
Jonathan Crawford
Lockheed Martin Corporation

IEEE Mass Storage & Technology
Conference

March 28, 2000

A Scalable Architecture for
Maximizing Concurrency

2

• Chained RPCs destabilize all participants
– A single crash or network disruption triggers

recovery in many processes

• Long-running RPCs increase risk and
exposure to transient network disruptions

• Architecture heavily reliant on DCE -- not a
stable platform under load

• Client communicates with many servers,
including multiple instances of the same
server type

– Increases burden of recovery on client
– Client must notify all servers in event of crash

recovery or risk leaking resources

Client Archive
Server

Staging
Monitor
Server

Staging
Disk

Server

Synchronous RPC
Long-running

Synchronous RPCs

Synchronous RPC Synchronous RPC

A Scalable Architecture for
Maximizing Concurrency

3

Client

Staging
Disk

Server

Database

Archive
Server

Staging
Monitor
Server

• Communications are trivial --
connect to a socket and
immediately disconnect

– Effect of network disruption is
dramatically reduced

• Crashes are isolated
• Architecture is based upon

stable, proven RDBMS
technology

• Request submission involves
checkpointing to the database,
then asynchronously notifying
the affected server(s)

• Routing is handled by the
database and base class
implementation for
asynchronous communications

– Client does not need to know
which servers are contacted

A Scalable Architecture for
Maximizing Concurrency

4

A Scalable Architecture for
Maximizing Concurrency

5

• RPC-based requests arrive on “listen threads”
– DCE queue is limited to 7 times the number of “listen threads”
– Queue overflow causes client failures

• DCE has stability issues with heavy bursts of requests to
the same server
– Common in recovery situations

• Difficult to set up development environments
– Stubs must be provided to simulate client interfaces
– CDS entry management requires higher-level access than is

customarily granted to developers

A Scalable Architecture for
Maximizing Concurrency

6

Client Request
Manager

Relevant
STMGT
Server

Synchronous RPC Database
Checkpoint Request

Result Set

Restore
from

Checkpoint

Post
Results

Asynchronous
Notification

• Request Manager serves as proxy interface for all synchronous
communications

• Acts as an asynchronous client on behalf of each synchronous
client

• Allows all existing client interfaces to be preserved
• Isolates client communications to a single server

– Simplifies failover, crash recovery

• Network disruptions limited to the Client/Request Manager
interface

A Scalable Architecture for
Maximizing Concurrency

7

• Multiple Request Managers may be used, either for
“closest access” routing or for automatic failover

• Scalability is limited only by database scalability
– Configuration parameters and checkpointed request information

are only things stored in database, and both are typically small

• Routing is handled internally, so new servers and
subsystems can be rapidly added without client changes

A Scalable Architecture for
Maximizing Concurrency

8

• Only potential “single point of failure” is the database
– RDBMS failover and recovery technology is mature

• Clients are no longer affected by temporary server outages
• Simplicity of communications mechanism -- port number

on a host -- minimizes complexity and eliminates
configuration issues associated with DCE

• Brevity of communications minimizes impact of network
disruptions, especially transient interruptions

• Design forces emphasis on good checkpointing and
recovery for each server

A Scalable Architecture for
Maximizing Concurrency

9

• Overhead for testing
– DCE: Requires CDS entries (access issues) and other servers must

be stubbed or operational
– Thread Manager: Requires only a test database

• Client simulation
– DCE: drivers are synchronous, typically designed for one-at-a-time

request submission
– Thread Manager: completely data-driven via SQL

• Simple SQL scripts support load testing with a universal driver to start test
• Scripting facilities and trigger-based capture of stored procedure invocations

permit scenario capture for simulating end-to-end testing and rapid
reproducing of obscure error conditions

A Scalable Architecture for
Maximizing Concurrency

10

• Request status is uniformly available for all requests in a
central table

• Progress tracking is incorporated in the design
• Multiple states provide clear visibility into server and

request status
– Processing state indicates whether a request is active, suspended,

or completed
– Checkpoint state indicates where a request is in processing
– Error code indicates error associated with request, including

severity and scope of error

