
Koen Holtman
CERN/CMS

Peter van der Stok
Eindhoven University of technology

Ian Willers
CERN/CMS

NASA and IEEE Mass Storage Conference
March 27-30, 2000

2

• Many applications analyse sets of KB -- MB size
objects

• Tapes work most efficiently with MB -- GB size files
– This leads to mass storage systems with file granularity

• Investigated potential benefits of mass storage systems
with object granularity
– The application stores and accesses objects
– The MSS maps the objects to files
– The MSS can re-map objects to new files, to re-optimise if the

object access patterns change
• Investigation into benefits done by developing an

architecture for an MSS with object granularity
– Architecture incorporates solutions to associated scalability and

fragmentation problems
– Architecture based on simulation and implementation studies

3

• Object granularity data analysis
– Append-only dataset

• Multi-TB set of objects, object size KB -- MB
• Query:

for_each(o in S) { h:=h + f(o) }

• Computation is order-independent, trivial to
create sub-queries and run in parallel

• In High Energy Physics, S can be 104 objects
out of 109 objects

4

• Make a fixed mapping of objects to files
• Staging is in units of files

– Red objects are hit by a query

• If there are few red objects, this is inefficient
in staging and caching

Disk

Tape

5

• 3 levels of granularity: chunk, file, object
• Many
management
operations
done at file
level

•Re-use
existing
software
components

6

• Conditions under which our object granularity
MSS outperforms file granularity MSS:

• Repetitive access
condition

• Sparse access
condition
– Amount of red objects

in chunks hit by query
should be <= 30%

• Usefulness of keeping small files on tape:
– Less useful than hoped in our system/workload scenarios
– Useful if disk cache small (<=4%) or if many queries huge

7

• Append-only: application programmer fills
system with new chunks (sets of objects)

• Original chunk file created for each new chunk
• Object ID =

(chunk ID,sequence number in chunk)

• Up to ~20 files per chunk (in our simulations)
• Every file stores a

subset of the objects
in a chunk,
in sequence order

8

• Based on object copy, not move
• Done at the file level

• Done as a side-effect
of sub-query execution

• Triggered by sparse
reading of the sub-query

• Tuned to <33%

• Preserves order of objects, to avoid fragmentation
• Objects already in a small file are not copied, to avoid

unnecessary duplication
• Files are deleted by cache replacement algorithm

New file created
by re-mapping

9

• One sub-query can read concurrently from many
files on disk, while also writing to a new file

– Use ‘bursty
sequential
reading’
optimisation

– Test: each sub-
query reads
objects
concurrently
from 3 files,
re-maps 10%
of the objects
to a new file

10

• Idea is to re-stage small files instead of
original chunk files
– Less useful than hoped

in our system/workload
scenarios

– Useful if disk cache
small (<=4%) or
if many queries huge

– In practice, a lot of time
is spent in writing small files to tape, almost as
much time as is saved in staging

– Use of tape pool...
– Selection of small files to migrate… size <=20%

• Maybe a better selection heuristic can be found

11

• Multi-user workload, users submit queries
• Query converted into sub-queries as soon as possible, to

maximise concurrency and make demands visible
• Sub-query

(1) Blocks on condition ‘all needed objects are in files on disk’
(2) Blocks on condition ‘CPU and disk I/O becomes available’
(3) Executes

• Sub-queries blocked on tape are grouped by chunk into
clusters, stager identifies
a file which would un-block
all sub-queries in the cluster

• Stager cycles over all tapes in a fixed order, all files on a
tape that un-block a cluster are staged
– Stager makes sure that all affected sub-queries get a chance to

execute before staged files are deleted in cache replacement

12

• Using simulation we compared our object-granularity MSS to a
normal file-granularity MSS over a large parameter range

• Multi-user workloads with queries requesting 0.03% to 6% of the
object set, average object hit rates in hit chunks of 30% to 9%
(sparse access condition)

• Speedups of 1 (none) to 52 found
• Speedups higher if workloads more repetitive

• Going to object-level granularity usually outperforms doubling
the cache size

13

• Investigated potential benefits of mass storage
systems with object granularity

• Work inspired by
– impedance mismatch between our application needs

and tape characteristics
– Scenarios like ‘need 5 objects from every tape’

• Developed and validated an architecture for an
object granularity MSS
– Has solutions to fragmentation, scalability problems
– 3 levels of granularity: chunk, file, object
– Object re-mapping operation

• Identified conditions under which object
granularity is beneficial

14

• Better than expected: stability of system,
speedups over wide range of workload parameters

• Worse than expected: keeping small files on tape
not very beneficial in our scenarios
– Maybe a better selection heuristic can be found

• Future work:
– More implementation studies
– Object granularity and re-mapping in wide-area

distributed physics analysis systems
– (maybe) Look at possible benefits of user hints

• Related work:
– Data management by hand
– StorHouse Atomic Data Store
– View materialisation in relational databases and in

data mining

