Curtis Anderson

canderson@TurboLinux.com
Voice: 650-244-7777
FAX: 650-244-7766

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 1

Important characteristics of a tape driver
Provide access to a drive by an application
Insulate app from some quirks of the drive
Homogenize operational semantics across drive types

Define failure domains and failure modes

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 2

Traditional tape driver architecture

Inside the kernel so i1t can access the hardware

3/27/00

Event driven state machine handling interrupts
Normal code threads plus interrupt threads
MP locking in normal and interrupt threads
Process scheduler interference

Delicate interfaces and bad debugging tools

New Tape Driver Architecture - Curtis Anderson - TurboLinux

Requirements for a driver architecture

Failures must be contained

3/27/00

Same operational semantics from all drive types
Portable to multiple O/S platforms for consistency
Distributed and parallel development efforts

High performance

Isolate support of a device from other devices

Differing levels of investment for each drive type

New Tape Driver Architecture - Curtis Anderson - TurboLinux

Monolithic source file drivers

Support for all devices 1s mingled in a single driver

3/27/00

Common semantics across devices 1s easy

Kernel code: no failure containment, not portable,
skilled implementers required

Difficulty separating code for one device from another
Regression test all devices after any change 1s painful

New Tape Driver Architecture - Curtis Anderson - TurboLinux

Separate source file drivers

Each device is segregated into a separate kernel driver

3/27/00

Good at separating code for one device from another
Development/maintenance for devices done in parallel
Common semantics across devices 1s much harder

Kernel code: no failure containment, not portable,
skilled implementers required

New Tape Driver Architecture - Curtis Anderson - TurboLinux

Document tape operating semantics

Driver writers need to know what to make the drive do

Apps need to know what to expect out of the drive

Tests to check for correct semantics/regressions

IEEE P1563: Tape Driver Semantics Std.

Standard tape access semantics for apps running on
UNIX and Linux systems

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 7

Platform-dependent: Tape Support Driver
A data pump that 1s O/S specific and not drive specific

Extremely minimal error processing code

Device-dependent: “Personality” Daemons

Drive specific error handling and recovery
Make native drive behave like the defined semantics

IEEE P1563: Tape Driver Recom. Practice

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 8

l
Data pump, only does read/write operations

All other ops/exceptions sent to Personality daemon

Some “‘errors’ need to be handled inline

Platform and O/S specific

Written once per platform, common to all drive types
Uses all platform and O/S performance features

Written for I/0 performance, errors handled elsewhere

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux

/dev/tape device node interface for apps

App must not be required to use a “new” API

Platform independent interface (IEEE 1563) will make
semantics and operations common to all platforms

Interface to a running Personality Daemon

Platform independent user-level interface
(see paper for full details)

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 10

l
Defines semantics, not on the data path

Handles all exceptions and all ops except read/write

Drive type specific
Written once per drive, common to all platforms
Uses all drive management and error recovery features

Written for error handling and conformance to desired
semantics, I/O performance handled elsewhere

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 11

|
Processes control commands from the App

Intercepts and implements all non-read/write ops

Builds 1ts own SCSI commands to control the drive

Processes device exceptions

Unsuccessful device ops get passed to the Personality
Interacts with drive to diagnose/recover/log the error

Decides what error code (1f any) to give the application

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 12

|
Much better fault 1solation than kernel code

Only a single drive impacted, not the entire system

Personality Daemons are restartable user processes

Assumes that there are no hard performance
requirements on control/error handling code paths

Individual admin. of each physical drive
Dynamically add/enable/disable support per drive

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 13

|
One running daemon per physical drive

Simple event-reaction loop inside the Personality

No multi-threading or locking to worry about
Much simpler development and testing environment

Portable, user-level code

Multiple Personalities developed in parallel

Best done by the drive vendor, but anyone can do 1t

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 14

App 1s blocked while Personality working

Personality interacts with the drive

3/27/00

Does error characterization and recovery actions
Runs device-dependent diagnostic procedures
TapeALERT information 1s handled and logged
Log errors, status, diagnostics, and recovery actions
Interact with IEEE 1244 MMS, SYSLOG, etc

New Tape Driver Architecture - Curtis Anderson - TurboLinux 15

Fully synchronous calls 1nto the kernel
See the paper for full details

1octl() function calls provide access to

App control requests (eg: rewind, set file-mark)
Device exceptions (eg: HBA status info, sense codes)
Device statistical info for management apps

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 16

1octl() function calls provide control of

Direct SCSI command blocks sent to the drive
Device statistical info for management apps

Error codes to be returned to the app (if any)

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 17

Tape Support Driver able to 1nject errors

Error recovery code in Personalities needs testing

3/27/00

Software layer at the bottom of the TSD can return an
error for a command instead of success

Not required for 1nitial development of the architecture

New Tape Driver Architecture - Curtis Anderson - TurboLinux 18

Personalities and Tape Support Drivers

3/27/00

Failures are contained to a restartable user process
Common semantics across drive depends on testing
Personalities are portable, and TSD’s are common
Development/maintenance for devices done in parallel
I/O performance 1s very good

Good at separating code for one device from another

Differing levels of investment for each drive type

New Tape Driver Architecture - Curtis Anderson - TurboLinux 19

User Mode

UNIX/Linux SwW | mw

Tape Support Driver

HBA Drivers [SCSI/FCQ

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 20

Personality

User Mode Interface initialization

UNIX/Linux l SwW | Hw

Tape Support Driver

HBA Drivers [SCSI/FCQ

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 21

@ Personality

open(*“/dev/mt/st...”) TSD OPEN

H/W

User Mode
UNIX/Linux & S/W
Tape Support Driver
HBA Drivers [*
3/27/00

SCSI/FCQ

New Tape Driver Architecture - Curtis Anderson - TurboLinux 22

@ Personality

User Mode if (fd <0)

Return successfully

UNIX/Linux \
\ 4

S/W | H/W

Tape Support Driver

I

HBA Drivers

< O
SCSI/FC

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 23

@ Personality

H/W

User Mode rewind() TSD_REWIND
UNIX/Linux & W
Tape Support Driver
HBA Drivers [*
3/27/00

SCSI/FCQ

New Tape Driver Architecture - Curtis Anderson - TurboLinux 24

@ Personality

User Mode SCSI “rewind” C

DB

UNIX/Linux \
\ 4

Tape Support Driver

l SCSI “rewind” CDB

S/W

H/W

HBA Drivers

SCSI/FCQ

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 25

@ Personality

User Mode Status return

UNIX/Linux \ SW | /W

Tape Support Driver

T SCSI status block
HBA Drivers [SCSI/FC Q

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 26

@ Personality

User Mode if (errno == 0)

Tell app of succes

UNIX/Linux \
\ 4

S/W

Tape Support Driver

I

HBA Drivers

H/W

SCSI/FCQ

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 27

@ Personality

H/W

User Mode read()
UNIX/Linux & S/W
Tape Support Driver
l SCSI “read” CDB
HBA Drivers
3/27/00

SCSI/FCQ

New Tape Driver Architecture - Curtis Anderson - TurboLinux 28

@ Personality

User Mode read()
UNIX/Linux \ sw |mw
Tape Support Driver
T SCSI data transfer
HBA DriVerS < SCSI/EC : ;

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 29

@ Personality

H/W

User Mode read()
UNIX/Linux & S/W
Tape Support Driver
l SCSI “read” CDB
HBA Drivers
3/27/00

SCSI/FCQ

New Tape Driver Architecture - Curtis Anderson - TurboLinux 30

@ Personality

User Mode read() Error informatiol

[—]

UNIX/Linux \

Tape Support Driver

S/W

T SCSI Check Condition

H/W

HBA Drivers [

SCSI/FC Q

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 31

@ Personality

User Mode read() Diagnostic CDB

UNIX/Linux \ Il SW | /W

Tape Support Driver

l Diagnostic CDB

HBA Drivers SCSI/FCQ

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 32

@ Personality

User Mode read() Diagnostic results

UNIX/Linux \ sw | Hw

Tape Support Driver

T SCSI Diagnostic Results
HBA Drivers B SCSI/EC i ;

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 33

@ Personality

Tell app of failure¢

User Mode if (errno < 0)

UNIX/Linux \
\ 4

S/W

Tape Support Driver

HBA Drivers

H/W

SCSI/FC Q

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 34

IEEE P1563 Tape Driver Semantics

Standard plus Recommended Practice on driver design
Curtis Anderson <canderson@ TurboLinux.com>

Neil Bannister <nb(@sgi.com> - Open Source code

IEEE P1244 Media Management System
www.SSSWGe.org - standards working group

www.OpenVault.org - Open Source implementation

3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 35

