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Abstract 
This paper describes a new architecture for device drivers for tape drives attached to 
UNIX-like systems.  The design goals are presented, some current architectures are 
measured against the requirements, and a new architecture is described along with its 
advantages and disadvantages. This architecture was developed, and this paper was 
written, while the author was at Silicon Graphics.  The work continues at SGI for IRIX, 
SGI's variant of UNIX, and for Linux.  The resulting Linux software will be licensed as 
Open Source 
 
1 Introduction 
In order to evaluate the architecture presented later, and the design decisions that went 
into it, the environment and assumptions that existed during the design must be presented 
as well. 
 
1.1 What Do Tape Drivers Do? 
The fundamental purpose of a tape driver is fairly simple; it provides access to the tape 
drive hardware for use by application programs.  Beyond that basic purpose, however, 
there are secondary characteristics that are controlled by the environment that the driver 
is running in and by application program expectations. 
 
For example, tape drivers for a UNIX-like environment will attempt to both insulate the 
application from some of the device specific details of controlling the drive hardware and 
to homogenize the operational interfaces for different types of drives.  One example of 
the latter is the need to have all drive types end up on the same side of a file mark when 
reading through a tape, in spite of what the drive’s firmware does naturally.  A critical 
result of this is the application having the ability to predict where the tape is going to 
physically end up after each operation, i.e.: before the tape mark or after it. 
 
Other secondary characteristics include the failure modes of the driver and the failure 
domain.  The failure modes describe how the driver can fail; e.g.: hang, crash, returns an 
error, silent failure, etc.  The failure domain describes how much impact the failure 
modes have; e.g.: does the current operation fail, the application hang, or the system 
crash on each type of failure.  Some combinations are clearly more desirable than others. 
 
1.2 Traditional Tape Driver Architectures 
The normal architecture for a tape driver in a UNIX-like system is an event driven state 
machine built into the operating system kernel.  For most UNIX-like systems building it 
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into the kernel is required in order for the driver to have access to the hardware control 
registers for the connection to the drive.  That connection will usually be a SCSI bus but 
FibreChannel attached tape drives are now starting to appear on the market. 
 
The driver must be able to support multiple devices simultaneously.  As a result of the 
interrupt-driven nature of modern I/O busses, it must also be able to coordinate an 
asynchronous thread of execution with a synchronous one for all such devices 
simultaneously.  In a multiprocessor system it must even be able to protect itself against 
race conditions between the processors, in both normal code and interrupt level code.  
The interrupt level code can have impacts on the rest of the kernel's ability to respond to 
real-time events, and the kernel's scheduler can have an impact on the driver's ability to 
keep the drive streaming. 
 
The kernel of a UNIX-like system is usually a fairly hostile place to program.  The 
interfaces to supporting code in the rest of the kernel are complex and the dependencies 
are delicate, and those interfaces and dependencies can change at every release of the 
kernel.  In addition, the debugging tools are usually very primitive. 
 
The driver may also attempt to support in a single monolithic driver source file many, if 
not all, of the devices the system vendor wants to be able to control.  This may lead to 
either table-driven code or inscrutably complex run-time checking of the drive type.  In 
either case there is the risk that any change to the code requires careful attention and 
regression testing to ensure no breakage in support for any of the supported devices. 
 
The opposite structure, a separate driver source file for each tape drive make/model to be 
supported, is used by some system vendors. This option avoids some of the pitfalls of the 
monolithic driver, but it leads to a risk of different semantics from one tape make/model 
to the next, and still has a requirement to modify and retest all the supported drivers if the 
interface to a kernel support routine changes. 
 
The sum of all these forces acting on the design of tape drivers has brought us to a point 
where a tape driver is a complex and delicate piece of code where any bug includes the 
risk of impacting the entire computer system. 
 
2 Architectural Requirements 
In order to decide what, if anything, is wrong with a traditionally structured tape driver, 
we need a list of those characteristics that we believe are important to the architecture of 
a tape driver.  Debating which characteristics belong in this list, which do not, and their 
order of importance is in itself an interesting topic.  Here is the list of requirements used 
for this work, shown in their order of importance: 
 
2.1 Failures Must Be Contained 
Failures in a tape driver must be isolated to that one drive, i.e.: it cannot be allowed to 
crash the system.  Limited forms of service interruption are acceptable; for example a bug 
might affect the use of one device. 
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2.2 All Drivers Must Provide The Same Operational Semantics 
Any tape driver must provide application programs with the same operational semantics 
as all other drivers.  For example, they must all end up on the same side of the file mark 
when reading a tape. 
 
An application should be able to reliably predict the behavior of the tape drive no matter 
who wrote the driver for it.  An application should also be able to reliably predict the 
behavior of the tape drive, with some caveats, no matter which drive type it is.  The 
former ensures that all DLT7000’s operate the same, while the latter ensures that (to the 
extent that it is physically possible) a simplistic application doesn’t need to know if it 
running against an AIT-2 or a DLT7000. 
 
2.3 Drivers Must Be Portable To Multiple Operating System Platforms 
Portability of an application that uses tapes to a new operating system can be greatly 
hindered by a difference in tape access semantics.  The best way to avoid such 
differences is to use the same driver on all of them.  Any new driver for a given 
make/model of tape drive must be source code portable to multiple kernels. 
  
2.4 Distributed Development Of Drivers 
The model used in the PC marketplace of bundling the driver software with the drive 
hardware is a good one.  The people who make the drive are the ones in the best position 
to be able to make that drive perform correctly and reliably.  This implies that it must be 
possible for the drive vendor to be able to build a driver for an operating system without 
reference to proprietary information from the platform vendor.  It must be possible for 
multiple organizations to develop drivers for different devices in parallel. 
 
2.5 High Performance 
Any new tape driver architecture cannot sacrifice the performance of the drive or impose 
a significantly higher CPU load than a traditional architecture. 
 
2.6 Isolating Support Of A Device From Other Devices 
A monolithic tape driver implementing all supported tape drives will become unwieldy as 
the number of tape drive make/models being supported grows.  Regression testing each 
driver change against all supported devices quickly becomes the dominating factor in the 
cost of adding support for a new drive.  Using separate driver source files for each 
supported make/model of tape drive avoids this pitfall. 
 
2.7 Differing Levels Of Investment For Each Drive Type 
It must be possible in a tape driver architecture for one driver implementer to provide the 
basic set of operations and error recovery mechanisms while another provides that plus 
additional error recovery and/or additional device dependent operations.  Any new 
architecture cannot raise the minimum requirements for implementing a tape driver too 
high, nor can it disallow extensions to take advantage of drive-specific features. Note that 
a driver providing additional operations risks requirement 2.2 unless it is a pure superset. 
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3 Evaluating The Traditional Architectures Against The Goals 
Before going to the trouble of designing a new tape driver architecture, we need to decide 
if the above mentioned “traditional” approaches to driver structure are lacking 
significantly enough to warrant the effort. 
 
The two approaches we've been discussing are both fully inside the kernel so they both 
will impact the entire computing system if they encounter a severe bug.  There is no 
inherent difference between these two models in terms of their portability across 
operating systems (they are not) or in terms of their performance. 
 
To successfully create a high performance, highly reliable driver in the hostile 
environment of an operating system kernel, the implementer must have a great deal of 
detailed knowledge about the particular kernel they are targeting and be able to use some 
fairly primitive debugging tools.  Both of those requirements imply that writing a driver 
requires a talented operating systems engineer.  It is desirable to eliminate those 
requirements in favor of allowing an engineer with less specialized experience perform 
the task. 
 
3.1 Monolithic Drivers 
A monolithic driver implementing all supported tape drives easily provides common 
operational semantics across all drive make/models. It will become unwieldy as the 
number of tape drive make/models being supported grows, however.  Regression testing 
each driver change against all supported devices quickly becomes the dominating factor 
in the cost of adding support for a new drive.  Changes to the kernel support interfaces 
that the driver uses also necessitate a full regression test against all supported devices. 
 
A monolithic driver has great difficulty isolating one drive type from another, and is in 
practice only modifiable by one person at a time, in a serial fashion of implementation 
then testing.  It is also difficult to provide extended error recovery for one drive type 
while isolating that recovery code from the other drive types. 
 
The monolithic model has significant problems meeting the requirements set out above. 
 
3.2 Separate Driver Source Files 
Using separate driver source files for each make/model of drive has a significant risk of 
allowing variances in the semantics provided by one drive versus another.  There is no 
structural help in the architecture or development model to ensure this, it is just a matter 
of all the programmers knowing that they have to do the same thing. 
 
Using separate source files for each make/model of drive is quite good at isolating one 
drive type from another and it lends itself quite well to being worked on by more than 
one person at a time.  Adding extended error recovery code to the driver for one 
particular type of drive is straightforward and has no impact on the other drive types. 
 
It has the disadvantage of locking the system vendor into providing a static set of support 
interfaces in their kernel for the tape drivers to use.  Those interfaces can become 
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inefficient and/or difficult to implement as the system vendor makes changes in the 
structure of the operating system kernel. 
 
Overall, the separate driver source files model is better than the monolithic driver model, 
but it still has the critical problem of failure containment as well as some significant 
application portability risks. 
 
4 New Architecture 
The architecture being proposed is composed of a document, two main software 
components, and a well-defined interface between those components: 
 
• Tape Access Semantics Document: specifies the behavior that an application can 

expect from the tape driver, e.g. which side of the file mark the tape ends up on after 
a read operation. 

 
• Tape Support Driver (TSD): a piece of code that lives inside the operating system 

kernel and is uniquely optimized for that kernel but is common to all tape drives 
supported by that operating system. 

 
• Personality Daemon: a piece of user level code that is uniquely optimized for a given 

make/model of tape drive but is common to all operating systems that support that 
drive. 

 
• Personality Interface: the interface between Tape Support Drivers and Personality 

Daemons.  This is the piece that allows portability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Structure of the new tape driver architecture. 
 
This new architecture will be implemented on IRIX, SGI’s variant of UNIX, and on 
Linux.  The source code for the Linux port will be distributed under Open Source 
licensing terms.  It is one of the key characteristics of this architecture that a site be able 
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to modify or fix an existing Personality Daemon to meet their needs without the 
involvement of the operating systems vendor. 
 
4.1 Tape Access Semantics Document 
One of a tape driver’s most important characteristics is the application’s ability to predict 
what the tape drive is physically going to do for each operation the application asks the 
driver to perform.  For example, which side of a tape mark will the drive end up on after 
a read command runs into a tape mark. 
 
Given the requirement for independently written Personality Daemons, there must be a 
document that accurately and completely describes the semantics that can be relied upon 
by application developers and that therefore must be provided by Personality Daemon 
developers. 
 
In practice, a conformance test suite must also be written. It will need to exercise all of 
the operations defined in the semantics document in order to verify that a given 
Personality Daemon correctly implements those operations.  The test must check the 
handling of tape marks, end-of-data, end-of-tape, beginning-of-tape, file-space-forward, 
short reads, long reads, etc. 
 
The semantics that the document describes, and that the Personality Daemons implement, 
is not part of this paper.  This new architecture is independent of the particulars of the 
tape access semantics being implemented.  In fact, in the Future Work section of this 
document we talk about the possibility of there being different documents describing 
different sets of semantics, each matching a de facto industry norm. Examples include 
Solaris, IRIX, AIX, and HP/UX.  A site could have several Personality Daemons 
available for each drive, one for each common set of tape access semantics. The use and 
management of multiple Personality Daemons per drive is, again, not part of this paper. 
 
4.2 Tape Support Driver 
In order to gain access to the SCSI or FibreChannel controller, and as a practical 
requirement of getting high performance, we have defined a component inside the kernel.  
We call that piece the Tape Support Driver (TSD).  It is unique to each operating system 
kernel but is common to all drives supported by that kernel. 
 
The TSD is basically just a data  pump.  It is highly optimized kernel code that has all the 
usual dependencies, interrupt level code, multiprocessor locking, etc., and is probably 
written by a senior operating systems engineer. The implementation will be unique to 
each operating system and will take advantage of all the optimizations that are available 
in that environment.  The TSD supports the read() and write() system calls from the 
application as well as the newly defined Personality Interface.  The TSD does not do 
anything other than read/write and the Personality Interface, it depends on a Personality 
Daemon for support of all other operations and for error handling. 
 
There is an exception to the policy that the TSD does no handling of errors.  A read() 
operation where the data transferred is less than the data in the tape block will result in an 
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Illegal Length Indicator error being reported by the drive.  This would appear to be an 
error to the TSD and would normally be bounced up to the Personality Daemon for 
processing.  This is not considered an error under some circumstances, and we cannot 
afford to involve the Personality Daemon on every read() operation if we want to 
maintain streaming, so the architecture allows the TSD to have some parameters and for 
the Personality Daemon to control them.  The number of parameters must be kept to a 
minimum in order to keep the TSD simple, but they will undoubtedly have to exist. 
 
4.2.1 External Interfaces To The Tape Support Driver 
The TSD must support two external interfaces.  The first interface is the POSIX 
compliant tape-access interface that an application uses to control the tape; e.g.: 
/dev/rmt/tps0d4nrv.  The second is the Personality Interface to a Personality Daemon. 
 
Some operating systems layer disk and tape drivers on top of drivers for the specific Host 
Bus Adapter (HBA) cards, and some provide more formal interfaces to kernel support 
routines that a driver can make use of.  Both of those are examples of interfaces that are 
not visible in this architecture, they are implementation dependent. 
 
The Personality Interface for a drive is only available to a Personality Daemon, and only 
one Personality Daemon can be associated with a given physical drive at a time. 
 
4.2.2 Error Injection In The Tape Support Driver 
Murphy assures us that the error recovery code in a Personality Daemon will not work 
correctly unless it has been tested.  Making a real drive fail in exactly the required way at 
the required time in order to test that code is difficult at best.  Therefore, it is desirable to 
be able to inject errors into the operation stream from software.  Software based error 
injection may not be quite the same as if a physical drive were actually failing, but the 
increased flexibility of testing and code coverage would more than make up for the 
difference in the nuances. 
 
The error injection is probably best done by a thin layer below the TSD itself.  It could 
watch the sequence of operations as the TSD and Personality Daemon interact with the 
drive.  When the desired position, time sequence, or pattern was found, the layer would 
return an error rather than the real answer.  The patterns, sequences, and resulting error 
codes should be programmable by a user-level utility program; the level of 
programmability of the layer would undoubtedly be increased over time. 
 
This layer will be needed in the long run, but is not required for initial support of the new 
tape driver architecture. 
 
4.3 Personality Daemons 
The second major component of the new architecture is called a Personality Daemon.  It 
is unique to a given make/model of tape drive but is common to all operating systems. 
 
The Personality Daemon is a piece of user level code that makes use of the Personality 
Interface to talk to the Tape Support Driver in the kernel.  It provides operational control 
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and semantics for that tape drive.  We take it as a base assumption that performance of 
the drive is less important when recovering from an error or processing a special request 
from the application (for example, writing a file mark), than when it is doing reads or 
writes. 
 
There will be a unique implementation of a Personality Daemon for each make and 
model of tape drive.  Making a change to one Personality Daemon, or writing a new one, 
cannot introduce bugs into another Personality or change its semantics.  This allows 
multiple people or organizations to develop Personality Daemons simultaneously.  It also 
eliminates the need to regression test a Personality until it actually changes. 
 
Having separate Personality Daemons for each drive type means that writing a 
Personality Daemon for a drive that is fairly self-sufficient is easier that writing one for a 
drive that requires more hand-holding.  The flip side of that coin is also true, that it is 
possible to invest in a Personality Daemon for one drive more than for another, gaining 
better error logging or recovery or other operational advantages beyond simply pushing 
data to and from the drive. 
 
The biggest drawback to having separate Personality Daemons is that it is more difficult 
to ensure that they are all supporting the same semantics (e.g.: does the tape end up 
before or after the file mark) for the application program.  A conformance test suite will 
be required in order to test Personality Daemons.  Fortunately, the set of operations and 
their expected outcomes has already been clearly defined by the Tape Access Semantics 
Document and as part of the definition of the Personality Interface. 
 
4.3.1 Personality Daemon Failure Containment 
A single Personality Daemon is the unit of failure in this architecture.  Since only the 
most primitive of device support is inside the operating system kernel, and the 
complexity and potential for bugs comes mostly from error processing and recovery 
code, most failures should be contained to a single user-level process.  That process can 
be restarted if it fails or hangs, thereby regaining correct operational control of the drive 
without impacting the system as a whole.  Only the application that was accessing the 
drive would be impacted. 
 
4.3.2 Personality Daemon Responsibilities 
A Personality Daemon is responsible for processing both control commands from the 
application and for handling errors generated by the drive. 
 
When an application issues any control operation on the drive like a rewind or a seek-to-
end-of-data, any operation other than a read or a write in fact, the TSD will simply 
forward that request to the Personality Daemon.  The daemon is then responsible for 
building the correct SCSI command block(s) for the particular drive it is controlling and 
using the Personality Interface to send those commands to the drive.  In this way it 
interacts with the drive to accomplish the operation that the application wanted.  This 
sounds very indirect, but this mechanism allows for Personality Daemons to work around 
variations in the native behavior of one drive type versus another in order to accomplish 
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the goal.  In short, this is how we can homogenize the native behavior of drives into the 
standard semantic model that applications want to depend on.  When the daemon has 
finished its processing of the control operation, it tells the TSD to resume the application 
with a successful return code. 
 
The Tape Support Driver will also pass virtually any error condition reported by the drive 
up to the Personality Daemon for processing.  This allows the daemon to do device-
dependent error diagnosis and recovery operations.  The daemon will again use the SCSI 
pass-through capability of the Personality Interface to interact with the drive before 
returning control to the application. 
 
4.3.3 Personality Daemon Programming Model 
There will be one running instance of a Personality Daemon for each physical drive 
attached to a system.  This allows the programming model inside a Personality Daemon 
to be single-threaded and fully synchronous.  The Personality Daemon will wait on 
interactions with the Tape Support Driver through the only interface it has to support, the 
Personality Interface, which is a straightforward event-response style interface.  The 
Personality Daemon does not need to worry about coordinating interrupt level code with 
non-interrupt level code, multiprocessor locking issues, or asynchronous operations.  The 
reduction in code complexity is one of the significant advantages of the new architecture. 
 
The fact that there is one Personality Daemon per physical drive also implies that the 
failure scenarios only involve one drive at a time and do not impact the rest of the system.  
Barring a bug in the Tape Support Driver or a case where the TSD does not adequately 
protect itself from bad input from the Personality Daemon, the rest of the system will not 
be impacted if a Personality Daemon crashes or hangs.  In fact, the Personality Daemon 
can simply be killed and restarted to recover from a hang. 
 
The single-threaded, synchronous, user level process programming model allows the use 
of powerful debuggers and a much more elaborate testing environment.  Adding this to 
the reduced complexity of the code should result in a much higher level of reliability for 
the driver overall. 
 
4.4 Personality Interface 
The Personality Interface is common to all Tape Support Drivers and Personality 
Daemons and defines the relationship between them. 
 
The Personality Interface is used by the Tape Support Driver to tell the Personality 
Daemon about actions requested by the application, for example: rewind, file-space-
forward, and write-a-file-mark.  It is also used by the TSD to tell the Personality Daemon 
about exceptions generated by the tape drive, for example: file mark found, early warning 
for end-of-tape, read failure, etc.  The TSD expects the Personality Daemon to handle 
those conditions as it sees fit. 
 
The Personality Interface is used by the Personality Daemon to receive notification from 
the TSD of either application-requested actions or tape drive generated errors.  It is also 
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used to directly interact with the tape drive via a mechanism to send/receive arbitrary 
SCSI commands, commonly called a pass-through driver, and to control the error 
indications going back to the application. 
 
The Personality Interface is synchronous in both directions.  When the application 
requests a rewind, for example, the TSD will store the details of who is doing what and 
will use the Personality Interface to wake up the Personality Daemon. Note that the 
application will be blocked in the TSD at this point.  The Personality Daemon will use 
the Personality Interface to query the TSD for status.  It will then generate the SCSI 
“rewind media” command and will call the Personality Interface in order to send it down 
to the TSD for execution.  When that has finished and returned to the Personality 
Daemon, it will call back into the TSD with a command telling the TSD to resume the 
application with a specific return code. 
 
As of the writing of this paper in December of 1999, SGI is now in the implementation 
phase of the project.  The particulars of the Personality Interface will not be finalized 
until a few Personality Daemons have been written and the Personality Interface’s 
generality has been verified, but listed below is the structure of the interface as it is 
currently defined. 
 
4.4.1 Interface Initialization 
When a Personality Daemon first starts up it needs to set basic parameters for use by the 
TSD.  It must also ensure that the TSD and itself are both using the same version of the 
Personality Interface and that the drive to be controlled is of the correct type for the 
Personality Daemon.  The TSD_INIT ioctl() is used to initialize the interface. 
 
Some of the parameters that are configured when the interface is initialized include: basic 
device timeouts, whether the drive supports reads followed by writes without an 
intervening tape positioning command (or writes followed by reads), whether some 
device-reported error conditions can be ignored by the TSD (e.g.: short length reads), and 
the list of ioctl() operations that the Personality Daemon supports. 
 
4.4.2 Sleeping And The Use Of Signals 
The Personality Daemon will sleep during the time that it is not actively servicing the 
TSD, waiting for a signal to arrive.  The TSD will send the Personality Daemon a 
SIGUSR1 signal when it needs help with something. 
 
Once the Personality Daemon has been broken out of its sleep, it will use the 
TSD_QUERY ioctl() to determine the basic situation and will then use the ioctl() 
operations defined in the following sections to interact with the drive and the TSD. 
 
4.4.3 Type Of Service Required 
The TSD_QUERY ioctl() returns the reason for the latest signal from the TSD and the 
details behind that signal.  The possible reasons include an application doing an open(), 
close(), or ioctl() system call, an error reported by the drive, and a read or write operation 
on the drive.  The structure returned by the TSD_QUERY ioctl() includes all of the fields 
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required to give the details appropriate to all of the reasons for the Personality Daemon 
being involved.  Combining the various fields into one structure was seen as better than 
defining a set of query operations, one for each type of service that the TSD requires of 
the Personality Daemon. 
 
For all operations, the structure includes the process ID of the application.  For open()’s, 
the structure also shows the flags associated with the open() call (rewind-on-close, 
density, compression, etc).  For close()’s,  no additional fields are required.  For ioctl()’s, 
the structure contains the ioctl() command code and the ioctl() argument if it is not a 
pointer to a data structure (see the TSD_COPYIN request).  For errors reported by the 
drive, the structure contains the SCSI sense code information, the requested I/O size, and 
the residual un-transferred byte count.  For I/O operations, the structure includes the type 
of operation and the transfer counts.  The structure also contains some statistical counts 
such as total bytes read/written, total read/write operations performed, current block 
number on tape, etc. 
 
4.4.4 Application Request Processing 
The application will be suspended and the Personality Daemon woken up on all open(), 
close(), and ioctl() operations and on some read() or write() operations. 
 
The Personality Daemon needs to be involved every time an application opens a tape 
drive so that it can ensure the drive is ready for the application, validate access modes, 
etc.  The Personality Daemon needs to be involved on every close operation as well so 
that it can clear and/or set status flags appropriately and to issue the rewind operation for 
the rewind-on-close semantics that some applications depend on.  All control operations 
that the application performs (e.g.: rewind, write file-mark, etc) will come into the kernel 
via the ioctl() system call. 
 
When an application issues an ioctl() operation on a tape, it provides the operating system 
kernel with an operation code and a pointer to a memory buffer.  The size and contents of 
that memory buffer are operation dependent.  We do not want to provide direct access 
from the Personality Daemon into the application’s address space, so the contents of the 
memory buffer must be copied into a buffer inside the TSD.  The TSD can then make the 
contents of that kernel buffer available to the Personality Daemon.  The Personality 
Daemon needs to tell the TSD at initialization time which operation codes it supports, the 
associated amount of data to be copied in to or out of the kernel for that operation, and 
whether super-user privileges are requires to perform that operation.. 
 
The Personality Daemon will make use of two ioctl() operations when processing ioctl() 
requests from the application: TSD_COPYIN and TSD_COPYOUT.  TSD_COPYIN 
returns from the TSD the ioctl() operation code and associated data that the application 
passed to the TSD. TSD_COPYOUT sends to the TSD the bytes to be copied out to the 
application as the results of the application’s ioctl() operation. 
 



290 

The return code for the ioctl() call the application made comes via a separate ioctl() 
operation, TSD_RESUME, that the Personality Daemon uses.  It implies that the TSD 
should unblock the application and allow it to continue processing. 
 
4.4.5 Support For Device-Dependent Ioctl() Operations 
We do not want to artificially limit the ioctl() operations that a Personality Daemon can 
support.  There are many drives that provide unique features that an application might 
want to use if it was willing to include drive-type-dependent code.  The additional 
operation codes will simply be listed as part of the table of supported ioctl() codes and 
buffer sizes that is passed into the TSD by the TSD_INIT ioctl(). 
 
4.4.6 Drive Error Processing 
The TSD_QUERY ioctl() returns to the Personality Daemon essentially all of the 
information that is needed to start processing the error from the drive.  The Personality 
Daemon will do an initial diagnosis of the problem based on the SCSI sense code 
information that came back from the last TSD interaction with the drive.  It may use the 
SCSI pass-through support described below to interact with the drive, doing additional 
error analysis and/or error recovery operations. 
 
When the Personality Daemon has finished all of the processing that it wants to do for the 
reported error, in addition to its ability to return an error to the application, an option to 
the TSD_RESUME ioctl() allows the Personality Daemon to ask the TSD to retry the 
original operation. 
 
4.4.7 I/O Notification Processing 
The Personality Daemon needs the ability to tell the TSD to involve it just prior to, or just 
after, the next read or write SCSI command is issued to the drive. 
 
For example, if the application has opened the drive in fixed-block mode and not set the 
block size to be used, the tape driver should use the block size that the tape was written 
with for all subsequent read operations.  In order to determine what block size to use, the 
Personality Daemon will need to get involved just prior to sending the first SCSI read 
command to the drive. 
 
Some tape drives will not report that the cartridge has physically been marked read-only 
until some time after the first write operation when the data in the on-drive buffer is 
actually flushed to the tape.  The Personality Daemon for such a drive will arrange to get 
involved after the first write to a cartridge completes.  It can issue a command to force the 
on-drive buffer to tape, thereby checking the read-only status of the cartridge at a point 
where the Personality Daemon can still return an error code for application’s first write 
operation indicating that the cartridge is in fact read-only. 
 
This capability can also be used by the Personality Daemon to govern all access to the 
tape by the application if necessary.  After some types of serious I/O errors, further reads 
or writes to the drive must be disallowed.  The Personality Daemon can intercept all I/O 
operations before they happen and return an error to the application. 
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The TSD_RESUME ioctl() will include flags that tell the TSD to involve the Personality 
Daemon just prior to, or just after, the next read or write SCSI command. 
 
4.4.8 SCSI Passthrough Support 
When the Personality Daemon wants to send a SCSI command to the drive, it needs to 
provide to the TSD the following: 
 
• The bytes comprising SCSI command to be sent. 
• A pointer to a data buffer used for output to the drive or for input from the drive. 
• Flags, including whether the drive will expect to transfer data to or from the host. 
• The maximum number of seconds to wait for the command to complete. 
• A pointer to a buffer for the SCSI sense code information if the command fails. 
 
If the command was successful, the Personality Daemon can expect that the TSD has 
filled the data buffer with the results from the drive and has returned the number of valid 
bytes in that buffer.  If the command was not successful, the Personality Daemon can 
expect that the TSD has filled in the status reported by the HBA, the status reported by 
the drive (if any), and the SCSI sense code information (if any).  The HBA status will 
include errors such as “parity error on the bus” which will render the other status 
information invalid. 
 
The TSD_SEND ioctl() is the operation used by the Personality Daemon to send SCSI 
commands to the drive.  With one exception, that ioctl() will not return to the Personality 
Daemon until the SCSI command has either successfully completed, the command has 
failed and error status has been obtained, or the command has timed out. 
 
In order to support operations such as the ability of an application to continue processing 
while a tape rewind is in progress, the flags field of the TSD_SEND ioctl() will tell the 
TSD whether to wait for the SCSI command to finish or to return to the Personality 
Daemon immediately.  The Personality Daemon can then use the TSD_RESUME ioctl() 
to allow the application to continue processing. 
 
If an application is resumed while a long-running operation is in progress, the Personality 
Daemon is responsible for managing the application’s access to the drive.  For example, 
it can use the flags on the TSD_RESUME ioctl() to intercept all I/O operations from the 
application before they are sent to the drive, then use the TSD_SEND ioctl() to verify that 
the drive has finished the long-running operation before retrying the application’s I/O 
operation.  An alternative approach relies upon the fact that while the drive is busy 
rewinding, it will report a “busy” status.  All I/O operations that the application issues 
will generate an “error” that will then involve the Personality Daemon.  In either case of 
the Personality Daemon gaining control, it should probably just sleep for a while and then 
retry the operation. 
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4.4.9 Block Size Control 
The Personality Daemon needs to be able to control the size of the read and write 
operations that the TSD is passing from the application to the drive.  The 
TSD_BLOCKSIZE ioctl() tells the TSD the minimum and maximum block sizes that the 
drive can accept, and if the drive is operating in fixed-block mode, the current block size 
to use.  This information may change during an application’s use of a drive as a result of 
the application asking to change the block size being used for fixed-block mode access. 
 
4.4.10 Stopping In-Progress Operations 
The Personality Daemon needs the ability to abort a long-running operation that might be 
in progress on the drive.  The TSD_ABORT ioctl() asks the TSD to do just that.  Under 
certain circumstances, the Personality Daemon needs to be able to get control of the drive 
again after issuing long-running operations such as a rewind. 
 
4.4.11 Personality Interface Summary 
SIGUSR1 – Signal when the TSD needs help from the Personality Daemon 
TSD_INIT – Initialize the Personality Interface 
TSD_QUERY – Show the reason the Personality Daemon needs to get involved 
TSD_COPYIN – Copy the application’s ioctl() info into the Personality Daemon 
TSD_COPYOUT – Copy the Personality Daemon’s response to the application’s ioctl() 
TSD_SEND – Pass a SCSI command through the TSD to the drive 
TSD_RESUME – Resume the application or retry the operation that failed 
TSD_BLOCKSIZE – Set the allowable block sizes for read() and write() calls 
TSD_ABORT – Ask the TSD to abort any in-progress operations with the drive 
 
4.5 Example: Processing A Drive Exception 
A critical design issue in the new architecture is how to handle errors reported by the 
drive.  The tools that the Personality Daemon has available to it to handle drive errors 
have already been described, but walking through the sequence of events in a 
representative example would be illustrative. 
 
Assume that the application is reading data from the drive and the drive runs into a media 
defect that has obliterated some of the data. 
 
1. For initial state we assume that the Personality Daemon is sleeping waiting for a 

Personality Interface signal that the Tape Support Daemon (TSD) needs help.  We 
also assume that the application has issued a read() system call and is blocked waiting 
for the results. 

 
2. The TSD gets the read request from the application and issues a “read” SCSI 

command to the drive.  The drive encounters a problem and responds to the host with 
a “check condition” (a SCSI message indicating a problem with the command). 

 
3. The TSD then uses a “request sense” SCSI command to get more information from 

the drive on what type of error happened and uses the Personality Interface to signal 
the Personality Daemon that something needs attention. 
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4. The Personality Daemon uses the Personality Interface to get the sense code 

information that the drive returned as well as the current status of the application and 
any other context information it needs such as block counts, operation counts, etc. 

 
5. Based on the sense code information, the Personality Daemon decides to run some 

diagnostics on the drive.  It builds a SCSI command block for the command it wants 
to send to the drive and calls into the TSD.  The Personality Daemon is then blocked 
waiting for the call to return from the TSD. 

 
6. The TSD sends the SCSI command block to the drive and either collects any resulting 

output or uses a “request sense” command to collect any error (sense) codes.  It 
allows the call from the Personality Daemon to return with whatever it has collected. 

 
7. The Personality Daemon analyses the results from the TSD and decides that it should 

log the error, fail the operation, and return an error to the application.  The error is 
logged via the normal SYSLOG facility from the Personality Daemon. 

 
8. The Personality Daemon calls into the TSD asking for the application to be resumed 

with an “EIO” error code being the return value from the read() system call. 
 
9. The call returns from the TSD into the Personality Daemon and it goes back to sleep 

waiting for the next signal from the TSD that something needs to be done. 
 
Common variations on the above sequence would include the Personality Daemon 
issuing more diagnostic and/or error recovery SCSI commands to the drive, doing more 
detailed error logging or using different modes of notification (e.g. pager or email), 
interacting with any system management framework that might be desirable, and possibly 
retrying the operation that failed. 
 
5 Future Work 
It is possible to write a range of Personality Daemons for a given operating system 
providing different legacy-based semantics for the same drive. Since a Personality 
Daemon can be stopped and another one started for a given drive, it is possible for a 
Media Management System such as IEEE 1244 to offer different sets of semantics to an 
application and let the application choose at run-time which it wants to use. 
 
6 Conclusions 
Under this new architecture, the operating system vendor's job is to write a Tape Support 
Driver that can control their HBA, interact gracefully with the rest of their kernel, and 
implement the Personality Interface.  Having done so, then they benefit from the 
available Personality Daemons.  The drive vendor's job (or whoever provides a 
Personality Daemon) is to accurately control the drive and to conform to the Personality 
Interface.  Having done so, then their drive will be supported on a wide range of 
operating systems. 


