. This pooling of tape requests from different queries is
known asquery batching, and it can lead to dramatic savings [7], especially for workloads
with many concurrent large queries.

In any tape-based system, it is important to minimise the randomness of tape I/O as
much as possible, because tape mounts and seeks are expensive operations. After an inves-
tigation of alternatives, we chose the following policy that aggressively minimises mounts
and seeks. The policy cycles over all tapes in the system in a fixed order. When the next
tape is reached, and a tape drive becomes available for reading, the file migrator looks if
any of the files needed by the current clusters are on this tape. If so, the tape is mounted.
Then, any needed files are staged in the order of their position on tape. This results in a
sequential pattern of seeking and reading on the tape. When the last file has been staged,
the tape is rewound and unmounted. The fixed cycling order ensures that sub-queries are
never blocked indefinitely.

4.3 Space allocator

The space allocator manages two pools of files: the files on disk and the small pool of files
created by re-mapping on tape. Both these pools can be seen as caches, and so are managed
by cache replacement policies.

For the pool of files on disk, the cache replacement policy has to achieve some conflict-
ing aims. Firstly, a recently used file of course has to be retained as long as possible. But
secondly, a file from which objects were recently re-mapped should be deleted as quickly
as possible, so that the goal of the re-mapping operation, creating a tighter packing of hot
objects in the cache, is actually achieved. Thirdly, if a query with a size many times that of
the disk cache size is executed, no attempt at caching these files on disk should be made,
but they should be deleted as quickly as possible, to maximise the available cache space for
smaller queries. A special policy called ’usage based cooling’ was developed to reconcile
these conflicting aims. Because of space limitations, we refer the reader to [6] for a detailed
discussion of this policy.

For the pool of smaller files on tape, the following management policy is used. A
set of tapes is reserved exclusively to hold these small files. One tape at a time is filled,
files are written on the tape sequentially. When all tapes in the pool are full, the oldest
tape is recycled: all files on it are deleted and writing starts again from the front of the
tape. The above scheme amounts to a ‘least recently created’ cache replacement policy.
Of course, a policy closer to ‘least recently used’ would potentially be more effective at
maintaining a set of useful files on tape, if a way could be found to keep the associated

144

free space fragmentation on tape in check. To investigate the potential benefits of other
replacement policies on tape, we used simulation to determine the performance of ‘least
recently used’ replacement under the (unrealistic) assumption that there is no performance
loss due to fragmentation. We found that a ‘least recently used’ policy simulated under this
assumption outperformed ‘least recently created’ with factors of 1.0 (no improvement) up
to 1.2 over our range of test workload parameters. From this small improvement factor we
conclude that our simple ‘least recently created’ tape replacement policy is an appropriate
choice. A better policy may be possible, but it is unlikely to be better by more than a factor
1.2.

4.4 Writing of small files to tape

Chunk reclustering is done by copying some of the small files on disk, which were produced
by re-mapping, to tape. When the space allocator determines that a file is soon to be
replaced (deleted) from the disk cache, it invokes an algorithm to decide whether the file
is to be copied to tape. If the file is to be copied, the space allocator includes this file in a
batch of write requests to the file migrator, and will then hold off deleting the file from disk
until it has been copied to tape.

There is no obvious method of deciding whether or not a file should be copied to tape
before deletion on disk. Obviously, only the ’best’ files should be copied to tape, but when
the space allocator offers a file up for consideration, it has already decided itself that this
is one of the ’worst’ files it has on disk! We have tried to find a good selection method
as follows: we simulated a system in which (unrealistically) all files would be copied, at
zero cost, to a very large tape pool before deletion from disk. Then, we examined the
files that were actually staged back onto disk in the simulation, to find some identifying
characteristics. However, we failed to find a good predictive identifying characteristic that
could be used in a selection heuristic. In the end, we used a simple heuristic based on the
observation that very large files should obviously not be written back to tape, because the
initial chunk files already present would allow for the staging of large object sets at similar
costs. We introduced a size cut-off: all files smaller than 20% of the chunk size are selected
for copying to tape. This value of 20% was determined in a tuning exercise. We found that
40%, for example, works almost as well. We tried some more refined heuristics but found
no heuristic that was noticeably better.

5 Benefits of object granularity

To assess the benefits of object granularity, we used simulation over a large workload pa-
rameter space. In these simulations we compared the performance of our object granularity
mass storage system with that of a file granularity system, over a range of application work-
loads and hardware parameters. The chunks of the object granularity system appeared as
initial files on tape in the file granularity system. The workloads satisfied the sparse and
repetitive access conditions formulated at the end of section 1. The workloads are multiuser
workloads, with query sizes ranging from 0.03% to 6% of the complete dataset size, with
an average of 0.34%. In our simulations, the disk cache size ranged from 2% to 20% of the

145

Speedup for physics workload
Speedup for generic workload

Speedup of doubling cache size, physics workload
Speedup of doubling cache size, generic workload

2 4 6 8 10 15 20
0
1
2
3
4
5
6
7
8
9

10

Disk cache size (% of dataset)

A
v.

 s
pe

ed
up

 fa
ct

or

2 4 8 16 32
0
1
2
3
4
5
6
7
8
9

10

Av. no. of queries on same obj. set

A
v.

 s
pe

ed
up

 fa
ct

or

 30 13 9
0
1
2
3
4
5
6
7
8
9

10

Average % objects hit / hit chunk

A
v.

 s
pe

ed
up

 fa
ct

or

Figure 7: Dependence of different speedup factors on several parameters. Every
speedup factor shown in a graph is the average over all combinations of the
parameter values on the x-axes of the other two graphs. The rightmost graph
shows the dependency on the sparseness of access, on the x-axis is the measure
defined in section 1, the average percentage of objects which are needed by a
query in every chunk that the query hits.

dataset size. For details on the simulation workloads used, we refer to [6].1

To assess the benefits, we determined the speedup factor of our object granularity sys-
tem over the normal file granularity system. We found that the speedup factor is depen-
dent on many workload and hardware parameters. We found speedup factors from 1 (no
speedup) to 52. As expected, speedups are higher when workloads more often access the
same sets of objects. For workloads with a high repetition factor, i.e. if on average at least
4 queries visit the same object set, speedups are typically a factor 2 – 4. Other forms of
repetitiveness, for example if new queries access subsets of the object sets visited by older
queries, also improve the speedup.

Again as expected, following the reasoning behind the sparse access condition in sec-
tion 1, the speedup over file granularity systems is higher if access to the chunks is more
sparse. Speedups in excess of 10 are found if, on average over all queries in the workload
and all chunks in the system, a query ’hits’ less than 10% of the objects in every chunk that
it hits.

5.1 Dependence on workload parameters

Figure 7 illustrates the dependence of the speedup factors on various system and workload
parameters. All these graphs plot averages of speedup factors over parts of the parame-
ter space, and so de-emphasise some of the more extreme cases. Curves forphysics and
generic workloads [6] are shown: in a physics workload, new queries access subsets of the
object sets visited by older queries, this corresponds to what happens in high energy physics
data analysis. In a generic workload the object sets selected by (sequences of) queries are
completely independent. For comparison, figure 7 also shows speedup curves for doubling

1The workloads used for the tests discussed below differ from those in [6] only in that a new value, 9%,
was added to the range of the parameter ’average percentage of objects needed in a chunk that is hit by a
query’.

146

the disk cache size in the baseline system.

5.2 Benefits of keeping a pool of small files on tape

We found that the re-mapping of files on disk, followed by the deletion of original files
on disk, contributed most to the speedup, by improving the storage efficiency in the disk
cache.

The speedup contribution of having a pool of small files on tape was lower. The small
files on tape do save tape resources, because staging in a smaller file can often substitute
for staging in the much larger original chunk file. However, the resources needed to write
the small files to tape in the first place are considerable. Typically half to all of the time
saved by reading small files in stead of larger ones is spent in writing the small files. Figure
8 shows simulation results for our system with and without the optimisation of keeping a
pool of small files on tape. The speedup contribution of having small files on tape was
often only a factor 1.2 or lower. We found that this speedup depended strongly on the size
of the disk cache: the smaller the disk cache, the larger the gains of maintaining a pool of
small files on tape. For disk cache sizes of 4% or less than the application data set size,
we sometimes found worthwhile speedup factors, from 1.5 to 2.1, depending on workload
parameters.

2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Disk cache size (% of dataset)

A
v.

 s
pe

ed
up

 fa
ct

or

with
without

Figure 8: Average speedups with and without the optimisation of keeping a pool
of small files on tape, for generic workloads

6 Towards object granularity

The architecture presented in this paper is a viable one, but not the only possible solution or
even provably the best solution for an object granularity mass storage system. It therefore
makes sense to review the design process that led towards the architecture in this paper, so
as to distinguish between largely arbitrary design choices on the one hand and some forced
moves on the other hand.

147

The challenge in moving towards a system with object granularity is to make the grain
size smaller, so as to increase chances for optimisation, without making the grain size so
small that the system design collapses under the increased complexity, or the I/O perfor-
mance breaks down due to increased fragmentation. Our solution centres around introduc-
ing an intermediate level of granularity. Our system has objects, files, and chunks: three
levels compared to the two, objects and files, discernible in applications that use file granu-
larity systems. We perform tasks like migration and cache replacement at the intermediate
file level, rather than the object level. This way, many of the drawbacks of true object gran-
ularity, like the risks of fragmentation and a too heavy load on the scheduling algorithms,
can be avoided. Of course, it was not clear from the start of the design exercise whether the
supposed benefits of object granularity, opportunities for successful optimisations, could
be preserved when taking this route!

Working from the decision to have an intermediate file level, it is relatively easy to draw
a first picture of data movement and layout, like the one in figure 4. Based on this picture
one can make a list of all processes that have to be steered by the system implementation.
Most these processes interact with each other, and this makes the creation of an optimised
design very difficult. To make any progress at all, we decided to take the risky approach
of completely disregarding these interactions at first, and decomposing the system into
a few weakly interacting active components and scheduling algorithms. The creation of
the individual components would then be followed by a ’big bang’ integration step. Of
course, this ’big bang’ design method has a deservedly bad reputation. Before embarking
on it, we spent considerable time in searching for more stepwise methods (without much
success), analysing the associated risks, and developing techniques to mitigate these risks.
We mitigated risks by making robustness of individual system elements an important design
goal. We designed the active components and scheduling algorithms so that they would
keep working, and ensure some degree of progress, no matter how bad the decisions of
other scheduling algorithms would be.

For the ’big bang’ integration phase, we used a simulation-driven approach. First, the
tuning parameters in all scheduling algorithms were set to some plausible initial values,
this way we obtained a first integrated, and more or less working, version of the whole
system. Then, using simulations with likely workloads, we tuned the individual schedul-
ing algorithms to globally deliver good performance. Beyond the initial ’big bang’ point
the integration phase was therefore an iterative one, with many test-adjust cycles. The
integration phase was supported by a simulation framework that allowed parameters and
algorithm details to be altered quickly. In exploring the workload and tuning parameter
space to investigate design options, we used about 600 CPU hours running some 25000
simulations.

An analysis of the above design process shows some obvious opportunities for design-
ing an object granularity system that outperforms our current one. The exact implications
of many small decisions in the system design are unknown, so reversing these decisions
may lead to a better system. Also, the grain size at the file level is fairly coarse, typically
there are at most some 20 files per chunk, and ways could be sought to obtain a finer grain
size, with possibly higher payoffs. Most importantly, given the knowledge gained in the
creation and evaluation of the current architecture, the creation of a new design that more
closely integrates the different scheduling tasks may now be a tractable problem.

148

7 Related work

To our knowledge, there is no other work which takes true object granularity in caching and
staging as a goal, and develops and evaluates an architecture to deal with the associated
scalability and fragmentation problems. Our previous work [8] uses techniques similar
to re-mapping in a disk-only reclustering system. In fact, the system developed in [8]
served as a proof of concept, which gave us confidence that re-mapping could feasibly be
introduced in a mass storage system with both disk and tape. Our work [6] explores re-
mapping in the disk cache, but not keeping a set of smaller files on tape to achieve some
kind of object granularity in staging operations. Our architecture builds on experience from
existing mass storage systems [7] [9] [10], especially with respect to cache replacement and
staging policies.

Many systems cache data at a finer granularity when it moves upwards in the storage
hierarchy, see for example [9]. At least one existing mass storage product [11] structures
data into small units (atoms, like our objects), and allows the application programmer to
request (sets of) such data units, rather than complete files. To our knowledge, this product
uses a caching granularity below the staging granularity, but it does not go down to the
’atomic’ level in its caching mechanisms.

Many tape based data analysis systems in use in science allow users or administrators
to optimise performance through the creation of new, smaller datasets which contain some
selected objects from the complete dataset. Queries can then be redirected to these new
datasets, or are redirected automatically. Such strategies are known as ‘view materialisa-
tion’, or, in high energy physics, the creation of ‘data summary tapes’. View materiali-
sation strategies are similar in intent and effect to our two new optimisations. This can
lead to similarities at the architectural level, see for example [12] for a view materialisation
system that, though not targeted at tape based data, has some patterns in common with our
architecture. We know of no existing tape based data analysis systems in which creation
of such smaller datasets, the picking of objects for them, and their eventual deletion have
been automated to a large extent.

8 Conclusions

For the foreseeable future, the use of tape storage remains the only cost-effective option for
the massive datasets used in a number of scientific endeavours. CERN is actively pursuing
research into data management options to address the needs of its future physics experi-
ments.

We propose a move towards mass storage systems with object granularity, to overcome
the impedance mismatch between small application level objects and the large files desired
on tape. Such systems hide the mapping of objects to files from the application program-
mer, and dynamically re-map objects to files in order to improve application performance.

We have identified two conditions, the sparse access condition and the repetitive access
condition, which an application must fulfil to make the use of an object granularity mass
storage system underneath the application attractive.

We have investigated the potential benefits of object granularity mass storage systems
by developing a viable architecture for such a system. The architecture resolves scalability

149

and fragmentation problems by managing files containing (sub)sets of objects, rather than
individual objects. The architecture incorporates a commercial object database and a nor-
mal file granularity mass storage system. We have evaluated the architecture through im-
plementation and simulation studies. We found speedup factors from 1 to 52. The speedup
gains of our object granularity system are mostly due to the increased cache efficiency on
disk, which is achieved through object re-mapping. The storage of files with re-mapped
objects on tape seems less attractive as an optimisation, except when disk space is very
small compared to tape space or average query size.

The architecture is shown to be a viable one, but probably not an optimal one. We have
identified some research opportunities that could lead to improvements over the current
architecture. The results obtained here will serve as a basis for future R&D at CERN.

References

[1] Objectivity/DB. Vendor homepage:http://www.objy.com/
[2] CMS Computing Technical Proposal. CERN/LHCC 96-45, CMS collaboration, 19

December 1996.
[3] The RD45 project (A Persistent Storage Manager for HEP).

http://wwwinfo.cern.ch/asd/rd45/
[4] J. Shiers. Massive-Scale Data Management using Standards-Based Solutions. 16th

IEEE Symposium on Mass Storage Systems, San Diego, California, USA, 1999.
[5] A. Hanushevsky, M. Nowak. Pursuit of a Scalable High Performance Multi-Petabyte

Database. 16th IEEE Symposium on Mass Storage Systems, San Diego, California,
USA, 1999.

[6] K. Holtman, P. van der Stok, I. Willers. A Cache Filtering Optimisation for Queries
to Massive Datasets on Tertiary Storage. Proc. of DOLAP’99, Kansas City, USA,
November 6, 1999.

[7] J. Yu, D. DeWitt, Query pre-execution and batching in Paradise: A two-pronged
approach to the efficient processing of queries in tape-resident data sets. Proc. of 9th
Int. Conf. on Scientific and Statistical Database Management, Olympia, Washington
(1997).

[8] K. Holtman, P. van der Stok, I. Willers. Automatic Reclustering of Objects in Very
Large Databases for High Energy Physics, Proc. of IDEAS ’98, Cardiff, UK, p.
132-140, IEEE 1998.

[9] R. Grossman, D. Hanley, X. Qin, Caching and Migration for Multilevel Persistent
Object Stores. Proc. of 14th IEEE Symposium on Mass Storage Systems 127-135
(1995).

[10] S. Sarawagi, Query Processing in Tertiary Memory Databases, Proc. of 21st VLDB
Conference, Zurich, Switzerland, 1995, p. 585–596.

[11] StorHouse, the Atomic Data Store. Vendor homepage:http://www.filetek.com/
[12] Y. Kotidis, N. Roussopoulos, DynaMat: A Dynamic View Management System for

Data Warehouses. Proc. of ACM SIGMOD, May 31 - June 3, 1999, Philadephia,
USA.

