
APRIL: A Run-Time Library 
for Tape Resident Data

Gokhan Memik, Mahmut T. Kandemir, Alok Choudhary, and Valerie E. Taylor

Center for Parallel and Distributed Computing
Northwestern University, Evanston, IL



Outline
Motivation 
Introduction
Single Processor Data Access
Multiple Processor Data Access
Implementation Details
User Interface
Experiments
Conclusion and Future Work



Motivation
3 - 30 Tbytes of simulation data for a 
run, 3 Petabytes of archive capacity
Systems with several levels of storage 
hierarchy (e.g. HPSS)
Tapes

Poor performance for random access



HPSS Overview

Disk Storage Class

Tape Storage Class

Tape Storage Class

Migrating

MigratingStaging

Staging

Staging



Introduction

APRIL
Convenient user interface
Additional optimizations: Sub-filing, 
Multiple Collective I/O

User view
The data is an n-dimensional matrix
Coordinates for a data access
Control over the location of data



Additional Optimizations
Sub-Filing

The global file is divided into chunks
User unaware of the sub-filing for ease-of-
use 

Multiple Collective I/O
Accessing several files with a single I/O call



Single Processor Data Access
Determine the chunks satisfying the 
access pattern (cover)
Transfer the chunks (that are not 
already on disk) from tape to disk
Copy the corresponding elements of the 
chunk to the buffer



Single Processor Data Access



Single Processor Data Access

1



Single Processor Data Access

1



Single Processor Data Access

1



Single Processor Data Access

1

2



Single Processor Data Access

1

2



Multiple Processor Data Access
Three-phase I/O

Determine collectively which chunks to be read by 
which processor
Perform I/O
Communicate the parts belonging to other 
processors

Goal: 
Each processor reads same number of chunks in 
parallel
Least amount of communication



Multiple Processor Data Access



Multiple Processor Data Access

P1 P2 P3 P4



Assigning the files to processor
Instance of Assignment Problem

Can use LP-relaxation 
Too slow to solve, need heuristics

Simplicity assumption: 
Number of files divisible by number of 
processors (= k)



Heuristic (Greedy Algorithm)
List1: Sort all accesses to a file according to the 
file size accessed (for each processor involved)
List 2: Sort globally the access sizes
Try to assign the largest access (from List 2) to 
the accessing processor

If processor has less than k files, assign the processor
Else try the next processor (on List 1) until you assign

Update and go to the third step



Multiple Processor Data Access

P1 P2 P3 P4



Multiple Processor Data Access

P1 P2 P3 P4



Implementation
HPSS and MPI-IO
Postgres95 to store the information 
about the file and the chunks
Database accessed only when a file is 
opened or closed



User Interface
Initialization/Finalization Routines

T_Initialize, T_Finalize
File Manipulation Routines

T_Open, T_Close, T_Remove
Array Access Routines

T_Read_Section, T_Write_Section
Stage/Migration Routines

T_Stage_Section, T_Prefetch_Section, 
T_Migrate_Section



User Interface (continued)
Data is seen as an n-dimensional matrix
Read Example

T_Read_Section (T_File *fd, void *buffer, int 
*start_coordinate, int *end_coordinate)

• fd: File pointer to the global file
• buffer: Buffer where APRIL puts the result
• Start_coordinate: Start coordinate of the section to be 

read for each of the dimensions of the file
• End_coordinate: Similar to start_coordinate



Experiments
HPSS at the San Diego Supercomputing 
Center (SDSC)
SRB to access HPSS files
Database and the application at Northwestern 
University
File size: 50000 x 50000 floating points (20 
GB total data)
Chunk Size: 2000 x 2000 floating points (32 
MB)



Access Patterns

B

A B

(0,0)-
(1000,1000)

(0,0)-
(4000,1000)

C
D

E
F G H

(0,0)-
(24000,1000)

(5000,5000)-
(6000,6000)

(6000,6000)-
(8000,8000)

(0,0)-
(1000,4000)

(0,0)-
(50000,80)

(0,0)-
(80,50000)



Performance Gains
I/O Times for Read

10

100

1000

10000

100000

A B C D E F G H Avg

Access Pattern

Ti
m

e[
se

c]

Naïve Strategy APRIL

I/O Times for Read operations

File Size: 50000x50000 floating points
Chunk Size: 2000x2000 floating points

I/O Times for Write

10

100

1000

10000

100000

1000000

A B C D E F G H Avg

Access Pattern

Ti
m

e[
se

c]

Naïve Strategy APRIL

I/O Times for Write operations



Conclusion and Future Work
Easy-to-use interface for sequential and 
parallel applications
Significant performance improvements
Automatic prefetching



http://www.ece.nwu.edu/~memik


