M APRIL: A Run-Time Library
4 for Tape Resident Data

Gokhan Memik, Mahmut T. Kandemir, Alok Choudhary, and Valerie E. Taylor

Center for Parallel and Distributed Computing
Northwestern University, Evanston, IL

e
. W
=
— ce—
- |
. omma
= =
TR me T

Outline

@ Motivation

& Introduction

@ Single Processor Data Access
@ Multiple Processor Data Access
% Implementation Details

% User Interface

& Experiments

¢ Conclusion and Future Work

e
. W
T r—,
— ce—
I = B
[|
. omma

Motivation

¢ 3 - 30 Thbytes of simulation data for a
run, 3 Petabytes of archive capacity

& Systems with several levels of storage
hierarchy (e.g. HPSS)

¢ Tapes
=2 Poor performance for random access

o
. Y
%

[A
.
. SRR
——a
. oame =

HPSS Overview

. — Disk Storage Class

Staging

Migrating

S Tape Storage Class

Staging

Migrating

Tape Storage Class

e
. W
T r—,
— ce—
f B
[|
. omma
- A
TR me T

Introduction

@ APRIL
= Convenient user interface
= Additional optimizations: Sub-filing,
Multiple Collective I/0
& User view
= The data is an n-dimensional matrix
= Coordinates for a data access
= Control over the location of data

o
. Y
%
——
.
[SR e
——
e

Additional Optimizations

¢ Sub-Filing
=2 The global file is divided into chunks

=2 User unaware of the sub-filing for ease-of-
use

@ Multiple Collective I/O
=2 Accessing several files with a single I/0 call

o
. Y
%
——
— e
[SR e
——
- —we =)

Single Processor Data Access

¢ Determine the chunks satisfying the
access pattern (cover)

@ Transfer the chunks (that are not
already on disk) from tape to disk

% Copy the corresponding elements of the
chunk to the buffer

o
. Y
%
[A
.
.. SRR
—————
i

wﬂ\ . S ""‘“" i
s AR YA 482NN

>

Single Processor Data Access

Y

Single Processor Data Access

Y

Single Processor Data Access

Y

Single Processor Data Access

iy

Single Processor Data Access

Y

Single Processor Data Access

o
. Y
%
——
.
[SR e
——
e

Multiple Processor Data Access

¥ Three-phase I/0

@ Determine collectively which chunks to be read by
which processor

= Perform I/O
2 Communicate the parts belonging to other
processors
¢ Goal:
@ Each processor reads same number of chunks in
parallel
@ Least amount of communication

‘?2&“ f

o
. Y
%
[A
.
.. SRR
—————
i

| |
Ve ||

4
F.H B 4

|"|Iv 1

Multiple Processor Data Access

Multiple Processor Data Access

5 e

o
. Y
%
——
.
[SR e
——
e

Assigning the files to processor

¢ Instance of Assignment Problem
= Can use LP-relaxation
2 Too slow to solve, need heuristics

@ Simplicity assumption:

@2 Number of files divisible by number of
processors (= k)

e
. W
T r—,
— ce—
f B
[|
. omma
- A
TR me T

Heuristic (Greedy Algorithm)

¢ List1: Sort all accesses to a file according to the
file size accessed (for each processor involved)

¢ List 2: Sort globally the access sizes

@ Try to assign the largest access (from List 2) to

the accessing processor
= If processor has less than k files, assign the processor
= Else try the next processor (on List 1) until you assign

@ Update and go to the third step

o
. Y
%

. —
.
. SRR
——
. oame =

Multiple Processor Data Access

o
. Y
%

. —
.
. SRR
——
. oame =

Multiple Processor Data Access

o
. Y
%
[A
— e
[SR e
——a
. oame-= Lo

Implementation

HPSS and MPI-IO

& Postgres95 to store the information
about the file and the chunks

@ Database accessed only when a file is
opened or closed

iy

User Interface

& Initialization/Finalization Routines
= T Initialize, T_Finalize

% File Manipulation Routines
= T_Open, T_Close, T_Remove

@ Array Access Routines
@ T_Read_Section, T_Write_Section

& Stage/Migration Routines
= T_Stage_Section, T_Prefetch_Section,
T_Migrate_Section

o
. Y
%
——
— e
[SR e
——
- —we =)

User Interface (continued)

& Data is seen as an n-dimensional matrix

¢ Read Example
== T_Read_Section (T_File *fd, void *buffer, int
*start_coordinate, int *end_coordinate)
fd: File pointer to the global file

buffer: Buffer where APRIL puts the result

Start_coordinate: Start coordinate of the section to be
read for each of the dimensions of the file

End_coordinate: Similar to start _coordinate

e
. W
T r—,
— ce—
I = B
[|
. omma

Experiments

HPSS at the San Diego Supercomputing
Center (SDSC)

& SRB to access HPSS files

¢ Database and the application at Northwestern
University

% File size: 50000 x 50000 floating points (20
GB total data)

% Chunk Size: 2000 x 2000 floating points (32
MB)

o
. Y
%
[A
.
[SR e
——
e

Access Patterns

‘ ‘E
(0,0)- (0,0)-
(1000,1000) (4000,1000)
] i
(0,0)- (0,0)-

(50000,80) (80,50000)

(0,0)- (5000,5000)-
(24000,1000) (6000,6000)

(0,0)- (6000,6000)-
(1000,4000) (8000,8000)

o
. Y
%
——
.
[SR e
——
e

Performance Gains

/O Times for Read

100000

10000 -

1000

Time[sec]

—

00

bLbL

I

1l

10

A B C D E F G

Access Pattern

‘El Naive Strategy OO APRIL ‘

H Avg

1000000

100000 -

LEDEIIELD

10000
1000
100
10

Time[sec]

/O Times for Write

A B C D E F G H Avwg

Access Pattern

‘El Naive Strategy O APRIL ‘

I/O Times for Read operations

File Size: 50000x50000 floating points
Chunk Size: 2000x2000 floating points

I/O Times for Write operations

iy

Conclusion and Future Work

¢ Easy-to-use interface for sequential and

parallel applications
Significant performance improvements

@ Automatic prefetching

iy

http://www.ece.nwu.edu/~memik

