

EOSDIS: Archive and Distribution Systems in the Year 2000

Jeanne Behnke

Earth Science Data Information Systems

&

Alla Lake

Lockheed Martin

GSFC/IEEE Mass Storage & Technology Conference March 29, 2000

A Big Mission!

- EOS = Earth Observing System
 - Centerpiece of NASA's Earth Science Enterprise
 - Collect Earth remote sensing data for a 15 year global change research program
- EOSDIS Data Information System
 - Software architecture is designed to receive, process, archive and distribute several terabytes of science data on a daily basis
 - User community consists of several thousands of science and non-science users
 - 7 major facilities across the US
 - Distributed Active Archive Centers (DAACs)

EOS Terra in orbit

3

Terra Image

Landsat Browse Image

EOSDIS Concept

EOSDIS has 3 segments:

- Networks
- Flight Ops
- Science Data Processing System

EOSDIS is composed of several geographically distributed elements that will appear as a single, integrated, logical entity

EOSDIS is working with NOAA and other agencies to ensure long term availability of Earth science data

Predicted Data Volumes for 2000

- Expect launch of EOS-Aqua and ADEOS satellites this year
- 260 different data products and sets of raw instrument data
- 1.6 TB of processed data stored daily by end of 2000

Data Center	Archive Volumes GB/Day	# of granules per day	Archive Volumes In TB per year	# o f Granules cumulative per year	Distribution via Network GB/day	Distribution via tape GB/day
EDC	522	6886	190	2,513,390	194	159
GSFC	688	5545	251	2,023,925	226	226
LaR C	312	2945	114	1,074,925	102	102
NSIDC	22	1083	8	395,295	6	6
Total	1544	16459	563	6,007,535	528	493

SDPS System Goals

- Flexible, Scaleable, Reliable
- Use Open System standards
- Support standard interface to Earth science to enable coordinated data analysis
- Maximize the use of COTS packages and respond to technological advances and techniques
- Inevitable change and new additions
- Architecture to support these goals:
 EOSDIS Core System (ECS)

Data Server Subsystem

"Heart of the ECS system"

- Object-oriented C++ on a multiplatform environment of SUNs and SGIs
- Three Software Configuration Items (CI)
 - Science DataServer CI
 - DBMS, geospatial search, inventory
 - Storage Management CI
 - Manages all peripherals including robotic silos
 - Data Distribution CI
 - Places data in distribution location
- Ingest Subsystem CI is also significant to data archiving

COTS Packages

- System uses ~ 75 Off-The-Shelf packages from commercial and government sources
- Principal COTS that impact design:
 - Sybase Relational DBMS/SQS dbms and spatial query system
 - AMASS file storage management system for robotic storage devices
 - Autosys scheduling software for the processing system
 - Tivoli system management tools
 - HP Openview- graphical tool for system management
 - RogueWave libraries used to map components to objects
 - DCE distributed computing environment
 - ClearCase CM tool to manage completion of different builds
 - Remedy trouble-ticketing software used across project

Archive

Robotic Storage

Data Repository

DAAC	Make/Model	Qty	Drive Type	Media Capacity	I otal of Media in silo
GSFC	StorageTek STK Powderhorn	4	13 D3 drives 10 9840 drives	50 GB 40 GB	5200
NSIDC	StorageTek STK Powderhorn	1	3 D3 drives	50 GB	5200
EDC	StorageTek STK Powderhorn	3	14 D3 drives 8 9840 drives	50 GB 40 GB	5200
LaRC	StorageTek STK Powderhorn	2	8 D3 drives 8 9840 drives	50 GB 40 GB	5200

DAAC	Make/Model	Qty	Drive Type	Media Capacity
GSFC	Exabyte tape drives CD Rom Writers	8 2	8mm tape	50 GB 600 MB
NSIDC	Exabyte tape drives CD Rom Writers	2 2	8mm tape	50 GB 600 MB
EDC	Exabyte tape drives CD Rom Writers	8 2	8mm tape	50 GB 600 MB
	D3 tape drive	1	D3 tape	50 GB
LaRC	Exabyte tape drives CD Rom Writers	22	8mm tape	50 GB 600 MB

Distribution Systems

14

Drive Cabinet

Typical Cartridge Media for Silo

Mass Storage I/O System

- Consists of silo, RAID disk, server hosts
 - Capable of 40 MB/s throughput sustained at all times (3.5 TB of data per day)
- Able to push 3 to 4 times as much data because of double buffer mechanism in the storage management system design
 - Minimizes stress on robotics
 - Creates our own persistent cache

Mass Storage I/O System

- Utilize Volume Groups (groups of tapes together)
 - Group tapes by 'science data type' (for example, all Landsat data in a silo is grouped together on a specified collection of tapes)
 - Enables load balancing
 - Assures minimum performance levels
 - Allows logical management of the archive
- Additional information in two poster papers at this conference
 - Fault Tolerant Design
 - Scalable Architecture for Maximizing Concurrency

Archive Operations

- Strive for an automated archive system
 - Continuous connection to the archive systems by operations personnel
 - At least two operations personnel at each site:
 - Principle activities include error notification; backup; monitoring; problem resolution
 - Strive for lights out administration
- Support several modes at each site for system upgrade
 One operational mode; 2 test modes
- Scheduled maintenance includes hardware monitoring, media monitoring, format and cleanup

Conclusion

	DAAC	Date	Archive Size in GB
Archive	EDC	26 days 2/23-3/20	4463.3
Size to	NSIDC	22 days 2/28-3/21	113
Date	GSFC	27 days 2/23-3/21	7747
	LaRC	20 days 2/24-3/15	1375

- For further discussion, contact:
 - jeanne.behnke@gsfc.nasa.gov; 301-614-5326
 - alake@eos.hitc.com; 301-925-0626

22