
Performance of an MPI-IO implementation

using third-party transfer

Richard Hedges, Terry Jones, John May, Kim Yates

Parallel I/O Project

Lawrence Livermore National Laboratory

rkyates@llnl.gov

This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under contract number W-7405-Eng-48.

0



Goals of this work

� Give users access to HPSS �les via the MPI-IO interface.

{ Portability: common standard vs. HPSS-speci�c API

{ Ease of use: familiar MPI datatypes, no explicit threads

� EÆcient implementation: low overhead.

� Improve on HPSS performance for some access patterns.

{ Can pro�t from MPI-IO's collective operations

1



Summary of HPSS

� Fast, large hierarchical archives (disks and tapes).

� Allows m� n parallelism with 3rd-party transfer

� For high-performance parallel I/O, uses explicit multithreading

and nonstandard interface (hpss WriteList and hpss ReadList).

2



Summary of MPI-IO

� Became oÆcial part of MPI-2 message-passing standard, 1997.

� Writes are like sends, reads are like receives.

� Designed to allow optimizaton of parallel I/O:

{ Collective read and write operations.

{ MPI \derived types" describe data layout.

{ Blocking and nonblocking transfers.

{ Performance \hints" from user, don't alter semantics.

{ Wide variety of features.

� Takes a major e�ort to implement fully.

3



Methodology

� Measure performance under various system and application parameters.

� Verify eÆciency.

� True concurrent aggregate performance: earliest start to latest end time.

� Each data point is average of 5 runs.

� For writes, overwrite an existing �le.

� In the tests reported here, �les are small (� 256 MB)

{ Only because test programs were in
exible.

{ But HPSS doesn't do any caching anyway.

� Con�gured system to perform well for large transfers

(e.g., 8 MB stripe unit).

4



Testbed (old, small, gone, to be replaced soon)

IBM RS6000/SP MaxStrat
Gen5XLs

H
IPPI sw

itch

H
IPPI sw

itch

ethernet

HIPPI

HPSS

� Four IBM RS/6000 SP 604 High nodes,

each with 4 112-MHz PowerPC 604 processors.

� Four HIPPI cards and crossbar switch.

� 2 MaxStrat Gen5XLs, con�gured as 4 RAIDs.

� Hardware throughput limit is 207 MB/sec

(4 HIPPI adapters � 51.8 MB/s each).

5



Varying chunk size

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

200

Chunk size (MB)

Ba
nd

w
id

th
 (M

B/
se

c)

Write
Read 

Collective read & write for varying chunk sizes.

(stripe factor = 8, number of processes = 16, �le size = 256 MB)

Con�gured this system to have 8 MB stripe unit.

For chunks < 8MB, HPSS uses TCP/IP instead of IPI.

6



Varying number of clients and stripe factor

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

200

Process count

B
a

n
d

w
id

th
(M

B
/s

e
c)

2 way striping 
4 way striping 
 8 way striping

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

200

Process count

B
a

n
d

w
id

th
(M

B
/s

e
c)

2 way striping 
4 way striping 
 8 way striping

Collective read & write.

(stripe factor = 2/4/8, chunk size = 16 MB; �le size = 16 MB per process).

Best performance: 197 MB/s read, 173 MB/s write (207 MB/s hard limit)

(32 procs, 8-way stripe, 8MB chunks)
7



Overlapping I/O and computation

Tested with tcompute = ti=o = 2.5 sec

Total time using blocking i/o = 5.0 sec

Total time using nonblocking i/o = 3.1 sec (62% of blocking i/o)

Using 4 client processes, 4-way striping, 16 MB chunks.

When there is more than 1 MPI process on a node,

thread contention reduced performance.
8



Future work

� Track future versions of HPSS.

� Further analyze and improve performance

{ Larger, faster testbed installed soon.

{ Performance in production use.
9



Conclusions

� Successful, complete implementation of MPI-IO API.

� EÆcient use of HPSS parallel transfer capabilities.

� Working on enhancements to improve on HPSS performance.

� Will soon be exposed to rigors of production use.

10



Acknowledgements

Many thanks to Linda Stanberry (current principal designer/programmer),

Elsie Pierce and Jeanne Martin (erstwhile team members),

the entire HPSS team, and many sytem administrators

for their help over the years.

11


