Towards Mass Storage Systems
with Object Granularity

Koen Holtman
CERN/CMS

Peter van der Stok

Eindhoven University of technology

lan Willers
CERN/CMS

NASA and IEEE Mass Storage Conference
March 27-30, 2000

Introduction

Many applications analyse sets of KB -- MB size
objects

Tapes work most efficiently with MB -- GB size files
— This leads to mass storage systems with file granularity

Investigated potential benefits of mass storage systems
with object granularity

— The application stores and accesses objects

— The MSS maps the objects to files

— The MSS can re-map objects to new files, to re-optimise if the

object access patterns change

Investigation into benefits done by developing an
architecture for an MSS with object granularity

— Architecture incorporates solutions to associated scalability and
fragmentation problems

— Architecture based on simulation and implementation studies

| Application
* Object granularity data analysis
— Append-only dataset

- Multi-TB set of objects, object size KB -- MB_|
* Query: UL
for_each(o in S) { h:=h +f(o) }3 1.7 ",

ﬂﬂﬂﬂﬂﬂ

75 50 T
Miti— (GeV)

« Computation is order-independent, trivial to
create sub-queries and run in parallel

 |In High Energy Physics, S can be 104 objects
out of 10° objects

File-granularity MSS

« Make a fixed mapping of objects to files
« Staging is in units of files
— Red objects are hit by a query
Disk (00 "0 0 00

Tape

* If there are few red objects, this is inefficient
In staging and caching

Our Object gran. MSS

» 3 levels of granularity: chunk, file, object

* Many
management
operations
done at file
level

*Re-use
existing
software
components

080 Re-mapping —‘

f ? 000 Small files with subsets
1000000 of the objects in a chunk
FIRL P

2% Staging and
: /mlgratlon

Pool of small

Qriginal chunk files — &~ files created by -

re—-mapping

5

When is it useful?

Condltlons under which our object granularity

MSS outperforms file granularity MSS:
7] Re-mapping -‘

Re etltlve aCCGSS mall files with subsets

Pe AR I o
condition Disk I |

t / \\ Staging and

Sparse access 1 OOOOmORe00 e isasbainsg | ™Meretion
conditon it L N
— Amount of red objects e e IO

in chunks hit by query | | (895000080808] g

ShOUId be <= 30% t———— Original chL;n.k.ﬂ;es—' - fIE%O#EEE%aggy -

Usefulness of keeping small files on tape:

— Less useful than hoped in our system/workload scenarios
— Useful if disk cache small (<=4%) or if many queries huge 6

Filling and indexing

* Append-only: application programmer fills
system with new chunks (sets of objects)
* Original chunk file created for each new chunk

* Object ID = \ & - } I,
(chunk ID,sequence number in chunk) |
Chunk 1 Chunk 2 T
ape I L]
G@@@@ o @@@@@ T e s foonal

Chunk 1, object 2

* Up to ~20 files per chunk (in our simulations)

 Every file stores a UL Chunk 2, file 1
subset of the objects CBHEE - (2.1)232.5) - -
!n a Chunk’ Chunk 1, file 2 '/Same object Chunk 2, file 2
In sequence order oooCH oz -

Re-mapping operation

Based on object copy, not move
* Done at the file level

Sub-query needs: (2[4)6)7)

* Done as a side-effect New file created
of sub-query execution by re-mapping

* Triggered by sparse
reading of the sub-query A:| A48
* Tuned to <33%
uned 1o 0 Existing fI|ESL 0@@@@@@@

* Preserves order of objects, to avoid fragmentation

* QObjects already in a small file are not copied, to avoid
unnecessary duplication

* Files are deleted by cache replacement algorithm

@) /O scalability

* One sub-query can read concurrently from many
filles on disk, whilﬁe0 also writing to a new file

— Use ‘bursty - JPETSR S
sequential Yo | PRI S |
reading’ % o
Optimisation §_40‘ """""""""" ’,’ """""""""""""""""""""""""""" 7

— Test: each sub- Y -

030 ___________________ L R~ S R _
query reads =
objects | — S l
concurrently @ . . .
from 3 files, 10+ o --- 1*10°MIPSs/MB
re-maps 10% < |/ |/ 2*10° MIPSs/MB
of the objects % 50 100 150 200 240
to a new file Number of sub—aueries runnina

9

Small files on tape

 |dea is to re-stage small files instead of
original chunk files % e mepping

— Less useful than hoped
AN

Small files with subsets
of the objects in a chunk

in our system/workload f‘\\\ Staging and
. m mlgratlon

scenarios Staging

— Useful ifdisk cache | —|
small (<=4%) or Sosmesmosts) sseegmesnss! om0
. . 000000000000 | 960000000000 [000)
If many queries huge pr——— e

— In practice, a lot of time T T R e

IS spent in writing small files to tape, almost as
much time as is saved in staging

— Use of tape pool...

— Selection of small files to migrate... size <=20%
« Maybe a better selection heuristic can be found

! Scheduling and staging

Multi-user workload, users submit queries

* Query converted into sub-queries as soon as possible, to
maximise concurrency and make demands visible

* Sub-query

(1) Blocks on condition ‘all needed objects are in files on disk’
(2) Blocks on condition ‘CPU and disk I/O becomes available’
(3) Executes

* Sub-queries blocked on tape are grouped by chunk into
clusters, stager identifies .. :"‘"""'": :""“?""": [
afile which would un-block s ... = =

all sub-queries in the cluster I L oot

« Stager cycles over all tapes in a fixed order, all files on a
tape that un-block a cluster are staged

— Stager makes sure that all affected sub-queries get a chance to
execute before staged files are deleted in cache replacement

11

Av. speedup factor

Performance gains

« Using simulation we compared our object-granularity MSS to a
normal file-granularity MSS over a large parameter range

« Multi-user workloads with queries requesting 0.03% to 6% of the
object set, average object hit rates in hit chunks of 30% to 9%
(sparse access condition)

« Speedups of 1 (none) to 52 found
« Speedups higher if workloads more repetitive

=== ESpesdup for physics workload ®-—¥ Spesdup of doubling cache size, physics workload
— Spesdup for generic workload #—& Speedup of doubling cache size, generic workload
0 S) 10 r 10— 5 ‘
| TR S'""'. | - P '.':E.... N B ,
o] EO S EH—— . O 5 At o .
H H H 'E' H
Tl Lot St S E 7k o §
=] S S ; 4" » R % =% g_
] ST ‘f".q.. = o E .
| IR B o]] ak o :
F LT s o = ;
| I S i i woal " ,
o e z 7 Z :
‘| .. ‘|'_ : : .
0 1 1 1 1 1 0 1 1 i 1 1 1
2 4 B 8 10 15 Z0 z 4 8 16 32 30 1 5
Digk cache size (% of dataset) Ay, no, of gueries on same ohj, set Average % objects hit / hit chunik

« (Going to object-level granularity usually outperforms doubling

the cache size

12

| Conclusions

* |nvestigated potential benefits of mass storage
systems with object granularity
* Work inspired by

— Impedance mismatch between our application needs
and tape characteristics

— Scenarios like ‘need 5 objects from every tape’

* Developed and validated an architecture for an
object granularity MSS
— Has solutions to fragmentation, scalability problems
— 3 levels of granularity: chunk, file, object
— Object re-mapping operation

* |dentified conditions under which object
granularity is beneficial

13

| Discussion

« Better than expected: stability of system,
speedups over wide range of workload parameters

 Worse than expected: keeping small files on tape
not very beneficial in our scenarios

— Maybe a better selection heuristic can be found

* Future work:

— More implementation studies

— Object granularity and re-mapping in wide-area

distributed physics analysis systems

— (maybe) Look at possible benefits of user hints
* Related work:

— Data management by hand

— StorHouse Atomic Data Store

— View materialisation in relational databases and in

data mining o

