
3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 1

Curtis Anderson
canderson@TurboLinux.com

Voice: 650-244-7777
FAX: 650-244-7766



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 2

What Do Tape Drivers Do?

• Important characteristics of a tape driver
– Provide access to a drive by an application
– Insulate app from some quirks of the drive
– Homogenize operational semantics across drive types
– Define failure domains and failure modes



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 3

What Do Tape Drivers Look Like?

• Traditional tape driver architecture
– Inside the kernel so it can access the hardware
– Event driven state machine handling interrupts
– Normal code threads plus interrupt threads
– MP locking in normal and interrupt threads
– Process scheduler interference
– Delicate interfaces and bad debugging tools



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 4

What Should a Tape Driver Do?

• Requirements for a driver architecture
– Failures must be contained
– Same operational semantics from all drive types
– Portable to multiple O/S platforms for consistency
– Distributed and parallel development efforts
– High performance
– Isolate support of a device from other devices
– Differing levels of investment for each drive type



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 5

What About a Traditional Approach?

• Monolithic source file drivers
– Support for all devices is mingled in a single driver
– Common semantics across devices is easy
– Kernel code: no failure containment, not portable, 

skilled implementers required
– Difficulty separating code for one device from another
– Regression test all devices after any change is painful



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 6

What About a Traditional Approach?

• Separate source file drivers
– Each device is segregated into a separate kernel driver
– Good at separating code for one device from another
– Development/maintenance for devices done in parallel
– Common semantics across devices is much harder
– Kernel code: no failure containment, not portable, 

skilled implementers required



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 7

Need Standard Tape Access Semantics!

• Document tape operating semantics
– Driver writers need to know what to make the drive do
– Apps need to know what to expect out of the drive
– Tests to check for correct semantics/regressions

• IEEE P1563: Tape Driver Semantics Std.
– Standard tape access semantics for apps running on 

UNIX and Linux systems



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 8

What Should a Tape Driver Look Like?

• Platform-dependent: Tape Support Driver
– A data pump that is O/S specific and not drive specific
– Extremely minimal error processing code

• Device-dependent: “Personality” Daemons
– Drive specific error handling and recovery
– Make native drive behave like the defined semantics

• IEEE P1563: Tape Driver Recom. Practice



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 9

What is a “Tape Support Driver”?

• Data pump, only does read/write operations
– All other ops/exceptions sent to Personality daemon
– Some “errors” need to be handled inline

• Platform and O/S specific
– Written once per platform, common to all drive types
– Uses all platform and O/S performance features
– Written for I/O performance, errors handled elsewhere



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 10

What Interfaces Does a TSD Need?

• /dev/tape device node interface for apps
– App must not be required to use a “new” API
– Platform independent interface (IEEE 1563) will make 

semantics and operations common to all platforms

• Interface to a running Personality Daemon
– Platform independent user-level interface

(see paper for full details)



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 11

What is a “Personality Daemon”

• Defines semantics, not on the data path
– Handles all exceptions and all ops except read/write

• Drive type specific
– Written once per drive, common to all platforms
– Uses all drive management and error recovery features
– Written for error handling and conformance to desired 

semantics, I/O performance handled elsewhere



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 12

What Does a Personality Do?

• Processes control commands from the App
– Intercepts and implements all non-read/write ops
– Builds its own SCSI commands to control the drive

• Processes device exceptions
– Unsuccessful device ops get passed to the Personality
– Interacts with drive to diagnose/recover/log the error
– Decides what error code (if any) to give the application



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 13

Is a Personality More Capable?

• Much better fault isolation than kernel code
– Only a single drive impacted, not the entire system
– Personality Daemons are restartable user processes
– Assumes that there are no hard performance 

requirements on control/error handling code paths

• Individual admin. of each physical drive
– Dynamically add/enable/disable support per drive



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 14

How Do You Program a Personality?

• One running daemon per physical drive
– Simple event-reaction loop inside the Personality
– No multi-threading or locking to worry about
– Much simpler development and testing environment
– Portable, user-level code

• Multiple Personalities developed in parallel
– Best done by the drive vendor, but anyone can do it



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 15

How is a Device Exception Processed?

• App is blocked while Personality working
• Personality interacts with the drive

– Does error characterization and recovery actions
– Runs device-dependent diagnostic procedures
– TapeALERT information is handled and logged
– Log errors, status, diagnostics, and recovery actions
– Interact with IEEE 1244 MMS, SYSLOG, etc



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 16

How Does a Personality Talk to a TSD?

• Fully synchronous calls into the kernel
– See the paper for full details

• ioctl() function calls provide access to
– App control requests (eg: rewind, set file-mark)
– Device exceptions (eg: HBA status info, sense codes)
– Device statistical info for management apps



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 17

How Does a Personality Talk to a TSD?

• ioctl() function calls provide control of
– Direct SCSI command blocks sent to the drive
– Device statistical info for management apps
– Error codes to be returned to the app (if any)



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 18

How Do You Test a Personality?

• Tape Support Driver able to inject errors
– Error recovery code in Personalities needs testing
– Software layer at the bottom of the TSD can return an 

error for a command instead of success
– Not required for initial development of the architecture



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 19

What is the Executive Summary?

• Personalities and Tape Support Drivers
– Failures are contained to a restartable user process
– Common semantics across drive depends on testing
– Personalities are portable, and TSD’s are common
– Development/maintenance for devices done in parallel
– I/O performance is very good
– Good at separating code for one device from another
– Differing levels of investment for each drive type



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 20

Structure at System Boot

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 21

Personality Started by “init”

Personality

Tape Support Driver

UNIX/Linux

User Mode Interface initialization

SCSI/FC

S/W H/W

HBA Drivers



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 22

App Starts and Opens Drive

App Personality

Tape Support Driver

open(“/dev/mt/st…”)

UNIX/Linux

User Mode TSD_OPEN

SCSI/FC

S/W H/W

HBA Drivers



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 23

Personality Approves of the Open

App Personality

Tape Support Driver

if (fd < 0)

UNIX/Linux

User Mode Return successfully

SCSI/FC

S/W H/W

HBA Drivers



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 24

App Asks For Rewind()

App Personality

Tape Support Driver

rewind()

UNIX/Linux

User Mode TSD_REWIND

SCSI/FC

S/W H/W

HBA Drivers



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 25

Personality Tells Drive to Rewind

App Personality

Tape Support Driver

UNIX/Linux

User Mode SCSI “rewind” CDB

SCSI/FC

S/W H/W

HBA Drivers

SCSI “rewind” CDB



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 26

Drive Returns Status to Personality

App Personality

Tape Support Driver

UNIX/Linux

User Mode Status return

SCSI/FC

S/W H/W

HBA Drivers

SCSI status block



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 27

Personality Tells App Operation Done

App Personality

Tape Support Driver

if (errno == 0)

UNIX/Linux

User Mode Tell app of success

SCSI/FC

S/W H/W

HBA Drivers



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 28

App Does a Read

App Personality

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers

read()

SCSI “read” CDB



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 29

Device Completes Read Successfully

App Personality

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers

read()

SCSI data transfer



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 30

App Does Another Read

App Personality

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers

read()

SCSI “read” CDB



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 31

Device Takes an Exception

App Personality

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers

read()

SCSI Check Condition

Error information



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 32

Personality Runs Diagnostics

App Personality

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers

read()

Diagnostic CDB

Diagnostic CDB



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 33

Device Returns Diagnostic Results

App Personality

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers

read()

SCSI Diagnostic Results

Diagnostic results



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 34

Personality Tells App Operation Failed

App Personality

Tape Support Driver

UNIX/Linux

User Mode

SCSI/FC

S/W H/W

HBA Drivers

if (errno < 0) Tell app of failure



3/27/00 New Tape Driver Architecture - Curtis Anderson - TurboLinux 35

For More Information

• IEEE P1563 Tape Driver Semantics
– Standard plus Recommended Practice on driver design
– Curtis Anderson <canderson@TurboLinux.com>
– Neil Bannister <nb@sgi.com> - Open Source code

• IEEE P1244 Media Management System
– www.SSSWG.org - standards working group
– www.OpenVault.org - Open Source implementation


