
 393

Jiro Storage Management

_

Bruce K. Haddon, Ph.D.
The Java Centers, Sun Microsystems, Inc.

500 Eldorado Boulevard, UBRM01
Broomfield, CO 80021-3400, U.S.A.

Bruce.Haddon@sun.com
tel +1-303-272-8418
fax +1-303-272-5011

William H. Connor, Ph.D.
Network Storage, Sun Microsystems, Inc.
2990 Center Green Court South, UBOL03

Boulder, CO 80803-2216, U.S.A.
William.Connor@sun.com

tel +1-303-272-8414
fax +1-303-272-8427

Abstract
The Jiro™ technology provides an environment intended for the implementation of
storage management solutions. A product based on Jiro technology is an implementation
based on the Federated Management Architecture (FMA) Specification, which describes
extensions to the Java language environment. The FMA initiative addresses system
management, particularly storage management. In addition to the platform, the FMA
Specification defines a component model, i.e., the FederatedBeans model, and a set of
services. The Jiro technology is effectively the application of this model to the design and
implementation of storage management solutions.

The FMA assumes a three-tier architecture for the design of storage management
applications: the first or top tier is the client/presentation layer, or interaction layer with
user’s or systems acting as a client of the storage management application; the third or
lowest tier represents the storage and related resources being managed; and the second or
middle tier is that containing the logic (the programs) that define and effect the
management actions required by the user upon the storage resources. It is the middle tier
in which the FederatedBeans components are deployed.

FederatedBeans components are each implementations of the concept of a Jini service.
Each FederatedBeans component is an embodiment of some function that provides a
service to other entities in the second and first tier. The success of the initiative
surrounding the Jiro technology will be availability of a wide variety of FederatedBeans
components from different suppliers, each providing significant functionality for the
construction of storage management applications. The FMA platform supports automated
communication between networked Java Virtual Machines, thus promoting applications
that are federations of the constituent components.

Within FMA, the resources being managed are expected to conform to the Common
Information Model (CIM), although provision is made for the management of resources
by other means. The CIM provides modeling for all common storage system elements.

1 Introduction
Today's sciences and businesses depend on information a vast mountain of information.
As the demand for storage to hold all of this continues to grow at phenomenal rates, the
management challenges are growing too [1]. In fact, the diversity of installed storage

 394

systems and the wide distribution of those systems are on the verge of creating a crisis in
management, sometimes described as a “nightmare.”

The amount of management that needs to be done is also increasing [2]. The cost of
management is one of the significant areas of rising cost in using computer systems.
Since management is a continuing cost, it has a large influence on the assessment of
“return on investment” (ROI). All aspects of a system need management: software, proc-
essors, boards, options, network connections, storage devices and networks, modems,
printers, and all the other pieces that are put together to make a “system.” Management,
in this context, includes installation, configuration, asset deployment and inventory,
performance monitoring, error and failure detection, upgrade and replacement; as well as
more difficult things like capacity planning, service level contracts, load balancing, all of
which may be controlled by policy decisions made by the owning organization.

Because storage and storage subsystems are amongst the most complex parts of the
management problem, as the storage systems often including processors, switches, and
storage area networks, effective solutions to storage management problems are urgently
required. Thus, the initiative surrounding the Jiro technology focuses its attention on
storage management.

Developers lack standard middleware infrastructures for efficiently building capable
solutions for heterogeneous management tools, applications, and services. Further
complicating this situation, to provide storage solutions, developers must port their
products to multiple proprietary platforms, a costly, time consuming process. The answer
is based on building with software components designed for a platform specific to the
purpose, being an open management platform based on Java [3] and Jini [4] technologies.

1.1 The Jiro Technology Solution
The need for the Jiro technology is acute due to a storage landscape dominated by point
products that do not interoperate, creating large islands of information that are difficult to
integrate, complex to manage, or that actually prohibit cross-platform information
management. The intent of the Jiro technology is to bring the benefits of community
source processes to the development of storage management solutions. This platform,
together with basic services and a component model, brings an order to the creation of the
software that can automate or add intelligence to all management functions. The elements
and their relationship are defined in the Federated Management Architecture (FMA) [5].

The history of the Jiro technology activities starts with a proposal made to develop a Java
language extension designed to make it easier for the developer to create new storage
management applications, enable faster design cycles, lower development costs, and offer
a wider market potential. It is further intended to alleviate the need to conform to multiple
API’s and interface specifications. Following the requirements of the Java Community
ProcessSM (JCP) [6], a call for experts (CAFE) was issued, followed by the formation of
the Expert Group, a work group made up of representatives from a number of interested
industry leaders. The Group was convened under the terms of the Process, and the FMA
Specification is the result of the work of that Group.

 395

1.2 The High Level Architecture
Three areas of specialization can be seen in the management problem:
• the representation of the resources to be managed, including the management data

they contain, any behavior they exhibit, and a means of understanding their topology
and other interrelationships;

• the interaction with the wishes of the user or users of these resources, including all
means of invoking and scheduling management activities; and,

• the computational logic that is needed in order to translate the wishes of the users into
the desired actions on, or using, the resources, or, as importantly, the translation of
events taking place within the collection of resources into the presentation of useful
analyses to a representative of the users.

In the diagram below (Figure 1), the third tier in reality comprises software objects, some
representing the actual hardware and software being managed (solid rectangles), and
some representing the relationships between them (striped rectangles). Every entity in the
domain being managed, whether hardware (e.g., a disk), or software (e.g., a database
manager), is modeled by a representative object. This view of management sited beside
the elements of the data stack has been proposed earlier [7].

These are the requirements that, in other enterprise, business, and Internet applications,
have led to the adoption of what are now known as “three tier” architectures. A pictorial
depiction of the three-tier architecture as it applies to management is shown above.

1.3 The resource/information tier
In storage management, the resource/information tier contains both the physical hardware
used to create the storage resources: the disks, tapes, disk subsystems, automated
libraryies, channel interconnects, storage area networks, and so on, as well as the logical
elements: the storage extents upon the media, logical disks, volumes and virtual volumes,
file systems, databases, and so on. The management information contained in this tier
includes the attributes of each of the pieces of storage, such as its size, capacity (which
may be larger or smaller than size, depending upon reserved areas of the media, and
compression, etc.), speed, access time, geometry, and a large number of other attributes.

Storage Hardware

Application

Fabric

Volume Manager

O/S

Backup

Remote Copy

Filesystem

Database

Client/
Presentation

Logic Resource/
Information

Figure 1

 396

Not so obviously, the management information also includes the relationships between
the resources. These relationships include, for example, how the resources are connected
to each other or the host, to hubs and switches involved in creating network segments,
and which media are involved in the realization of a file system. The relationships are not
only important to the management software for monitoring the behavior of those
resources, but often are the elements most directly being managed. For example, if a
particular interface card fails, it is be desirable that the monitoring management software
be able to reroute traffic via another interface, should there be another interface available.

This third tier must be considered “active.” Therefore, the representation of the resources
must be able to define behaviors of the resources in a variety of ways. An example is the
formatting of a disk a common behavior, but perhaps implemented differently on
different manufacturer’s disks. The definition of these behaviors, taken together with the
attributes of the resources and the information implied by the relationships between them,
is the management interface of the resources, and hence of the resource/information tier.

In the three-tier model, the third tier represents the “state” of the system, in this case, the
resources of the management system. In the case of storage resources, the state is the sum
of the management data and relationship information.

There is a very critical relationship between the resources being managed and the
application software. Undoubtedly, the whole object of storage management is to enable
and optimize the delivery of data to those applications. Application data usually go
through a number of paths and transformations in moving from “raw” bits on the storage
media, to the form in which they are presented to the application and even further
transformations in order to present information to users. Therefore, “behind” the resource
representations as seen by the management logic, there are layers of hardware and soft-
ware responsible for these data deliveries and transformations. Figure 1 also shows this.

1.4 The client/console
In the first diagram, the client/console tier has been represented by a system administrator
or installation manger sitting, literally, at a console. This depiction is only meant to be
representative. Certainly one of the objectives of enterprise-class management systems is
to bring relevant monitoring information to some central place, where the “big picture”
may be evaluated effectively and efficiently.

For an automated management system, it is not sufficient that operations be initiated from
a console. It is necessary to be able to initiate actions from CLI’s, scripts, periodic
schedulers, and components of the management system itself. This latter facility is
required so that when decisions are programmed into the management system, those
decisions may be used to initiate appropriate actions, without the real-time intervention of
an administrator (which is the definition of “automated management”).

1.5 The management logic tier
This tier is intended to contain the actual programs that are the applications implementing
the logic needed to perform management decisions and management functions.

 397

Such applications typically contain a number of modules, architectural “sub-
applications,” that deal with various aspects of the overall tasks to be performed, by
doing an individual task, or computing a specific result, and so on. Component models,
based on object-oriented methodologies, and usually based on specific object implemen-
tations, are a way of describing these modules. The FMA specifically defines such a
component model, i.e., FederatedBeans.

All component models, in essence, define a “platform” and a set of “services” in addition
to the component model itself. A number of other things also normally surround the
successful use of the component model for real implementations, which includes some or
all of an interface specification language, an intercommunication protocol, a deployment
methodology, and various tools to support the creation and use of the component model,
which together constitute a software development kit.

However, more than each of those, a successful component model is one that leads and
encourages implementations of actual, real, useful components, that is, a library of
components, which implementers may use without further development.

The largest development leverage lies in being able to obtain significant components out
of which an application may be built for appropriate amounts of money, while capping
the time and effort required to learn how to use and to support them (when deployed).
The other effect is that the components may be common to more than one application.
Thus a component has only to be deployed once, the footprint costs are paid once, and
many applications can share the use of the component. Such components take on the
nature of additional services, but without requiring a new definition of the core.

So, by analogy, once a platform based on Jiro technology is available, then the objective
of on-going activities is building useful applications using components, and, as experi-
ence is gained, determining which of those components are candidates for libraries of re-
usable components. Such candidates will be evaluated, and perhaps re-engineered, for
standardization, interchangeability, substitutability, etc. Attention and growth in this area
will eventually lead to a classification of components, and a catalog from which deve-
lopers will be easily able to choose the components most suited to their current needs.

1.6 Generation of management applications
The usefulness of the three-tier architecture is related to the decoupling that occurs
between the tiers. For the three-tier approach to be valid, the degree of decoupling
between the tiers should, in general, be greater than the decoupling introduced by the
problem or task decomposition used within the tiers.

The most usual method to present one tier to another is through API’s, and most
particularly API’s that are wrappers for protocols. From the point of view of a lower tier
presenting itself to an upper tier in the form of a particular API, the requirements of that
API define a framework. That is, it requires that certain conventions be observed so that
functions may be called, results passed back, call-backs created if needed, and so on.

 398

Provided that these API’s or protocols exist, the internal structure of each tier may be
driven by the needs and requirements of that tier. Consequently, the overall philosophy of
the Jiro technology has been to use the “best of breed” examples for each tier. The FMA
proposes the technology for the second tier, and encourages support of the DMTF CIM
for the third tier. Work is continuing on defining interfaces to the first tier.

1.7 Requirements of the Third Tier
There are many requirements, in detail, for this tier. The following may be considered
just the major requirements:
• a software-accessible representation of the each of the actual physical resources that

are part of a computing system, including all the usual asset information (e.g.,
manufacturer, type, size, etc.);

• a software-accessible representation of the system resources made available by the
existence of these physical resources (e.g., the storage extent actually made available
by the installation of a particular storage device);

• a representation of the relationships between resources of both types (e.g., this disk is
part of this RAID subsystem, this file system is implemented on this stripe of these
disks), and the ability to update these as the system evolves, or fails;

• an ability to recognize that various resources are implementations of the same class of
resource, as well as being able to identify and take advantage of specific differences
(e.g., a laser printer is a (generic) printer, but is capable of duplex operation);

• a reasonable ability to find out what resources are available (e.g., this particular host
has a tape drive, whereas some other does not); and,

• agreement on the names and meaning of various critical attributes and behaviors, with
support for being able to find the resources represented by means of queries based on
those attributes.

1.8 The CIM Specification
The Common Information Model (CIM) Specification [8] is a description of an object
model, and of a language in which to describe the classes and the instances of objects of
that model. This particular object model has, as do many other object models, rules of
inheritance and the overriding of methods and properties. In particular, the inheritance is
single inheritance, and overriding is explicit.

Nominally, there is only one kind of object in the CIM, but it is more instructive to think
in terms of two principal kinds of object. There are those objects that represent the actual
entities being managed, which are those needed to satisfy the requirements above; and,
those objects that represent the relationships between those entities (providing a way to
satisfy other requirements, above). These objects are called associations. For example, a
network hub and a cable of the network are each entities. The cable will have a
relationship to the hub, which can be described as “connects to.” The “connects to” object
contains a reference to the cable as being the source (“antecedent”) of the relationship,
containing also a reference to the hub as being the target (the “dependent”) of the
relationship. Of course, associations may be one-to-one, one-to-many, many-to-one, or
many-to-many.

 399

The diagram above (Figure 2) shows a typical model of a hard disk drive, in its own
packaging. It shows the both physical and logical elements, and the relationships between
them, these being the associations illustrated as labeled lines. It should be understood that
each of the associations in this diagram is itself a CIM object, and thus may be queried
and interrogated in the same manner as the objects representing the system elements.

1.9 The common XML protocol (WBEM)
While there is considerable value to the concept of implementation independence when
defining a common information model, a plethora of implementations is not something
with which developers of management implementations wish to cope. There is, however,
a middle ground permitting Object Manager (OM) implementers freedom, but also
allowing use by applications without having to re-implement their code for interacting
with the OM. This middle ground is based on having a common protocol to be used to
communicate between the application and the Object Managers.

The DMTF has standardized a protocol for this purpose. The content of the protocol is
based on XML [9], and the use of HTTP as a transport mechanism is also defined [10].
While it is possible to use the XML “documents” directly to invoke actions upon the OM,
the use of the HTTP binding allows the XML payloads to be transmitted across the
Internet, and, where permitted, through firewalls. The XML format provides also for
conveying results of method invocations on the Object Manager back to the OM client.

The combination of a CIM Object Manager implementation with the HTTP-transported
XML protocol packet for OM operations, is “Web-Based Enterprise Management”
(WBEM) [11], which is the platform- and language-independent technology for using
CIM and CIM Object Managers. The diagram below (Figure 3) shows the WBEM model
for the use of a CIM OM, where the communication between a client and the OM is by
means of the defined XML-based protocol, and the CIM OM obtains information about
the managed objects by means of privately defined code elements called “providers.”

SoftwareElement

DiskDrive StorageExtent

PhysicalMediaPhysicalPackage

Realizes Realizes

PackagedComponent

DeviceSoftware

MediaPresent
SCSI
Interface

Figure 2

 400

The existence of a CIM Object Manager implemented using the Java language is an
important development. It means there can be a CIM OM available everywhere that the
Jiro technology is available, with no further investment in the development of the OM.
This is undoubtedly a significant advantage when developing management applications.

1.10 The requirements for the Client/Console Tier
As mentioned above, this tier is not specifically a target of the current Jiro technology
activities. However, for some completeness, the requirements of this tier are outlined
here, with some description of the considerations. The requirements include at least:
• the ability to interact with users, either in terms of graphical user interfaces, CLI’s,

and perhaps more than one means of scripting the interaction;
• support for remote communications when the user must be able to access the

management system from other than a fixed location. Most newer management
systems contemplate the use of the Internet as a means of access (see next item);

• provision for gathering information to enable authentication of the user, in order to be
able to use the security features provided by the second and third tier;

• the possibility of supporting interfaces to existing management solutions, since there
is already a great investment in these. The first tier could provide a good proportion
of the bridging between such legacies and newer Jiro technology-based solutions;

• effective means of navigation for each of the user interfaces supported. Most
computing systems, particularly those supporting storage area networks (SAN’s) and
similar large and complex subsystems, require means of showing them that can be
mapped to and from the model representations that make sense to the user;

• presentation technologies, either screen or print based, to show the navigation and
other views, upon demand; and,

• the capability of launching management applications into the appropriate environ-
ments, with, preferably, the ability to monitor the status of those applications.

CIM Object Manager

SNMP
Provider

CIM
Repository

OM clients
(e.g., FederatedBeans)

SNMP
Manager

Providers
and
managed
system
elements

Figure 3

 401

There exist many “console” and client-side solutions, offered as complete products by
many companies. In addition to the actual first tier functionality, these same companies
often offer modules that provide second and third level functionality. These product
offerings are sometimes embedded in other services, including monitoring, notification
and response management, and sometimes even “first response” field engineering.

All of the above services remain relevant in a Jiro technology-based system. These
systems offer the promise of even more capable applications, and hence even more
desirable value-added services.

2 The Management Logic Tier
This is the tier specifically addressed by the FMA Specification. The Specification
defines a component model for the development of management applications (programs
that implement storage management). Because the Specification contains all the needed
detail about this tier, only a brief overview is offered here.

2.1 Requirements for this tier
The question is often asked, given that the third tier contains so much capability, why is
there a need for the second or “logic” tier. The requirements for the second tier include at
least the following, each going beyond what is (conveniently) possible in the third tier:
• a component model (more detail below), in order to be able to create a library of

solutions to be used as construction elements for new management applications;
• support for distributed applications, in order to support scalability (e.g., use of more

than one processor), efficiency (placing logic near to its source of information), enter-
prise capability (separation of management environments along organizational lines),
and redundancy (to support applications utilizing high availability capabilities);

• deployment of components in standard ways, so that packaging is done once, the
deployment problem needs not be re-solved for each release of each application and
for each implementation of the second tier;

• basic services, that are needed by all applications, inclusive of component location
and loading, logging, scheduling, etc.;

• control arbitration, whereby a component can claim sole access to a second or third
tier resource, and then act as a “gatekeeper” for allowing appropriate access (e.g., a
classic multiple reader, single writer regime);

• an ability to ensure consistency across resources, even when those resources are in
different environments (i.e., namespaces), such as a remote disk mirror;

• the ability to compute logic across resources, in a similar way, such as switching
between remote disk mirrors;

• a facility to share logic implementations between clients, by allowing multiple clients
to re-use (or multi-thread, if appropriate) the same logic components;

• the ability to compute logic across time, by accumulating historical information about
present and past states of the resource/information tier, and performing appropriate
(e.g., statistical) analyses; and,

• the definition of higher level of management abstractions, with appropriate interfaces
(e.g., a charge-by-usage service of a virtual disk system across the Internet).

 402

2.2 Jiro Technology as the second tier
The Federated Management Architecture has been specifically proposed as a means of
structuring the second tier. It addresses specifically the following characteristics:
• the ability to dynamically and easily introduce new behavior while the system is in

operation;
• the necessary locking to support control arbitration (as described above);
• support for wide-spread consistency across management applications;
• transactions across arbitrary parts of the management state;
• the possibility of a single packaging, that support “talks to” relationships between

components written by different authors, and a universal “runs on” relationship to the
Jiro technology (thus fostering neutrality with respect to physical platforms);

• fine-grained security, in that the security context is carried and made available to all
components in the distributed system;

• source available under community agreements;
• provision for the support for higher availability solutions; together with,
• support for adequate scalability of management solutions; and,
• versioning, to provide a methodology for not having to update an entire universe of

solutions at one instant.

The resource/information layer (3rd tier) models that which is being managed (systems,
storage, networks, etc.). The model includes all the manageable attributes and behavior of
the resource. These attributes and behaviors of the model are “static” in the sense that
they are in one-to-one correspondence with the attributes and behaviors of the real-world
resource being managed. These attributes and behaviors of the model should not be
changed (even if the underlying implementation technology would permit it) to represent
anything other than the attributes and behaviors of the real-world resource. It is not
expected that the “external logic” of a managed resource should change in any significant
way during its lifetime. The resource/information layer is not static in the sense of being
unchanging resources are expected to come and go, being replaced, upgraded, and
extended, in the normal course of the system lifecycle.

The logic layer (2nd tier) reflects the pattern or structure of the decisions that need to be
made in order to manage the resources. These decisions will be made based on
information that is corralled and collated from the data present in the information model.
Since management is undertaken in order to meet (organizational) goals, the nature of the
decisions, and the behavior based on those decisions, needs to change as the goals change
or evolve. Thus, the objects (or components) of the logic layer need to be replaceable
with new versions, which, behind the same API, implement new behaviors. The logic
layer also needs to be “dynamic” in that an object or component may be introduced into
an execution environment where none has existed before, thus defining new behavior.

2.3 The FMA Specification
The fundamental notion supported by the FMA is that of components, where it is
intended that these be the unit of assembly and installation of management logic. The
component model consists of a set of naming and construction rules; with these
components being termed “FederatedBeans.” FederatedBeans components are based on

 403

the Java object model, and conform to the set/get conventions of JavaBeans™ [12]. To
support assembly, it must be possible to discover ways in which management

components can be connected to one another in both anticipated and unanticipated ways.
The components have to find the appropriate interface offered by other components in
order to create a coherent application. As illustrated in the diagram above (Figure 4), the
connections between the FederatedBeans components may be an arbitrary topology (not
necessarily hierarchical), and a given service might be used both directly and indirectly.
In many programming environments, the choice of interface is made at program writing
time. An effective component model will allow these to be found at installation and/or
execution time. A component may present different interfaces for different purposes, or
even just to provide the same functionality in more convenient forms.

Because the FMA platform supports a distributed programming environment, most fre-
quently it is not the actual interface that is the point of connection between components.
The point of connection is a proxy [13] for that interface. The proxy is always local to the
using component (i.e., present in the same Java Virtual Machine (JVM™) [14]), and the
component (or object) for which the proxy is acting may be in the same virtual machine,
or other virtual machine accessible within the domain of the application.

Deployment: It must be possible to deploy, or install, components in a standard manner
on a running system. Deployment includes installing class files, resources, components,
and objects.

Controllers: An important objective of the Jiro technology is providing the infrastructure
to support control arbitration. Controllers attempt to control resources through
components. Resources, therefore, may be subject Jiro technology providing the access
mechanism to support control arbitration. The primitive required for arbitration is called
the controller aspect of the management services model, and this in turn must support
durable (long term) exclusive locking of resources.

Figure 4

 404

Transactions: Most distributed component models provide some form of transaction
support to aid in protecting the integrity of the resource/information layer [15]. The
transactions provided by the Jiro technology are focused on supporting large numbers of
heterogeneous resources, rather than a single large resource (e.g., a database), and not
necessarily large numbers of clients. A FederatedBeans component needs a transaction
aspect to participate in a transaction.

Security: A management environment must support validating clients for actions that
they attempt to take, since such actions may have far-reaching results. The basic model is
that of the Java model [16], but with provision made for ensuring that necessary security
information is transmitted between Java machines as needed. Access to this information
requires a security aspect.

Logical Threads: As the FMA is intended to support active, autonomous, management
applications, components must be able to support concurrent and re-entrant conditions
with respect to threads. Management applications are made of distributed components, so
the FMA introduces the concept of a logical thread that spans processes, and in particular,
is capable of spanning execution threads in different virtual machines [17]. Thus,
component behavior with respect to threads may be specified with respect to logical
threads instead of just the provided Java language threads.

2.4 The Use of Jini Technology
Jini technology is used within the Jiro technology for a number of purposes. It is used to
discover federated Java virtual machines (termed stations), which are the active
component of the Jiro technology, and supports addressing domains within a federation
of stations, as the transaction manager (including leases), and for a variety of lookup
operations, including discovery of CIM Object Managers, and various other components,
interfaces, and services running on those platforms.

2.5 Other Basic Services
The basic services of the FMA include those provided by the Jini environment, plus
logging, scheduling [18], and so on. Services are regarded as “basic” within the Jiro
technology if they are assumed present on every platform. The criterion for regarding a
particular service as being basic is usually the need for it to be pervasively used
throughout management applications.

“Services” that are not pervasive may be supplied by components, and may be discovered
(see “discovery”, as discussed under “The Use of Jini Technology” above) when needed.

2.6 The use of components for filling out services and functionality
As hinted at in the previous paragraph, a significant use of FederatedBeans components is
providing additional functionality and services on a Jiro technology platform, without
need to define an extension to that platform. As the use of this platform matures, it is ex-
pected there will be a large number of service components supplied by interested parties.

 405

Should the use of any of those services become so frequent as to fulfill the “pervasive”
criterion, consideration could be given at that time to re-awakening the community
process. to modify the FMA Specification, defining an extension to the architecture.

2.7 Five stakeholders in the value proposition
Five broad classes of “stakeholder” in the Jiro technology may be identified. A
“stakeholder” is a person or user that has something to gain, or lose, by use of the
technology. In the following sections, each of these stakeholders is identified, and their
“stake” described.

Stakeholder the Resource Vendor
The resource vendor is the manufacturer of such things as disks, tape drives, storage
subsystems, software products, and so on.

Hardware and software vendors offering products in the range of a few tens of dollars to
thousands of dollars (US) face strong competitive pressures with thin profit margins.
Vendors in this space typically produce 105 to 107 devices per year at very low cost and
profit margin. Example of device retail costs (at this time) include:

Device Market Price
CD-ROM (40x) $29
8 GB Tape Drive $59
10 GB Disk Drive $121
Celeron Computer Free or $399

Products in this price range are extremely price sensitive as consumers often care little
about brand name or quality and will often purchase the lowest price product. Any
additional cost to support manageability is unacceptable. Vendors in this arena can reduce
distribution costs by providing any software (on floppies or CD’s) already bundled in the
box, their support software with management application vendors software, or by Web
download only. Vendors can participate in the management arena by simply developing a
CIM provider for their device, a once-only development cost.

Vendors producing products on the low-end of cost and profit will benefit from Jiro
technology in several ways:
• the vendor can play in the CIM/WBEM world at a very low initial cost and also be

managed in the Jiro technology-based world as well. In Microsoft Windows, the OS
where most commodity hardware is installed, the vendor develops a CIM provider. It
is then supported in the Microsoft Management Console (MMC). This first step
allows the device to be managed by exposing all the device’s “knobs.” This allows
the device to be managed at a higher level by intelligent FederatedBeans components
in concert with other devices and services;

• a large demographic of the customer population needs manageable devices and will
be swayed in their purchasing decision by the device’s integration with the FMA. The
cost of developing the support can be amortized over a large number of devices and
the cost of manufacturing the software for inclusion with each device is low;

• in a two-step development lifecycle, the vendor can “get into the game” with the low
entry cost of developing the CIM provider, perhaps giving away the management

 406

software, and later developing the intelligent FederatedBeans components that
manage the device in the most efficient and effective manner possible; and,

• for very little investment, the vendor can provide the kind of functionality and
manageability that was previously available in devices costing 10× - 100× as much by
leveraging the Jiro technology infrastructure.

The benefits for the high-end vendor are very similar, but with the added benefit of the
vendor probably wanting to, and being able, to provide a FederatedBeans solution. This
may provide special control or understanding of the larger subsystem (including, perhaps,
a “contact the support center” function that implements a 24 × 7 maintenance policy that
requires no intervention by the customer). The advantages are:
• the CIM technique allows the description of sub-systems of arbitrary complexity;
• the FederatedBeans components approach allows a vendor to supply system-specific

components that may be also utilized in other management products; the manufac-
turer does not have to develop a “complete” management system in order to enable
the one or two essential features needed for the added value of their product; and,

• The FederatedBeans approach can ensure that the sub-system appears on management
consoles in a way that the manufacturer wishes (together with that manufacturer’s
own appearance and message).

Stakeholder the Component Vendor
Much of the success of Jiro technology will be in the existence of an active market in Jiro
components, i.e., software components that can be used as building blocks in the creation
of storage management applications. The leverage of this approach is that developers of
management applications can recast their work in terms of integration of components,
rather than the design, development and testing of every component needed to make a
complete application.

In many other parts of the software industry, software components have become a very
successful, and necessary, part. Software components can take the form of source and
binary libraries, dynamically loadable libraries, shared objects, DCOM [19] components,
foundation component sets, as ActiveX components and Java packages and applets.

There are two approaches to the use of components: by those wishing to provide
specialized components, such as those described above, where specific and dedicated
functionality is provided as a component behind standard interfaces, and by those
providing general functionality in components with interfaces that extend the range and
capability of the entire system.

Examples of this latter type of component could include:
• a health monitor, that collects the values on certain attributes, and delivers warnings

when any of these values move outside predetermined limits;
• directory and lookup services, powered by various difference sources of information,

e.g., DNS, or by different access standards, e.g., LDAP;
• an asset manager, that integrates what is installed (visible to the component) with an

enterprise inventory system;

 407

• event handlers, that do correlation, in order to deduce the root cause of an event
storm, e.g., failure events from many routers about not being able to reach certain
hosts may all be due to a power failure on just one segment of a network;

• time series analysis, given various observations of some measure at known time
intervals, so that future values may be predicted;

• virtual volume tuner, that uses performance statistics from the virtual volumes to
adjust the behavior of real disks and their interconnections to improve the
performance of the virtual volumes;

• a database configurator, that given a set of parameters about the intended use of a
database, can configure virtual volumes, table layouts, and other controls, in order to
either enable the intended database use, or to optimize behavior;

• a capacity planner, which not only can assess what is installed, but may also be able
to reach product information on manufacturer’s web sites, so that an upgrade plan can
be derived by playing “what if”;

• a storage area network tool, that analyzes a topography of a traffic pattern, and
advises on the addition or movement of existing network access points in order to
balance use of the network segments; and so on.

The “value” of components may be in their intrinsic value, and thus be traded and sold
“off the shelf”, like many other applications, or in the value that they enable in other
equipment (so-called “drag”), where the software is essentially given away, in order to
improve sales of the equipment.

Stakeholder the Management Application Vendor
For those developing management application, the advantages are:
• that FMA enables developers to build applications with advanced, automated

functions that realize the goal of managing storage or storage networks, where many
of those automated functions may be obtained “off the shelf”;

• that FMA provides the FederatedBeans model that enables interoperability among
diverse applications, services, and devices, and is also an aid in the architecture and
design phases of the application;

• relieving the application developer of the necessity to design and implement the
means of accessing the management information of devices, and for these to be easily
added, removed, or provisioned for service; and,

• reducing downtime by enabling automatic updates to applications or services.

If a new application or device is Jiro technology-enabled and a management component
vendor has a FederatedBeans product implemented, the new application or device will be
immediately capable of being incorporated into the management environment. For most
devices, being WBEM-enabled will be sufficient for Jiro enablement. From the
customer’s point of view, the new equipment will be capable of being managed (at a
higher rather than lower level) and reported a standard manner. A Jiro-enabled disk array,
for example, would be able to report capacity, which could then be used by applications
such as capacity planners. The fact that the disk array is there and has been recognized
means that volume managers can take advantage of it automatically rather than having
to be told its whereabouts.

 408

Stakeholder the Information / Data Application Vendor
Information and data application vendors can improve the performance of their
applications by being able to interact directly with the management components of the
data storage system. For example, if a the data application is a backup suite, the
implementation of that suite could:
• use the management system to discover which files need backing up, without having

to directly use the file system interfaces; this reduces porting costs in development;
• use a propriety interface to set up the backup application (it would be possible to

develop a CIM interface, but an intermediate solution would be to use existing CLI’s
via a specially developed facade);

• similarly, proprietary interfaces might be used to collect information, say from a log
file, which could be used as key for the generation of events that a FederatedBeans
component could use to report upon the status of the backup; and,

• since the CIM model includes objects for the management of tape libraries, the
management of the tape pools could be integrated with the backup application to
ensure correct rotation of tapes, and the observation of the correct policy rules for the
keeping of tapes in the rotation.

Stakeholder the Customer
The CIO: the Jiro technology, the FederatedBeans components, and the basic services
define a baseline against which management and data applications can be measured. The
CIO is assured that an Jiro-enabled product meets basic requirements for interoperability
with other applications. Further certainty may be obtained by insisting on management
applications that have been Jiro certified, and by ensuring that the producer has
participated in interoperability tests with other products.

Over a period, by invoking careful acquisition policies, a CIO and the IT Department
may build a more fully integrated set of management capabilities by looking for Jiro-
compliant applications.

The System Administrator: From the point of view of the system administrator, the
acquisition of Jiro-based applications, and value-based FederatedBeans components:
• minimizes barriers for providing management of many hardware/OS platforms;

eliminates or minimizes platform porting, enables solution developers to support
platforms that may have a lower priority in the company’s target market;

• provides broad device support: any device with a WBEM provider or supporting
SNMP can be managed through a FederatedBeans component; and the support of
private interfaces allows management of non-WBEM and non-SNMP devices;

• enables a finer application granularity: components allow users to pick and choose
Jiro-enabled applications and 3rd party FederatedBeans solutions rather than others;

• brings management capability from a storage-specific console or an enterprise
management console: The Jiro 3-tier architecture separates management logic from
user interface and avoids mandating particular user interface solutions.

• developing through component design and assembly allow the user to take more
ownership of policy and automation.

 409

3 Related Work
The following are possible choices, among others, to implement a second tier in a
management system:
• Enterprise JavaBeans™ (EJB™) [20] component architecture is designed to be the

most capable technology for second tier “business logic,” providing single threads of
logic execution that normally originate in the client tier, and transactions that are
usually with respect to a single third tier database. The FederatedBeans model is
suited to the creation of management solutions as it more naturally supports thread
concurrency, makes specific provision for the support of a CIM-based third tier; and
has the ability to support arbitrary transactions with respect to that third tier;

• WBEM, which is the preferred choice for the third tier, could also to provide an
object model and schema for the second tier. Further work would be required, as the
CIM Schema would have to be endowed with the appropriate new objects or
extensions. Even then, it would remain a “double technology” for implementation,
i.e., one technology for the definition of the objects, and another (platform dependent)
for the definition of methods. To be completely capable for utilization in the second
tier, WBEM would also need to be given a component model that addresses the same
issues as listed for the FederatedBeans model;

• CORBA [21] appears to be an appropriate choice, but has had limited use in the
implementation of management applications. Its success in business logic does not
argue for success in the management arena. CORBA objects are still platform-
specific, thus creating a “porting” problem, even though there are no impediments to
inter-platform communication.

It must be feasible to choose the first and second tiers independently. In order for there be
a choice, the second and third tier technologies must decoupled by an appropriate choice
of interfaces between the tiers. Jiro technology appears to be the appropriate choice.

4 Future Work
By the time this paper is published, a reference implementation of the Jiro technology,
implementing the FMA, should be publicly available. It is also intended that by that time
a number of the original Expert Group participants will have also applied the
FederatedBeans concept to the production of a useful number of components, that the
interoperability of these components will have been demonstrated, and their usefulness in
creating management solutions be in the course of evaluation.

As further FederatedBeans components are developed, some will be found pervasive
enough to be “basic” in the sense of the FMA Specification. At that time, the Expert
Group could reconvene to integrate candidates into revisions of the FMA Specification.

5 Conclusions
The development of an accepted and useful architecture for the building of management
applications marks an important turning point in the arena of storage management. The
FMA, and Jiro technology represent both merging and emerging developments making
further advance possible. The realization of this architecture in real products is the next
major objective.

 410

Thanks
The authors wish to thank, particularly, the members of the FMA Expert Group for the
efforts that went into creating, editing, and revising the FMA Specification. It is from this
foundation that the Jiro technology has developed into a viable storage management
solution. The authors also want to thank the session chair for the efforts he has marshaled,
including the anonymous reviewers, to correct and revise this paper. As always, any final
errors and omissions are the responsibility of the authors.

References
[1] Shiers, Jamie: “Massive-Scale Data Management using Standards-Based
Solutions,” Proc. 16th IEEE Symp. Mass Storage, San Diego, CA, IEEE Computer
Society Press (March, 1999).
[2] Coyne, R.A.; and Hulen, H.: “An Introduction to the Mass Storage System
Reference Model, Version 5,” Proc. 12th IEEE Symp. Mass Storage, Monterey, CA,
IEEE Computer Society Press (April, 1993).
[3] Gosling, James; Joy, Bill; and Steele, Guy: The Java™ Language Specification.
Addison-Wesley, Reading, Massachusetts. ISBN 0-201-63451-1 (1996)
[4] Edwards, W. Keith: Core Jini™. Prentice Hall PTR, Upper Saddle River, New
Jersey. ISBN 0-13-0114469-X (1999).
[5] FMA Expert Group: Federated Management Architecture Specification, Draft
Version 1.0. Sun Microsystems, Inc., http://www.jiro.org/specs.html. (January, 2000).
[6] Sun Microsystems, Inc: The Java Community Process. Sun Microsystems,
Inc., http://java.sun.com/aboutJava/communityprocess/. (May, 1999).
[7] IEEE Storage Systems Standards Working Group: Mass Storage System
Reference Model, Version 5. http://ssswg.org/public_documents/MSSRM/V5toc.html
(September, 1995).
[8] Technical Development Committee: The CIM Specification, Version 2.2.
http://www.dmtf.org/spec/cims.html, Distributed Management Task Force, (June, 1999).
[9] DMTF XML Working Group: CIM XML Mapping, Version 2.0.
http://www.dmtf.org/XML/CIM_XML_Mapping20.htm, Distributed Management Task
Force, (June, 1999).
[10] DMTF XML Working Group: The CIM HTTP Mapping, Version 1.0.
http://www.dmtf.org/XML/CIM_HTTP_Mapping10.htm, Distributed Management Task
Force, (June, 1999).
[11] Technical Development Committee: The WBEM Initiative.
http://www.dmtf.org/wbem/, Distributed Management Task Force, (1999).
[12] Englander, Robert: Developing Java Beans. O’Reilly and Associates, California.
ISBN 1-56592-289-1 (1997).
[13] Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissides, John: Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, Massachusetts. ISBN 0-201-63361-2 (1994).
[14] Lindholm, Tim; and Yellin, Frank: The Java™ Virtual Machine Specification.
Addison-Wesley, Reading, Massachusetts. ISBN 0-201-63452-X (1996).
[15] Bernstein, Philip A.; and Newcomer, Eric: Transaction Processing. Morgan
Kauffman Publisher, Inc, San Francisco, California. ISBN 1-55860-415-4 (1997).

 411

[16] Oaks, Scott: Java™ Security. O’Reilly and Associates, Sebastopol, California.
ISBN 1-56592-403-7 (1998).
[17] Haddon, Bruce K. and Connor, William H.: “Software for Distributed Monitor
Concurrency Control,” Patent Pending, U.S. Patent and Trademark Office (November,
1998)
[18] Haddon, Bruce K.: Machine-Independent Real-time Operating System
Interfaces. Ph.D. Thesis, Department of Computer and Electrical Engineering,
University of Colorado, Boulder (1979).
[19] Eddon, Guy; and Eddon, Henry: Inside Distributed COM. Microsoft Press,
Washington. ISBN 1-57321-849-X (1998).
[20] Valesky, Thomas B.: Enterprise JavaBeans™. Addison Wesley Longman, Inc.,
Massachusetts. ISBN 0-201-60446-9 (1999).
[21] Joint Revised Submission: CORBA Components. Object Management Group,
Inc. (1999)

Copyright © 2000 Sun Microsystems, Inc. All rights reserved. No part of this work covered by copyright may be
reproduced in any form or by any means without prior written permission of Sun Microsystems, Inc., except that
NASA is permitted to make a reasonable number of copies, may reprint, or publish this work on paper, CD-ROM, or
on the web, only in its entirety and only for non-commercial purposes. In addition, any person or entity who obtains a
copy through NASA may make one copy of the work for personal or non-commercial use at no charge, provided that
each copy, reprint or publication of the article on paper, CD-ROM or on the Web, or in any other form or means, must
duplicate the work in its entirety, and must include this notice, the Restricted Rights Legend, and the disclaimer and
notice below.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-
703 (October 1988) and FAR 52.227-19 (June 1987).

THIS PAPER AND ITS CONTENTS ARE PROVIDED WITHOUT ANY WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT WILL SUN BE LIABLE FOR ANY CLAIMS FOR DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO THE
USE OF THIS PAPER OR ITS CONTENTS.

Sun, Sun Microsystems, the Sun logo, Java, Jini, Jiro, JVM, JavaBeans, FederatedBeans, Enterprise JavaBeans, and
EJB, are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

The technology and products described in this paper may be protected by one or more U.S. patents, foreign patents,
and/or pending applications.

