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Abstract 
With the emergence of Storage Networking, distributed file systems that allow data 
sharing through shared disks will become vital.  We refer to Cluster File Systems as a 
distributed file systems optimized for environments of clustered servers. The 
requirements such file systems is that they guarantee file systems consistency while 
allowing shared access from multiple nodes in a shared-disk environment. In this paper 
we evaluate three approaches for designing a cluster file system – conventional 
client/server distributed file systems，symmetric shared file systems and asymmetric 
shared file systems. These alternatives are considered by using our prototype cluster file 
system, HAMFS (Highly Available Multi-server File System). HAMFS is classified as an 
asymmetric shared file system. Its technologies are incorporated into our commercial 
cluster file system product named SafeFILE. SafeFILE offers a disk pooling facility that 
supports off-the-shelf disks, and balances file load across these disks automatically and 
dynamically. From our measurements, we identify the required disk capabilities, such as 
multi-node tag queuing. We also identify the advantages of an asymmetric shared file 
system over other alternatives.  

1 Introduction 
Historically, large corporations have deployed and distributed UNIX systems in a manner 
leading to isolated islands of processing. The management cost of these systems is 
exceedingly high because of the resulting overall complexity and a lack of a global 
management capability. Consequently, many of these same companies are now re-
centralizing their critical Unix systems to contain management costs. One of the benefits 
credited to SANs (Storage Area Networks) is that they facilitate re-centralization of 
storage by aggregating it onto a common interconnect. We use the term SAN to describe 
a dedicated storage network utilizing a storage protocol such as SCSI over Fibre Channel, 
apart from LAN, which allow servers to communicate using a networking protocol such 
as TCP/IP. SANs are typically composed of Fibre Channel switches and hubs.  

To extract the full potential of a SAN, data sharing, where multiple servers share a 
common file system on a directly-connected disk, and disk-pooling, where users can 
place data on any disk (disk-pool) without suffering management overhead, is required. 
Cluster file systems are the means for achieving these requirements. In this paper we 
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describe our experiences from developing HAMFS. HAMFS [1] is a prototype cluster 
file system, supporting disk pooling through a shared-disk capability. What was learned 
from HAMFS has been incorporated into our commercial file system product called 
SafeFILE. The rest of this paper is organized as follows: Section two describes 
alternatives to implementing a cluster file system and their characteristics. Section three 
presents overall HAMFS architecture. Section four shows measurement results from 
evaluating alternatives and necessary hardware capabilities using HAMFS. Section five 
describes related works. Finally, section six offers some brief conclusions.  

2 Alternatives 
As O’Keefe has shown [2], there are three alternatives to achieving data sharing between 
nodes in a shared-disk environment, client/server distributed file systems, symmetric 
shared file systems, and asymmetric shared file systems (Figure 1). In a conventional 
client/server distributed file system, a server node manages disk storage. Other nodes 
access data through the dedicated server across a communications network. While 
traditional client/server distributed file systems, such as NFS, cannot distribute user data 
across multiple nodes, some recent client/server distributed file systems, such as xFS [8], 
Zebra [9] and Frangipani [7], use multiple nodes for improved scalability. Alternatively, 
a second approach is symmetric shared file systems, such as GFS [3, 4, 20]. GFS allows 
every node equal access to all disks directly. The third alternative, asymmetric shared file 
systems, supports partial disk sharing. This approach was used in HAMFS. In this 
approach, a dedicated node manages disk blocks containing metadata, but all other disk 
blocks, containing user data, are accessed directly from all nodes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Characteristics of each Distributed File System Architecture 
2.1.1 Complexity 
The most challenging task for a designer of a cluster file system is maintaining 
consistency while guaranteeing good performance in a multi-node environment. Client 
caches, heavily used in UNIX file systems for improving performance, pose a major 
burden for designers.  Although the symmetric shared file system has the simplest 
apparent organization, client caches, required for good performance, requires a 
complicated distributed lock manager. This leads to a rather complicated file system 

Figure 1:  Alternatives for implementing a cluster file system 
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organization. An example of this complexity is the difficulty of implementing a 
distributed logging mechanism. Other examples include support for atomic transactions 
with deadlock detection and recovery.  
For symmetric shared file system organizations there are two approaches to achieving file 
system consistency. The first one is a distributed lock manager, as implemented in 
VAXcluster [5]. For high performance, VAXcluster offers a sophisticated distributed 
lock function. To maintain cache consistency, the VAXcluster’s distributed lock manager 
uses both lock versioning for passive cache invalidation, and a callback mechanism for 
active invalidation. Another approach for serialization, as proposed in GFS,  uses special 
device locks.  
For guaranteeing file system consistency, the GFS1 implementation basically uses a read-
modify-write schema and disables the client cache. While this approach is relatively 
simple, its performance, particularly for short file access environments, is degraded from 
not having a client cache.  
In general, symmetric shared file systems require that all client nodes share a common 
semantic view of data on disks, including location, record format, and meaning of each 
field and update sequence. This creates maintenance complexity and makes data sharing 
more difficult for heterogeneous environments. Any operating system vendor wishing to 
implement a particular symmetric shared file system must incur this complexity. 
Client/server distributed file systems and asymmetric shared file systems avoid much of 
this complexity by localizing metadata access to a common node. Asymmetric shared file 
systems make use of a well-known fact that user data is rarely accessed by multiple nodes 
concurrently from multiple nodes. However, metadata is frequently accessed from 
multiple nodes concurrently [6]. Consequently, asymmetric shared file systems utilize a 
dedicated node for metadata management. This approach alleviates the disk contention 
resulting from concurrent metadata access. Additionally, shared direct access to disks, 
containing user data, reduces network overhead associated with conventional 
client/server distributed file systems.  

2.1.2 Performance 
Conventional client/server distributed file systems typically consume considerable 
network bandwidth and processor resources for both the client and server. Furthermore, 
these file systems cannot derive the maximum performance of the underlying disks. And 
because of their client/server organization, these file systems are not easily scaled 
through adding additional disks. Balancing performance after adding new servers 
typically require a manual file system reconfiguration. Both symmetric and asymmetric 
file systems are easier to scale than conventional client/server distributed file systems like 
NFS. The reason is because they support common disk pools accessible from multiple 
nodes that make adding disks far simpler. 
A variation of a client/server distributed file system, Frangipani [7], xFS [8], and Zebra 
[9] solve the scaling problem by distributing data across multiple nodes. However, they 
still inherit the drawback related to transferring data across a network. While asymmetric 

                                                 
1 Although a new GFS implements lock versioning for permitting cached data, it does not solve the 
inherent performance problem. [20]  
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shared file systems require a means for transmitting control messages across a 
communications network, the amount of data transmitted is small compared with 
client/server distributed file systems. Comparatively speaking, asymmetric shared file 
systems require greater message exchange across a networking than symmetric shared 
file systems. This is because of the communication between the metadata manager and 
the other nodes. However, by improving protocols within the asymmetric shared file 
system, such as a space reserve function, fine grain tokens and token escalation, byte 
range logging, and support for a secondary buffer cache, much of the performance 
degradation is minimized. Our experience with HAMFS indicates that these 
optimizations are possible without significant additional complexity. 

2.1.3 Scalability 
Both client/server distributed file systems and asymmetric shared file systems have 
scalability problems related to localized loading of management function on a dedicated 
node. Distributing the management function across multiple nodes eliminates this 
drawback. This distribution is akin to the distributed lock manager used in symmetric 
shared file systems. For instance, both Frangipani and xFS partition file system space into 
separate segments. A separate node manages each space segment.  

2.1.4 Reliability 
Both client/server distributed file systems and asymmetric shared file system have a 
single point of failure because they rely on a single dedicated node. This drawback can be 
eliminated for asymmetric shared file systems by using a replication schema. Moreover, 
by deploying an improved logging mechanism, as implemented in HAMFS, and 
replicating only metadata, asymmetric file systems outperform local file systems. This is 
a significant advantage over client/server distributed file systems since they would 
otherwise require mirroring all data. 
Disk contention and distributed lock management overhead leads to performance 
problems for symmetric shared file systems. However, with asymmetric shared file 
systems, these issues can be addressed through various compromises. The following 
section describes HAMFS’ organization and describes some of these compromises.  

3 HAMFS file system 
HAMFS is classified as an asymmetric shared file system. Describing the detailed 
operation of HAMFS is beyond the scope of this paper, however we do briefly review its 
high-level organization. 

3.1 Configuration 
HAMFS divides the contents of the file system into three parts, metadata, user data, and 
log data, which are stored on Meta volumes, Data volumes, and log volumes, respectively.  
HAMFS software consists of two components, HAMFS client, and the Name Server. To 
prevent contention from frequent Meta volume writing, the Name Server, which manages 
Meta volumes and log data, runs on a dedicated node in a cluster system. Conversely, 
HAMFS client (client) code embedded in the kernel of each node as a Virtual File 
System (VFS), resides on every node in a cluster and directly accesses Data volumes. 
Data volumes access is managed with the file extent information provided by the Name 
Server. This information reflects data location on each Data volumes. 
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Figure 2: Configuration of HAMFS file system 
 

The Name Server processes requests from the client as atomic transactions using a log 
schema. The interface between the client and the Name Server is a high-level protocol 
and is independent of metadata format. This protocol is similar to the NFS protocol. For 
improved availability, the user may replicate the Name Server on a secondary node. 
When a secondary Name Server is deployed, Meta volumes are replicated on the 
secondary Name Server by transmitting the log data. HAMFS file organization permits 
users to select the disk organization used for each data type as well as whether metadata 
is replication.  

3.2 Disk pooling 
HAMFS offers the following disk pooling capabilities. 

3.2.1 Disk Pool 
A disk-pool is defined as a set of data volumes comprising a HAMFS file system. 
HAMFS manages each member disk. Data placement across the disk pool is managed 
automatically according to a placement policy. Current placement policy equalizes the 
amount of free space across volumes. 

3.2.2 File RAID 
Because HAMFS manages the underlying disk devices, it's possible to allow files to have 
different RAID properties in a common name space. File RAID is the function for 
permitting this file placement policy. A user can specify RAID type of None (default), 
RAID 0 (striping), RAID 1, and RAID 5 through a new CHATTR command. All 
directories and files inherit a parent directory’s RAID type. With RAID five the client 
allocates a parity block for each stripe in a file. Since this works like a RAID type one for 
a small files having only one data block, common in UNIX environments, parity 
recalculation overhead is greatly reduced.  

3.2.3 Dynamic Expansion 
An installation may dynamically expand a file system with new disks even though user 
applications are running. Because HAMFS automatically balances load across the old and 
new disks, file name tree reconstruction is unnecessary. A newly added Data volume 
remains offline until all client nodes send ADDVOL requests for the new volume. The 
Data volume is then brought online only after the Name Server receives an ADDVOL 
requests from every client.  



 168

3.3 Tokens 
For improved file system performance, each client caches user data and file information 
(file data) in their local memory. The consistency of cached file data is guaranteed with 
tokens that are managed by the Name Server.  
There are five token types, NAME, TIME, SIZE, ATTR and DATA. NAME and ATTR 
tokens correspond to directory entry and file attributes (or directories) that are not 
represented by other tokens.  
Every file has a set of associated DATA tokens. There is a corresponding DATA token 
for each file data block. Owning a DATA token guarantees accuracy of file extent 
information reflecting the location of data on the Data volumes. Using this file extent 
information, clients access Data volumes directly and independently. The Name Server 
provides file extent information along with the token when a client requests a DATA 
token. When new data is written, the client must first obtain the corresponding DATA 
write token, which allows the client to cache the user data locally. Afterwards, if another 
client wants to read this cached data, the Name Server callbacks the write DATA token 
from the client owning it. On receipt of a callback request, the client allocates new disk 
space (file extent) and writes any cached user data. The client honoring the callback 
request also updates any newly allocated file extent information.  
The TIME token allows multiple clients to concurrently access common files while 
guaranteeing the accuracy of file access times. The SIZE token permits independent 
programs running on different nodes to both write and read from different parts of the 
same file.   
On a data token request, the Name Server provides all the required non-data related 
tokens plus, if available, all DATA tokens for the entire file (Token Escalation). Through 
token escalation, most clients obtain the needed tokens, including file extent information, 
at file open time.  

3.4 Space Allocation 
When a client must allocate additional disk space, it selects a pre-allocated extent based 
on the amount of cached data to be written. In most cases, only one extent with 
consecutive disk blocks is allocated at file close time. The Name Server is notified of this 
through the CLOSE request. On notification of their usage, pre-allocated (reserved) 
extents become file extents when the DATA write token is released or the file is closed. 
When the number of pre-allocated extents drops below a threshold, clients replenish their 
free pool with a RESERVE request made to the Name Server. On receipt of a RESERVE 
request, the Name Server provides free extents on a Data volume with the greatest free 
space.  
To reduce wasted space related to allocation, every extent, including free extents, is 
represented with a B-tree data structure. The Btree structure is stored in the inode for files 
consisting of only a few contiguous extents. With this space allocation function, 
combined with deferred file writes, reduces message overhead and permits allocating 
contiguous disk blocks for files. 
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3.5 Transaction processing 
For increase performance and availability, the Name Server processes file operations 
requested by clients as a single atomic transaction using logging and a two-phase lock 
with deadlock detection mechanism. 

3.5.1 Logging 
These transactions complete quickly because they require writing only a small amount of 
data to the log volume. Actual updates to Meta volumes are deferred as long as possible 
and are performed completely and asynchronously.  
Log data generated by HAMFS is an after image log containing only the modified range 
of data instead of the entire contents of the modified blocks. This byte-range log 
significantly reduces the amount of log data and improves metadata update performance. 
The log data is written on a log volume in a cyclic fashion, synchronously before a 
command response is returned to the client. Actual metadata updating of Meta volumes is 
deferred as long as possible by using a secondary buffer cache. The secondary buffer 
cache caches any modified and committed metadata that has not been written back to a 
Meta volume. Dirty metadata, cached in the secondary buffer cache, is asynchronously 
written when the amount of available space in the log volume or the number of non-dirty 
blocks in the secondary cache reaches a threshold. Furthermore, since the metadata writes 
are aggregated, the total I/O load is reduced. 

3.5.2 Deadlock detection 
With the HAMFS token schema, deadlock avoidance, as used in conventional file 
systems, would be difficult to implement. For example, assume the following scenario. 
The Name Server processes a file remove request for one client while another client is 
writing to the file. To complete the remove request, the Name Server must callback any 
DATA write tokens related to the file from other clients. On receipt of this callback 
request, the client requests the Name Server to pre-allocate disk space with a RESERVE 
request for writing back cached data. After the Name Server replies to the RESERVE 
request, the client writes its cached data to the pre-allocated extent returned from the 
Name Server. Afterwards, it notifies the Name Server of any allocated extents. In such 
circumstances, determining the access order to resources required for preventing 
deadlocks, while probably possible, would be difficult.  
In HAMFS, we developed a deadlock detection mechanism for easing development and 
maintenance. The Name Server uses several threads for processing client requests. When 
requests arrive, idle threads process the requests. A two-phase lock technique maintains 
consistency among these requests. Deadlocks result when two or more threads obtain 
multiple vnode locks, buffer cache locks, or tokens. Deadlocks are detected by 
maintaining the following information in a linked list by the Name Server.  

• Identifier of the thread owning a resource for vnode or buffer cache lock. 
• Resource identifier for threads waiting. 
• Vnode address for tokens a thread is waiting on. 

When a deadlock situation occurs, the Name Server cancels one of the conflicting 
transactions that led to the deadlock and retries it from the beginning. Memory resident 
control blocks, such as in-memory inodes, are automatically restored. With HAMFS 
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deadlock detection and recovery, the order for updating metadata can be selected from a 
performance viewpoint as opposed to a consistency and deadlock avoidance viewpoint. 
Therefore, complicated error recovery and deadlock avoidance logic, scattered 
throughout the file system, is avoided. 

3.6 Replication 
For fast recovery and improved performance in cluster environments, HAMFS replicates 
the Name Server. There can be separate primary and a secondary Name Servers for each 
file system. However, HAMFS clients only communicate with the primary Name Server. 
The secondary Name Server possesses a replicated copy of the metadata. If the primary 
Name Server crashes, the secondary Name Server takes over the primary role using the 
replicated metadata. When a secondary Name Server is deployed, instead of writing log 
data to a log volume, before signaling an operation complete, the primary Name Server 
simply transfers the log to the secondary Name Server. The secondary Name Server 
acknowledges its receipt. After receiving the acknowledgment, the primary Name Server 
is free to signal a completion to the client. We call this technique Early Commit. Actual 
metadata updating on Meta volumes is deferred and done asynchronously using a 
secondary buffer cache on both name servers. If a power failure occurs, modified 
metadata, in the secondary buffer cache, is written back to the Meta volumes with the aid 
of an UPS.  

3.7 Crash Recovery 
When a client recognizes that the primary Name Server has crashed, it begins 
communicating with the secondary Name Server (new primary Name Server). The new 
primary Name Server reconstructs tokens and file lock status using information sent by 
the clients. Afterwards, the Name Server resumes processing. If the new primary Name 
Server detects requests already committed by the old primary Name Server it simply 
replies with the saved reply status transmitted by the old primary Name Server.  
When the Name Server detects a client crashed, the Name Server releases any tokens and 
file locks held by the failed client. After this step, the Name Server releases pre-allocated 
extents also owned by the crashed client.  

3.8 Status 
The current HAMFS prototype is operating in our laboratory with the following 
configuration. The Name Server running as a user mode daemon with multiple threads on 
Solaris. Clients are running as a VFS file system in the FreeBSD kernel. All functions, 
except for file RAID described in this paper, have been implemented. 

4 Measurement Results 
We evaluated various file system alternatives by measuring performance of an 
asymmetric file system (HAMFS) and a distributed file system (NFS). We did not 
measure performance of a symmetric shared file system. We can only comment on the 
performance of a symmetric file system where it relates to our other measurements.  
We used three PCs with 64MB memory for these measurements. For the NFS 
measurements, two PCs were running FreeBSD with one operating as a NFS client and 
the other as a NFS server, respectively. For the HAMFS measurements the three PCs 
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were configured with the first PC running FreeBSD and acting in a client role and the 
other two PCs operating as primary and secondary Name Servers running the Solaris 
operating system. Consequently, the measured data represents HAMFS performance for a 
cluster environment.  
These three PCs were connected together with a 100Mbps Ethernet. In every case, a 
common disk was connected to the first two PCs. This disk contained all HAMFS 
volumes, except for replicated Meta volume. This was done to create a fair comparison 
with NFS. The replicated Meta volume resided in a dedicated disk on the third PC 
running the secondary Name Server. This replication configuration is justified because 
separate disk should be used in a replicated environment.  

4.1 Distributed file system vs. Asymmetric shared file system  
We measured HAMFS and NFS performance for small and large files. This was done to 
compare access performance of a distributed file system to an asymmetric shared file 
system. We chose NFS version 3 to represent the distributed file system. For NFS 
measurements, two PCs running FreeBSD were used. Since NFS invalidates cached data 
on a predetermined time interval, it generates more control traffic over the network than 
other distributed file systems. But we believe the measured results apply to other 
client/server distributed file systems.  

 

Figure 3 shows the performance for large file access environments. In these 
measurements, a 100MB file is created and read sequentially from the beginning. 
HAMFS shows far greater performance, compared with NFS, because it is accessing data 
directly from disk through a high-performance disk path. An interesting point is that NFS 
write performance is poor although writing data on server side is done asynchronously 
with the NFS v3 commit feature. The reason for this is that the network cannot drive the 
disk with enough data necessary to derive its maximum performance, resulting in 
additional rotational delay. On the other hand, as the track buffer in the disk unit offsets 
the network overhead, NFS reads reflect relatively good performance. As disk transfer 

Figure 3: Large file write performance 
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rates continue to improve, delays due to networks will further impact performance. 
However, the client cache provides a speed-matching buffer, which alleviates this 
problem, somewhat by aggregating data into larger chunks and writing them as 
contiguous blocks on disk. We believe asymmetric shared file systems have an advantage 
in this regard over symmetric shared file systems because they can make better use of the 
client cache.  

 

Figure 4 presents the performances for short file access environments. These 
measurements were conducted using the lat_fs program in lmbench [10] micro 
benchmarks. This micro bechmark program creates 1000 files with various sizes and then 
removes them. The vertical line reflects how fast this program runs. As shown in Figure 4, 

Figure 4: Short file access performance 

Figure 5: The amount of log generated 
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HAMFS, with a secondary Name server, outperformed NFS by a factor of five. The 
reason is that metadata updating through Early Commit is faster than doing actual disk 
I/O.  

Figure 5 and 6 shows how size of log affects total performance. 
Since HAMFS uses a Btree data structure for representing space information on Meta 
volumes, more disk blocks are updated on behalf of a file operation when compared with 
UNIX file systems. UNIX uses an array of block address lists and bit maps for 
representing available disk blocks. Figure 5 illustrates the distribution of generated log 
data size per file operation in this measurement. Without a byte-range log, most log data 
writes would be 30K data.  Less than 2K bytes of log data is generated with a byte-range 
log (that is when the log is produced with byte granularity). This difference is apparent 
even in a single name server environment (the second line vs. the last line in Fig. 5) 2.  It 
has a more drastic effect on the performance in a duplicated name server environment 
(the first line vs. the third line in Fig. 5). Additionally, this figure indicates the superiority 
of asymmetric shared file systems over traditional client/server distributed file systems 
for improving availability through replication. Traditional distributed file systems must 
transfer all user data, as well as metadata, making it difficult to reduce data replicated 
over the network. Finally, we believe this measurement also reflects the superiority of 
asymmetric file systems over symmetric file systems since logging puts additional 
implementation burden for symmetric shared file systems. 

4.2 Limitations of asymmetric shared file systems 
Figure 7 shows aggregate write performance for large files in a shared environment. In 
this measurement, two PCs are used as clients with a third PC running as a name server. 

                                                 
2 In actual single node environments this difference may have more impact on performance. Because 
HAMFS measurements were conducted in a cluster environment with the Name Server and the client 
running on separate nodes, the logging overhead has less effect on total performance.  

Figure 6: Effect of a Byte-range log 



 174

Performance measurements are not as good when compared with Figure 3. The last line, 
annotated UFS, shows how performance degradation is independent of file system type. 
The reason is that the disk devices used for these measurements cannot efficiently 
process requests from multiple nodes. To validate our hypothesis, we measured the case 
when two processes running on the same client write large, but separate files on separate 
UFS file systems (disk partitions). The second line tagged with UFS single shows this 
performance impact. 

 
As the figure 7 shows, disk tag queuing performs well when two processes are running on 
the same node and writing concurrently. On the other hand, when two processes on 
separate nodes write large files, the loss of tag queuing is evident. Consequently, for 

Figure 8: Short file access with high-speed disk array 

Figure 7: Large file access in a shared environment 
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extracting maximum performance from disks in a cluster environment, tag queuing 
support across multiple nodes is a critical feature. 

Figure 8 shows performance for short file operations on a high speed RAID disk array 
with 32MB nonvolatile memory.  
Compared with Figure 6, HAMFS performance is not as good as indicated in the 
previous measurements. In previous measurements, HAMFS outperformed the local file 
system, however, for this measurement, UFS outperformed HAMFS. The reason for this 
is that writes for short blocks are faster with a nonvolatile cache in a RAID array than 
having to transfer control data over network. This result also suggests that writing small 
log data to disk (HAMS without Early Commit) is faster than transferring log data across 
a network (first line and the second line in Figure 8). Consequently, eliminating any 
unnecessary communication between the nodes and reducing the amount of data 
transferred over the network is essential to an efficient cluster file system. An important 
message is that a cluster file system must adapt to underlying disk topology for best 
performance. These measurements indicate that the preferred mode of operation is highly 
dependent on system configuration.  

5 Related Works  
Devarakonda [11] evaluated alternatives for implementing a cluster file systems. The 
author compares a symmetric shared file system with a token-based client/server 
distributed file system. They conclude that their client/server distributed file system 
(Calypso) provides much better performance than a symmetric shared file system. In our 
paper we have shown how an asymmetric shared file system can outperform a distributed 
file system organization.  
GFS [3,4, 20] is an example of a symmetric shared file system. It proposes a special 
hardware feature in the disk providing multiple logical locks. However, an asymmetric 
shared file system can accommodate off-the-shelf disk devices. Additionally, we expect 
GFS suffers from low performance as a result of heavy disk contention except in 
specialized environments such as broadcasting. 
NASD [12] and HPSS [13] are similar to asymmetric shared file systems. They isolate 
metadata and user data, and permit shared access to user data directly from clients 
through a high-speed communications network. However, since they both transfer user 
data across a communication network they have performance limits that HAMFS does 
not. In addition, they require special hardware features as GFS does; HPSS utilizes a 
complicated two-phase commit mechanism suitable only in scientific environments 
where large files are dominant. NASD depends on intelligence in the disk devices for 
space allocation.  
Zebra [9] and xFS [8], are examples of client/server distributed file systems. They scale 
performance by distributing data across servers in a RAID schema through a LFS 
technique. However, user data is transferred over a communications network and their 
RAID schema is fixed. HAMFS supports file RAID for increased performance and 
allows the user to specify data striping policy on a file basis. Frangipani [7] also offers a 
similar capability by distributing data across servers using a network virtual disk function. 
This approach has many of the same drawbacks as xFS. 
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HAMFS deploys many of the similar techniques developed for increased performance 
and availability used in many of the documented file systems, such as Cedar [14], Echo 
[15], XFS [16], Locus [17], HARP[18], and Spritely NFS [19]. Additionally, HAMFS 
offers features that others do not, including Token escalation, Space reserve, and 
automatic deadlock detection.  

7 Conclusions 
The asymmetric shared file system organization is a superior approach for implementing 
a commercial cluster file system. They outperform client/server distributed file systems 
and symmetric shared file systems for many common access environments. Because disk 
bandwidth improvements have outpaced network bandwidth improvements, asymmetric 
shared file systems’ performance is superior to that of distributed file systems. 
Additionally, processor overhead associated with distributed file systems is not evenly 
distributed across clients, but highly localized to a server. In a large cluster environment, 
this limitation quickly becomes a bottleneck.  However, to extract the full performance of 
an asymmetric shared file system, tag queuing across multiple initiators is required. Also, 
having an efficient protocol for reducing communication between clients and Name 
Server is important as well. Finally the current HAMFS prototype may have some 
scalability limitations because of a single Name Server per file system restriction. We do 
not expect this limitation to be a real problem in the short term. If required, we could 
remove this restriction using similar techniques as used in the Frangpani distributed file 
system.  
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