
235

Evaluating Backup Algorithms �

Zachary Kurmas
College of Computing, Georgia Tech

801 Atlantic Ave. NW
Atlanta, GA 30332-0218

tel 1-404-894-9390
fax 1-404-385-1253

kurmasz@cc.gatech.edu

Ann L. Chervenak
USC Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292-6601

tel +1-310-822-1511
fax +1-310-823-6714

annc@isi.edu

Abstract

We present a trace-driven simulator that evaluates the performance of backup al-
gorithms. We use this simulator to compare the performance of the commonly-used
level scheme (our name for the algorithm used by the UNIX dump utility) with that of
a new algorithm called the Z scheme. We show that the Z scheme has better backup
performance than the level scheme and slightly worse restore performance. We also
show that the Z scheme consumes less media for backups than the level scheme.

1 Introduction

Given the unprecedented increases in magnetic disk drive capacities, university, enterprise,
and government data repositories are growing rapidly. Protecting these data repositories
using traditional backup techniques is a growing challenge [3].

In this paper, we evaluate four backup strategies. Our eventual research goal is to
demonstrate the limits of current backup algorithms and propose new algorithms both for
sequential magnetic tape media and for random access alternatives, including write-once
technologies such as CD-ROM and DVD. Initially, we focus on backups to sequential
magnetic tape media.

Every backup algorithm makes a tradeoff between backup performance and the perfor-
mance of restore operations, in which files are retrieved from the backup medium. At one
extreme, an algorithm optimized for fast backup might simply write periodic incremental
backups, or copies of files that have changed since the last backup. Each day, this pure
incremental approach copies to the backup medium only the files that have been modified
that day. The disadvantage of this simple, fast backup scheme is that the performance of
restore operations may suffer. If files in a single directory are modified on different days,
the pure incremental algorithm may disperse those files widely on the sequential backup
media. Later, to restore the entire directory, reading large amounts of sequential media may
be necessary.

�This work was supported in part by NSF CAREER Award CCR-9702609.



236

At the other extreme, an algorithm optimized for fast restore would take pains to lay
out data carefully on the backup medium, copying all files in a given directory to the same
backup medium and grouping together directories that are logically connected. An algo-
rithm of this type might even perform daily full backups, in which all files and directories
are written to the backup medium. The goal of these algorithms is to reduce the time re-
quired to restore a given directory or file system by minimizing the quantity of sequential
media that must be accessed during the restore operation. The disadvantage of such algo-
rithms is that the backup phase requires substantially more media and takes much longer,
given the bandwidth limitations to sequential tape media (e.g. the speed at which the tape
drive can write).

Between these two extremes are many other backup algorithms that attempt to strike a
balance between backup performance, restore performance, and media requirements. We
evaluate two of these algorithms here: the traditional backup scheme used by many pro-
grams, including UNIX dump, which we call the level scheme, and a new algorithm we
developed which we call the Z scheme [6, 1].

To evaluate these backup algorithms, we wrote a trace-driven backup simulator. Inputs
to this simulator include traces made by Tim Gibson [4] as well as traces of backup activity
collected in the College of Computing at Georgia Tech. Our simulation results evaluate
the performance of the full backup, pure incremental, level, and Z schemes. As expected,
our results show that the full backup algorithm has poor backup performance but performs
restores efficiently. In contrast, the pure incremental scheme performs well for backups
but poorly for restore operations. The level scheme performs well for all metrics, with
backup performance close to that of the pure incremental scheme and restore performance
close to that of the full backup scheme. The Z scheme performs backup operations better
than the level scheme, and restore operations almost as well as the level scheme. We will
argue that the Z scheme’s better backup performance makes up for its slightly worse restore
performance, and, therefore, is a better algorithm.

2 The Backup Simulator and File System Traces

The trace-driven backup simulator is written in C++. Its modular, object-oriented design
simplifies implementing new backup algorithms, accommodating new trace formats, and
gathering different performance metrics.

Input traces for the backup simulator contain periodic records of the state of a file sys-
tem hierarchy — specifically, daily images of the file system metadata at the time backups
are performed. Using these records or snapshots of the state of the file system, the sim-
ulator traverses the file system hierarchy, examines file metadata, and decides which files
should be backed up according to the specified algorithm. The algorithm uses a tape object
to keep track of the layout of files on the tape. During a restore operation, the simulator
uses Bruce Hillyer’s model of a DLT 4000 tape drive to estimate the seek time to access a
particular file [5]. Metrics for evaluating the algorithms include the time to perform backup
and restore operations and the amount of tape media required for backup.

In this paper, we present simulation results that use Gibson’s traces as input [4]. Gib-
son’s traces include a set of files for each day observed. Each trace file contains the name,



237

size, owner, group, inode, access time, modification time, and change time of each file on
the traced file system on a given day.

3 Backup Algorithms

We now describe the backup algorithms that we evaluate in this paper.

� Pure Incremental Scheme: Once every day (or, more generally, once every period
or epoch specified by an algorithm), this scheme copies only those files that have
changed since the last incremental backup to the backup medium. We use this scheme
as a basis for evaluating optimal backup times.

� Daily Full Backup Scheme: Every day, this scheme copies all files in the file system
to the backup medium. In general, this scheme puts files in the same directory close
together on the backup medium. We use this scheme as a basis for evaluating optimal
restore times.

� Level Scheme: The level scheme is our name for the traditional backup algorithm
that alternates between periodic full backups and incremental backups of different
“levels”, where a backup at a given level includes all files that have changed since
the last backup at that level.

� Z Scheme: The Z scheme is the name we give to our algorithm. It is a simplification
of an algorithm developed at UC Berkeley by Costello, Umans, and Wu [2]. This
scheme performs concurrent backups to several backup streams. The Z scheme uses
a parameter b, called the base. A particular file is written to backup stream i if it was
last modified exactly b

i days ago. For example, every day the algorithm writes to
stream 0 those files that were last modified yesterday. If the base b is 2, the algorithm
writes to stream 3 those files last modified exactly 23 = 8 days ago.

To restore every file currently in a file system, a backup algorithm must read the most
recent version of every file from tape. In a pure incremental backup scheme, we found that
restoring a file system required reading a large number of tapes. In particular, we found
that for an incremental backup scheme that uses one tape per day, there is a high probability
that each backup tape contains at least one file that was last modified on that date (usually,
there are several files). To restore a file system on day x, the restore operation must load
and read at least one file from approximately x tapes. Since the time to load and seek on
a tape often exceeds the time to read files, this results in poor restore performance for the
pure incremental scheme.

The level scheme trades backup performance for improved restore performance by re-
dundantly backing up files in such a way that the number of tapes that must be read to
restore a file system is bounded by a constant (provided that the size of the file system is
also bounded).

As we will see, the level scheme has very good performance; however, its performance
is hindered by two inefficiencies, both of which are addressed by the Z scheme: First,
the daily bandwidth needed by the level scheme varies greatly. The amount of bandwidth



238

needed for a level 0 (or full) backup is about 25 times the amount needed by a daily level
9 (or incremental backup). Therefore, a user of the level scheme must maintain enough
backup equipment to handle a level 0 backup, even though that equipment will remain idle
for most of the year. Second, the lower level backups (e.g. levels 0, 5, and 7), back up all
files modified since the last backup of a lower level regardless of whether those files are
likely to be modified in the near future. For example, consider a file F that is modified
every day, and, therefore, sent to tape by a level 7 backup every Sunday. Because file will
be modified again Monday, any restore will have to pass over file F ’s spot on the tape used
for the level 7 backup. This takes time that could be saved if the file was simply not backed
up by level 7. The Z scheme addresses this problem by not writing files to higher level
streams until they have not been modified for several days.1

4 Evaluation of Algorithms

In this section, we present comparisons of backup algorithm performance for the three met-
rics of interest: the amount of sequential access tape media required to perform backups
and the time required to perform backup and restore operations. We evaluate the perfor-
mance of four algorithms: the pure incremental, full backup, level, and Z schemes. For this
paper, the Z scheme was run with a base of 8.

The results below reflect backup and restore performance for a single file system used
by graduate students at the University of Maryland at Baltimore County [4]. This file
system contains about 1.5 gigabytes at the beginning of the trace and approximately 4
gigabytes at the end of the trace.

The restore results use Hillyer’s model [5] to determine seek time. The current simu-
lation results assume a tape drive read rate of 1.5MB/s and a load time of 30 seconds per
tape.

4.1 Media Requirements for Backup

First, we compare the cumulative total of bytes written to the backup media for each algo-
rithm. This metric is used for comparison purposes. In practice, some algorithms might
discard or re-use tapes that are no longer needed for restore. For example, both the level
and the full backup schemes could discard older tapes, assuming they retain at least one
subsequent full backup of the file system. However, the pure incremental scheme must
retain all tapes that contain active files.

Figure 1 shows the number of bytes written by the four backup algorithms. As expected,
the full backup scheme uses, by far, the most media while the pure incremental scheme uses
the least. The media requirements of the level scheme are quite low, because it performs
frequent incremental backups and only occasional full backups. By the end of the 8-month
period in the graph, the level scheme uses approximately twice as much media as does
the pure incremental scheme — about 38GB compared to about 18GB The Z scheme’s
performance is even closer to the pure incremental scheme, using only 25GB

1The intuition into why this is effective comes from Gibson, who showed that files modified today will,
with high probability, either be modified within a few days, or never modified again. Similarly, files that have
not been modified in several days, with high probability, not be modified again [4].



239

0

100

200

300

400

500

600

0 50 100 150 200 250

T
ot

al
 G

ig
ab

yt
es

Day

Legato Level
Pure Incremental

Daily Level 0
Z Scheme

Figure 1: Total Amount of Media Consumed by Day x

4.2 Backup Performance

Figure 4.2 shows how much media each algorithm uses daily. This statistic is directly pro-
portional to the time required to perform daily backups, and hence, to backup performance.
The figure shows that the pure incremental scheme, which is optimized for fast backup,
minimizes the number of bytes that need to be transferred on a given day. By contrast,
the full backup scheme, which is optimized for fast restore performance, requires much
more time to perform daily backups. On most days, the performance of the level scheme is
similar to that of the pure incremental scheme. However, one day each week, the scheme
performs a weekly “level 7” backup that requires about five times as much media as the
pure incremental scheme. On one day each year, the level scheme performs a full backup
that requires 25 times as much media as the pure incremental scheme does on that day.

Figure 4.2 also demonstrates the bandwidth consistency of the Z scheme (relative to
the level scheme). Although on most days the Z scheme uses more media than the level
scheme, it does not have the weekly and monthly peaks that the level scheme has. There-
fore, as we saw in figure 1, the amount of hardware/bandwidth needed by the Z scheme is
less than that of the level scheme.

One rough method of quantifying this difference in consistency is to compute the stan-
dard deviation of the amount of backup media used daily. A backup algorithm that writes
the same amount of data to tape every day would have a standard deviation of zero. The
level scheme has a standard deviation of 75,243, while the Z scheme has a standard devia-
tion of about 12,284. The pure incremental scheme as a standard deviation of 11,226.



240

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

3.5e+09

4e+09

4.5e+09

0 50 100 150 200 250

B
yt

es

Day

Legato Level
Pure Incremental

Daily Level 0
Z Scheme

Figure 2: Amount of Media Consumed on Day x

4.3 Restore Performance

Finally, figure 3 shows how long a restore of the entire file system on day x will take.
As expected, the full backup scheme, which was optimized for fast restores, has the best
restore performance. The pure incremental scheme has the worst performance, because a
large number of tape media must be accessed to restore all files in the file system. The level
scheme performs very well on restores, within a factor of two of the full backup scheme.
The restore performance of the Z scheme is almost as good as that of the level scheme.
In fact, the graph of Z scheme restore time seems to connect the peaks in the graph of the
level scheme restore times. This makes sense because the level scheme will have the best
restore performance after a backup of low level;2 however, because the Z scheme backs up
a consistent amount of data every day, its restore times are more consistent.

Because restores occur rarely, we believe that a daily savings in backup time and media
will compensate for a possible, but unlikely, doubling of restore time. Thus, we argue that
the Z scheme’s improvement in backup performance (especially the reduction of the peaks
in bandwidth requirements) outweighs the decrease in restore performance.

5 Future Work

Our current project is to develop a distributed version of the simulator. Currently, each
simulation can only simulate one file system. Although we can run several simulations in

2Notice that in figure 3, the restore performance dips to that of the Daily level 0 on day 135, when a level
0 backup is performed.



241

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250

S
ec

on
ds

 T
od

ay

Day

Legato Level
Pure Incremental

Daily Level 0
Z Scheme

Figure 3: Time of Restore on Day x

parallel, simply summing the output of each simulation does not reasonably approximate
the restore performance of a large file system (especially on a serpentine tape, such as
DLT). Our distributed simulator will allow a Tape Drive object running in one process to
accept read and write requests from File System objects running in several other processes.
By carefully coordinating the writes to the Tape Drive object, we can make several File
System objects behave as if they were subdirectories in a single, large, file system.

After we finish the distributed version of the simulator, we plan to implement several
more backup algorithms. Given our results of running the Z scheme with different values
for the base (not presented here due to space constraints), and Gibson’s findings on file
modification patterns [4], we believe that basing the actions of each stream on a power
of some base is too restrictive. Therefore, we will implement the Generalized Z scheme,
in which, given an array of integers A, stream i backs up those files that have not been
modified in exactly Ai days. We expect that we can choose the values of A carefully so as
to improve both backup and restore performance.

We plan eventually to generate results that use the larger backup traces we collected
at Georgia Tech’s College of Computing; however, because the Georgia Tech traces are
generated by a backup algorithm, we are still working on a method to remove the influence
of the backup algorithm on the traces.

Finally, our long-term goal is to progress to studying random-access media, such as
CD-ROM and DVD. The cost of writers for these media is decreasing to the point where it
may soon be more cost-efficient for small companies to use these media instead of magnetic
tape.



242

6 Conclusions

Efficient backup algorithms must strike a balance between backup and restore performance.
We have used a trace-driven backup simulator to evaluate four backup algorithms using
traces collected by Tim Gibson. At one extreme, we showed that a pure incremental scheme
performed backup operations efficiently, but performed restores inefficiently. At the other
extreme, an algorithm that performed full backups every day provided efficient restores
operations but slow backups.

We showed that a traditional level backup scheme that alternates frequent incremental
backups at various “levels” with occasional full backups performs well for both backup
and restore operations. For one file system trace, we showed that the total number of bytes
stored by the level scheme was within a factor of two of the number of bytes stored by the
pure incremental scheme. In addition, except for monthly “level 5” and annual “level 0”
full backups, the daily backup performance of the level scheme was within a factor of five
of the pure incremental performance. Finally, the level scheme performs restore operations
efficiently, within a factor of two of the performance of the full backup scheme.

We also showed that our new Z scheme performs better than the level scheme for backup
operations, but slightly worse for restore operations. However, because backups must take
place daily, while restores take place rarely, we believe that the Z scheme’s improvements
in backup performance, both by using less backup media, and by having a more consistent
daily bandwidth requirement, more than make up for its slight decrease in restore perfor-
mance.

References

[1] A. L. Chervenak, V. Vellanki, Z. Kurmas, and V. Gupta. Protecting File Systems: A
Survey of Backup Techniques. In Proceedings. Joint NASA and IEEE Mass Storage
Conference, March 1998.

[2] A. Costello, C. Umans, and F. Wu. Online backup and restore. Unpublished Class
Project at UC Berkeley, May 1998.

[3] J. da Silva and O. Guomundsson. The Amanda Network Backup Manager. In Pro-
ceedings of USENIX Systems Administration (LISA VII) Conference, pages 171–182,
November 1993.

[4] T. Gibson, E. L. Miller, , and D. D. E. Long. Long-term File Activity and Inter-
Reference Patterns. In CMG98 Proceedings. Computer Measurement Group, Decem-
ber 1998.

[5] B. K. Hillyer and A. Silberschatz. On the Modeling and Performance Characteristics
of a Serpentine Tape Drive. In Proceedings SIGMETRICS. ACM, May 1996.

[6] DUMP(8). Unix System V man page.


