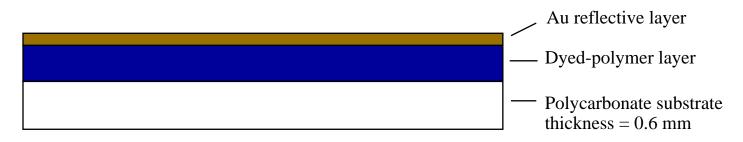
Accelerated Aging Studies and the Prediction of the Archival Lifetime of Optical Disc Media

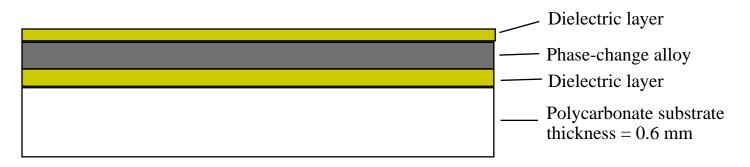
David E. Nikles* and John M. Wiest** Center for Materials for Information Technology University of Alabama Tuscaloosa, AL 35487

*Chemistry

**Chemical Engineering


THE UNIVERSITY OF ALABAMA

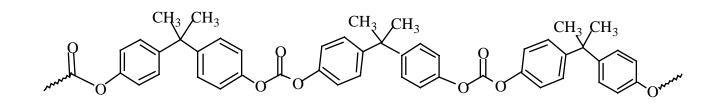
Outline:


- Optical Recording
- Failure
- Some Data
- What is Accelerated Aging
- The Science of Accelerated Aging
- Sample Analysis Methods
- What is Needed

Optical Recording Primer

DVD-R

DVD-RW



Optical Disk Substrate Materials

Polycarbonate

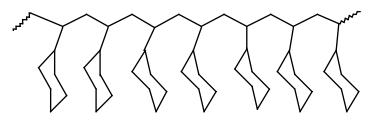
Dominant substrate material

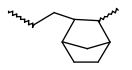
 $T_g = 150^{\circ}C$

Polycyclohexylethylene

Dow Chemical

- $T_{g} = 146 \text{ to } 150^{\circ}\text{C}$
- Low birefringence

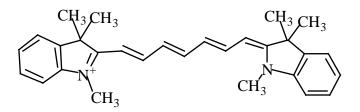

Topas®


Ticona

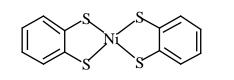
Random copolymer of ethylene and norbornene

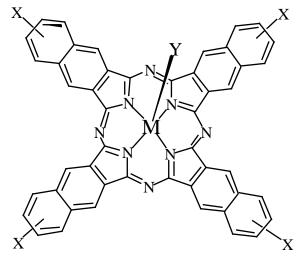
$$T_{g} = 70 \text{ to } 225^{\circ}\text{C}$$

Low birefringence



THE UNIVERSITY OF ALABAMA


Dyes Used in CD-R Disks


Cyanine Dyes

Nickel Bisdithiolate Complexes

stabilizer for cyanine dyes

Naphthalocyanines

THE UNIVERSITY OF ALABAMA

Phase Change Alloys

Ge Te Sb Ag In Co Se Au Bi As

THE UNIVERSITY OF ALABAMA

Failure

- All materials fail!
- Acceptable vs. Catastrophic Failure
- How will it happen?
- How long will it last?
- Do we care?

Physical Failure

- Polymer embrittlement
- Layer de-adhesion
- Birefringence from free volume consolidation
- others....

Chemical Failure

DVD-R

Expect the dye to be the weak link

Photochemical degradation

Reaction with moisture and oxygen (slow — reaction kinetics limited)

Reaction with ozone (fast — mass transfer limited)

DVD-RW

Corrosion of the phase change alloy

Requires diffusion of oxygen and water through the polycarbonate, through pinholes in the dielectric layers

Probably Mass transfer limited

Accelerating Aging Studies

Expose disks to high temperature and high humidity conditions

65°C and 80% relative humidity

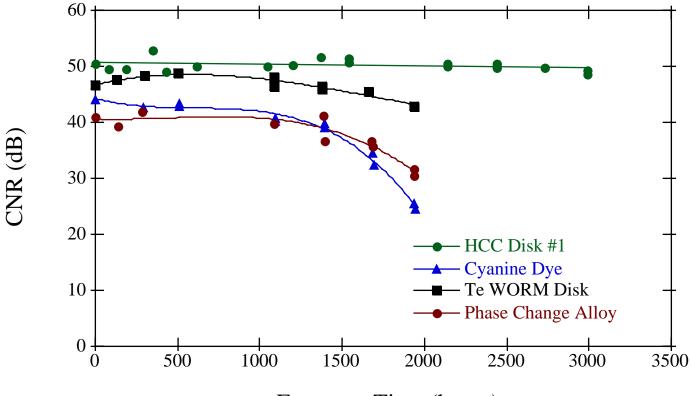
80°C and 80% relative humidity

90°C and 90% relative humidity

Measure the carrier to noise ratio (CNR)

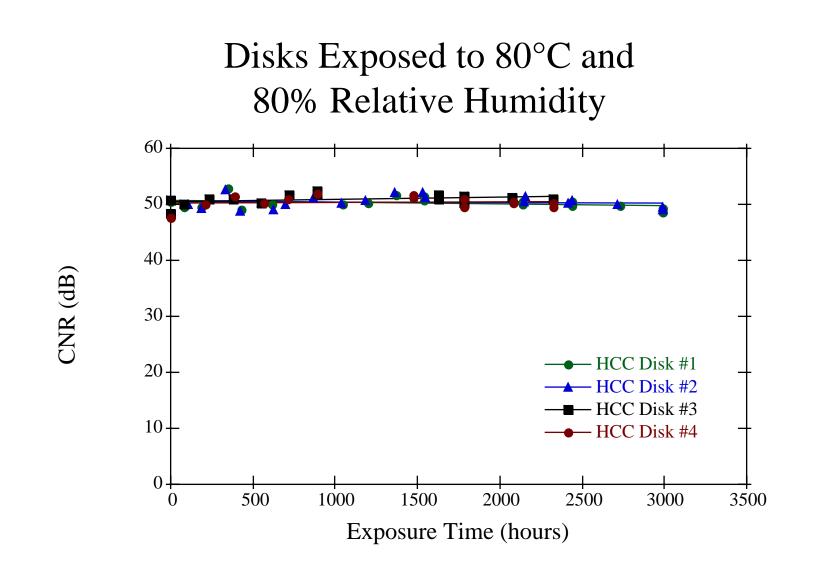
830 nm laser diode

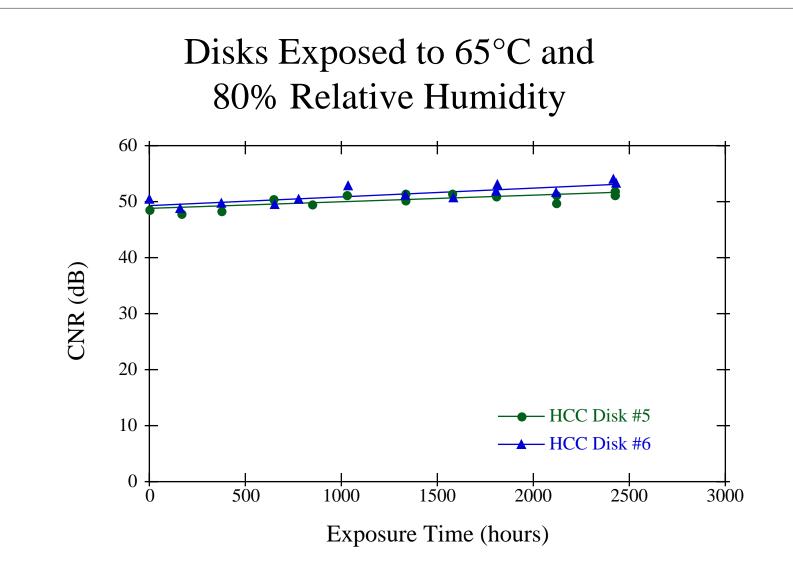
Record at 2.5 MHz carrier frequency

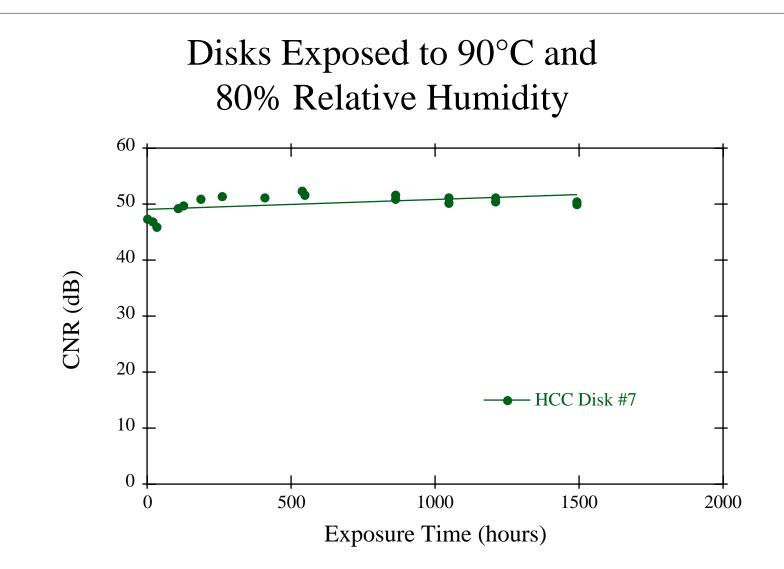

Media velocity 5.65 m/s

Read power 0.5 mW

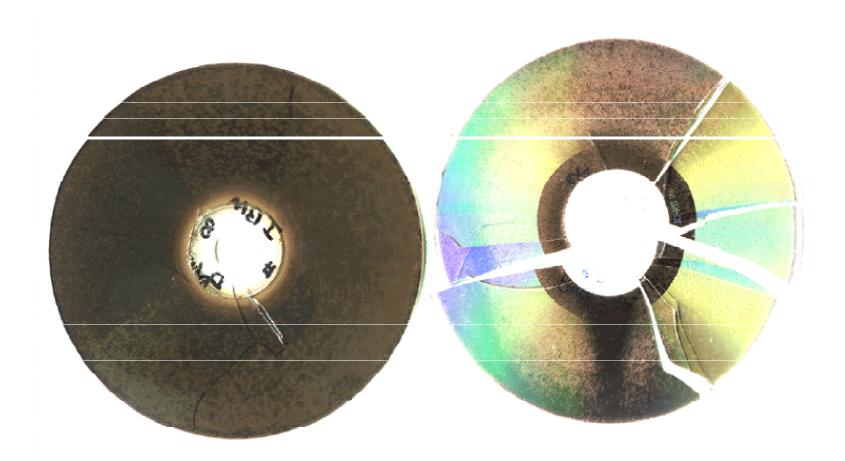
CNR in a 30 kHz bandwidth

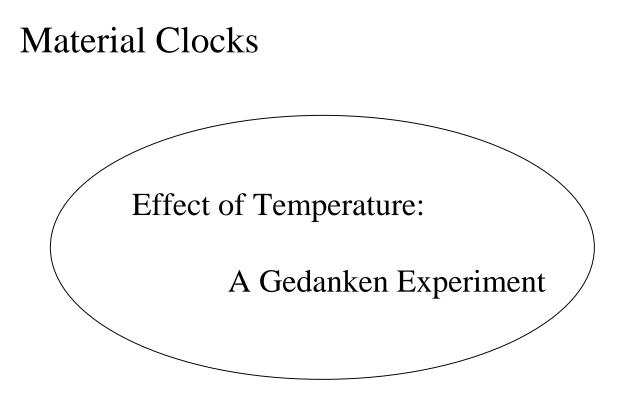

D. E. Nikles, et al. Proc. SPIE-Int. Soc. Opt. Eng. 1078, 43-50 (1989).D. E. Nikles, et al. Proc. SPIE-Int. Soc. Opt. Eng. 1248, 65-73 (1990).





Exposure Time (hours)


THE UNIVERSITY OF ALABAMA



Accelerated Aging

Can we change the environmental conditions to which a material is exposed and increase the rate at which degradation and/or failure occurs?

For example, elevated exposure to light, heat, or chemical 'bad actors.'

Can we do it in such a way that the results make sense? are useful? are predictive?

Material Clocks

How do we quantify this?

$$dt^* = \frac{dt}{a_X[X(t)]}$$

$$a_X = \frac{\lambda(X)}{\lambda(X_o)}$$
 $\lambda = \text{relaxation time}$
 $X = \{T, c, \tau, RH, ...\}$

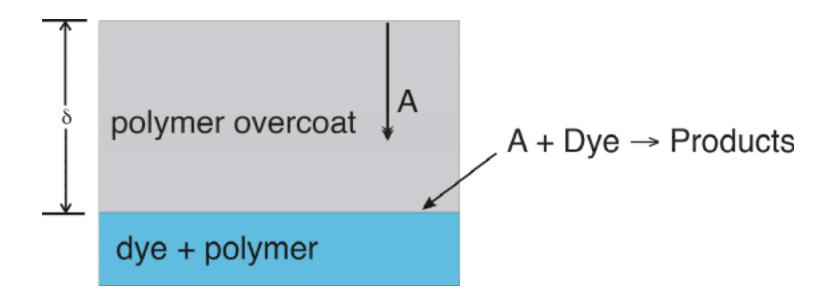
THE UNIVERSITY OF ALABAMA

Problems with Material Clocks

- Uniform X dependence of relaxation modes
- Phase transitions
- Determining $\lambda(X)$
- Multiple X's

Reactive Mass Transfer:

Conservation Relations


$$\frac{\partial c_i}{\partial t} = -\nabla \cdot J_i - R_i$$

 R_i = rate of destruction of species i by reactions

 J_i = mole flux of species i

$$J_i = -\sum_j D_{ij} \nabla c_j$$

Assumptions

- Steady State
- One Dimensional Diffusion
- Effective Binary System:

single penetrant with stationary substrate

- Fickian Diffusion
- Single Degradation Reaction
- Polymer Does Not Degrade
- Degradation Reaction Occurs at Interface

Kinetically Limited Case

Mass Transfer Rate >> Reaction Rate

Rate of Degradation = Rate of Reaction

Assume Arrhenius Temperature Dependence of Reaction Rate: $R_A \propto e^{-E_r/T}$

Then:

$$R(c,T) = R(c_o,T_o) \left\{ \left| \frac{c}{c_o} \right|^n \exp\left[E_r \left(\frac{1}{T} - \frac{1}{T_o} \right) \right| \right\}$$

THE UNIVERSITY OF ALABAMA

Mass Transfer Limited Case

Reaction Rate >> Mass Transfer Rate

Rate of Degradation = Rate of Penetrant Arrival at Interface

$$=\frac{-D_{AM}}{\delta}\ln(1-x_{As})$$

Assume:
$$D_{AM} \propto e^{-E_d/T}$$

Then:

$$R(T, x_{As}) = R(T_o, x_{Aso}) \left\{ \frac{\ln(1 - x_{Aso})}{\ln(1 - x_{Aso})} \exp \left[E_d \left| \frac{1}{T_o} - \frac{1}{T} \right| \right] \right\}$$

THE UNIVERSITY OF ALABAMA

Reactive Mass Transfer:

Conservation Relations

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot J_i - R_i$$

 R_i = rate of destruction of species i by reactions

 J_i = mole flux of species i

$$J_i = -\sum_j D_{ij} \nabla c_j$$

Assume first order kinetics: $R_A = -kc_A$

Then (as per Danckwerts):

$$c_{A}(r,t) = e^{kt}c_{A}^{d}(r,t) - k_{0}^{t}e^{kt'}c_{A}^{d}(r,t')dt'$$

Where $c_A^d(r,t)$ is the solution in the absence of reaction.

A material clock?

Let:
$$ds = \frac{D_{AM}(T)}{D_{AM}(T_o)} dt$$

Assume:
$$k(T) = k_o \exp \left[E_r \left| \frac{1}{T_o} - \frac{1}{T} \right| \right]$$

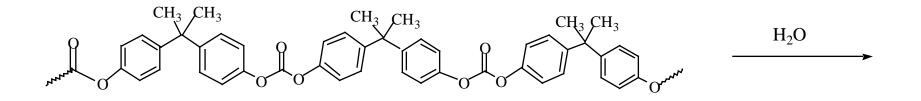
Then:
$$c_A^d(r,t,T) = c_A^d(r,s,T_o)$$

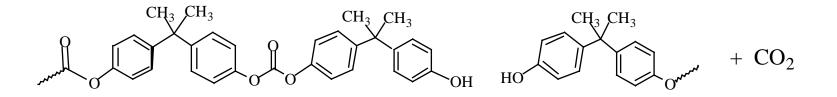
A material clock!

THE UNIVERSITY OF ALABAMA

But:

$$c_{A}(r,t,T) = e^{k_{0} \left\{ \exp \left[E_{r} | \frac{1}{T_{0}} - \frac{1}{T} | | \right|^{t}} c_{A}^{d}(r,s,T_{0}) - k_{0} \left\{ \exp \left[E_{r} | \frac{1}{T_{0}} - \frac{1}{T} | | \right|^{t} \int_{0}^{t} \left(e^{k_{0} \left\{ \exp \left[E_{r} \left(\frac{1}{T_{0}} - \frac{1}{T} \right) \right] \right\}^{t}} c_{A}^{d}(r,s',T_{0}) \right) dt'$$


THE UNIVERSITY OF ALABAMA


Problems with Assumptions

- Multiple (many) species / Multiple (many) reactions
- •Neither mass transfer nor diffusion limited
- Thermophysical properties vary with time
- Reaction products promote further degradation
- Mass transfer in polymers is not Fickian

and...

Polycarbonate Degradation

The ester linkages in polycarbonate are susceptible to hydrolysis

The activation energy for hydrolysis was 70 ± 4 kJ/mol

"Accelerated Aging Studies for Polycarbonate Optical Disk Substrates" D. E. Nikles and C. E. Forbes *Proc. SPIE* **1499**, 38-41, 1991.

Conclusions

The materials package is sufficiently complicated that a rational basis must be devised for accelerated aging.

Is it possible to find a suitable 'material clock?'

Must identify the fundamental mechanisms of failure.

Require kinetic data (reaction and transport) for failure mechanisms.

There is a lot of work that could/should be done on this problem!