A Scalable Architecture for
Maximizing Concurrency

Jonathan Crawford
Lockheed Martin Corporation

IEEE Mass Storage & Technology
Conference

March 28, 2000




DCE-Based Client Interface

Synchronous RPC Archive Synchronous RPCs

Long-running Staging

Monitor

Server
Server

Synchronous RPC Synchronous RPC

Staging
Disk
Server

Chained RPCs destabilize all participants *  Client communicates with many servers,

— A single crash or network disruption triggers including multiple instances of the same

recovery in many processes server type
Long-running RPCs increase risk and —  Increases burden of recovery on client
exposure to transient network disruptions —  Client must notify all servers in event of crash
Architecture heavily reliant on DCE -- not a recovery or risk leaking resources
stable platform under load
A Scalable Architecture for 2

Maximiﬂ'ng Concurrency




Asynchronous Client Interface

Client

Request submission involves
checkpointing to the database,
then asynchronously notifying
the affected server(s)

Routing is handled by the
database and base class
implementation for
asynchronous communications

—  Client does not need to know
which servers are contacted

Staging

Server

Database

Staging
Disk
Server

A Scalable Architecture for
Maximiﬂ'ng an011wency

Monitor
Server

Communications are trivial --
connect to a socket and
immediately disconnect
—  Effect of network disruption is
dramatically reduced
Crashes are 1solated

Architecture is based upon
stable, proven RDBMS
technology




Pe
Thread Manager Design Pattern

Feceptionist f---------- » Manager Thread '.| =ervice Thread
|
Request Gueue s Fequest

A Scalable Architecture for
Maximiﬂ'ng an011wency




DCE Limitations

RPC-based requests arrive on “listen threads”
— DCE queue i1s limited to 7 times the number of “listen threads”

— Queue overflow causes client failures
DCE has stability 1ssues with heavy bursts of requests to
the same server

— Common in recovery situations

Difficult to set up development environments
— Stubs must be provided to simulate client interfaces

— CDS entry management requires higher-level access than is
customarily granted to developers

A Scalable Architecture for
Maximi7ing an011wency




Request Manager Adapter

Synchronous RPC Request Checkpoint Request
Manager | Database
& Result Set
Restore Post
from Results
Asynchronous Checkpoint
Notification

Relevant
STMGT
Server

Request Manager serves as proxy interface for all synchronous
communications

Acts as an asynchronous client on behalf of each synchronous
client

Allows all existing client interfaces to be preserved

Isolates client communications to a single server
—  Simplifies failover, crash recovery

Network disruptions limited to the Client/Request Manager
interface

A Scalable Architecture for
Maximiﬂ'ng an011wency




Scalability

Multiple Request Managers may be used, either for
“closest access” routing or for automatic failover

Scalability 1s limited only by database scalability

— Configuration parameters and checkpointed request information
are only things stored in database, and both are typically small

Routing is handled internally, so new servers and
subsystems can be rapidly added without client changes

A Scalable Architecture for
Maximi7ing an011wency




Reliability

Only potential “single point of failure” 1s the database
— RDBMS failover and recovery technology is mature

Clients are no longer affected by temporary server outages

Simplicity of communications mechanism -- port number
on a host -- minimizes complexity and eliminates
configuration 1ssues associated with DCE

Brevity of communications minimizes impact of network
disruptions, especially transient interruptions

Design forces emphasis on good checkpointing and
recovery for each server

A Scalable Architecture for
Maximi7ing an011wency




=
Testability

e Overhead for testing
— DCE: Requires CDS entries (access issues) and other servers must
be stubbed or operational
— Thread Manager: Requires only a test database

e (Client simulation

— DCE: drivers are synchronous, typically designed for one-at-a-time
request submission

— Thread Manager: completely data-driven via SQL
« Simple SQL scripts support load testing with a universal driver to start test

» Scripting facilities and trigger-based capture of stored procedure invocations
permit scenario capture for simulating end-to-end testing and rapid
reproducing of obscure error conditions

A Scalable Architecture for 9

Maximiﬂ'ng Concurrency




Operability

Request status 1s uniformly available for all requests in a
central table

Progress tracking 1s incorporated in the design

Multiple states provide clear visibility into server and
request status

— Processing state indicates whether a request is active, suspended,
or completed

— Checkpoint state indicates where a request is in processing

— Error code indicates error associated with request, including
severity and scope of error

A Scalable Architecture for
Maximiﬂ'ng an011wency

10




