
An Overview of
The Global File System

Ken Preslan Sistina Software

kpreslan@sistina.com

David Teigland University of Minnesota

teigland@borg.umn.edu

Matthew O’Keefe University of Minnesota

okeefe@borg.umn.edu

http://www.globalfilesystem.org

Outline

Network Attached Storage, Fibre Channel, and Shared Disk
File Systems

The Global File System

−The Network Storage Pool

−The File System

Journaling and Distributed Recovery

Performance

Future Work

Shared Disk File Systems (SDFS)

Realize the potential of SANs by
coordinating shared access to storage devices

Each machine accesses the disks as if they
were local

Faster access

Greater availability

Need a method of synchronization

3rd Party Transfer (Asymmetric)

Dlocks/GFS (Symmetric)

Asymmetric

Machines share disks containing
data, not metadata

Metadata is controlled by a central
server

The server provides synchronization
between clients

Machines make metadata requests
(create, unlink, bmap) to the server

Machines read actual data from the
disks

Similar to a traditional DFS

CXFS, DataDirect, MountainGate,
Mercury

CPU

CPU

CPU

CPU

Metadata
Server

S
A
N

Symmetric

Machines share disks
containing data and metadata

Metadata is managed by each
machine as it is accessed

Synchronization is achieved
using global locks (Dlocks or
a Distributed Lock Manager
(DLM))

A local file system with
inter−machine locking

GFS, VaxCluster, Frangipani

CPU

CPU

CPU

CPU

S
A
N

The Global File System

Symmetric Shared Disk File System

Open Source (GNU GPL)

64−bit Files and File System

High Performance

Originally for Irix, now Linux, and FreeBSD

Comprised of three parts

1) The Network Storage Pool Driver

2) The File System

3) Locking Modules

The Pool Driver

A Logical Volume Driver for Network Attached
Storage

−Combines multiple disks into one logical address space

−Combines multiple Dlock devices into one logical lock
space

Handles disks that change IDs because of network
rearrangement

A Pool is made up of SubPools of devices with
similar characteristics

A Network Storage Pool

Sub−pool 0

Solid State

Sub−pool 1

Single Disk

Sub−pool 2

RAID 5

Sub−pool 3

Software Striped Disks

Sub−pool 4

RAID 3

Network Storage Pool

GFS Client

Storage Area

Network

GFS Client
GFS Client

The File System

A high performance local file system with
inter−machine locking

Optimized for Network Attached Storage

When the locks are removed, GFS makes a
good local file system

GFS Features

Dynamic inodes

Flat/64−bit metadata structure

Platform independent metadata

Extendible Hashing Directories

Full use of the buffer cache
(full read and write caching)

Interchangeable Locking Modules

Journaled Filesystem

Interchangeable Locking Modules

Want GFS to be independent of the type of
inter−machine locking available

Created a locking interface to allow modules to plug
into GFS

Each module translates between the locking that GFS
expects and the locking available

Organizational Structure

VFS

User Space

Pool

DlockIP Lock

GFS
Locking Interface

Callbacks
 to other
 clients

 To
 Lock
Server

Device Locks

Global locks that provide the synchronization necessary for a
symmetric SDFS

Lock located on the network attached storage devices

Accessed with the Dlock SCSI command

Features

−Advisory

−Reader/Writer

−Version Numbers enable cache coherence

−Each lock has a list of the machines holding it

−All locks held by client expire if the client fails to heartbeat the drive

Currently Implemented Protocols

Nolock − Dummy locks for local file systems

SCSI Dlock − Locking using SCSI Dlock
devices

GLM − Non−redundant lock protocol over
TCP/IP (drives do not need to support Dlock)

Future: DLM ?

Recovery

A FSCK is the classic means of recovery
after a crash

−Slow (time proportional to FS size)

−The file system must be offline

−Not acceptable for shared disk file systems

−Now functional for GFS, will be improved

Journaling solves these problems
−Recovery time proportional to FS activity

−Online recovery is possible

Layout for Journaling

Having multiple clients share a journal is too
complex and inefficient

Each client gets its own journal space

Each journal space is protected by one lock that is
acquired at mount time and released at unmount (or
crash) time.

Each journal can be on its own disk for greater
parallelism

Each journal must be visible to all clients (for
recovery)

GFS Layout

Super Block

Journal 0

Journal 3

Journal 2

Journal 1

RGRP 0

RGRP 1

Glock 0

Glock 1

Glock 2

Glock 3

Glock 4

Glocks 5−1000

Glocks 1001−2000

Journal Entries

Composed of the metadata blocks changed
during that operation (and a header)

Each entry has one or more Glocks
associated with it

−Standard GFS locks that protect each piece of
metadata

−For instance, a creat() entry would have locks
for the directory, the new dinode, and the
bitmaps.

A Journal Entry (in memory)

Journal Entry

Lock 10

Directory Bitmaps

Lock 5

New inode

Lock 7

Buffer 0 Buffer 3Buffer 2

Buffer 1

Journaling

Asynchronous

Multiple journal entries are cached in−core

Entries are committed to disk in groups
asynchronously

Metadata buffers for a journal entry are pinned in
memory (can’ t be synced) until the entry is
committed.

When journal write is complete, dirty metadata
buffers can be synced

Handling Lock Callbacks

All journal entries are linked to one or more
Glocks

Before Glock is released to another machine:
1. Flush journal entries for Glock to log

2. Sync in−place metadata buffers

3. Sync in−place data buffers

Only transactions dependent on the requested
Glock need to be flushed (or indirectly
dependent)

Handling Lock Callbacks

2 3 6 8
Glock #Journal

Entry
1

2

3

4

XXX

XX

XX

XX

X represents in−memory
metadata buffers which will
be written to the journal

Glock 6 is requested
by another machine

flush entries 1,2,4 to
log in order

in−place metadata
and data buffers are
synced for Glock 6

Glock 6 is released

Recovery − Initiation

Journaled recovery is initiated by:

mount time check if any journals were shutdown
uncleanly

locking module reports an expired client when it polls
or detects expired machines

client tries to acquire Glock and locking module
reports it’s expired

In each case, the expired client’s ID is passed
to a recovery kernel thread

Machine attempts to begin recovery by trying
to acquire journal lock of failed client

Recovery − I/O Fencing

A client which fails to heartbeat its locks but
is still alive could do IO while other
machines are trying to recover for it.

Causes filesystem corruption

Two solutions:
Forcably disable failed client (shoot it in head)

Fence out all IO from the failed client using Fibre
Channel switch

This is the first step of recovery after
acquiring the journal lock of failed client

Recovery of Journal

Find head and tail of journal entries

Ignore partially committed entries

For each entry

try to acquire all locks associated with that entry

determine whether to replay it and do so if
needed

Mark the journal as recovered

Mark all expired locks not expired for failed
client

Replaying Entries

Decision to replay entry is based on
generation number in primary pieces of
metadata

dinode

bitmap headers

Every time these are written to log,
generation number is incremented

Replay journal entry if generation numbers in
entry are larger than in−place data

Recovery

The generation number allow journals to be
replayed independently

Allows easy handling of multiple
simultaneous machine failures − just recover
each journal sequentially

Machines can continue to work during
recovery unless they need a lock which was
held by a failed client

Performance

Test configuration

GFS Antimatter Anteater (non−journaled)

16−node VA Linux cluster

� PIII, 550 Mhz, 512 MB memory

� Qlogic 2200 FC adapters

� 8 eight−disk JBODS (64 drives)

Seagate ST39102FC "Cheetah" 9 GB disks

� Dlock version 0.9.4

� Each JBOD is a separate striped subpool within one GFS
filesystem

4 Brocade 2800 FC switches

Scalability

One to Sixteen machines are added to a GFS
filesystem of constant size

Workload: 1 million random operations
consisting of 50% reads, 25%
appends/creates, 25% unlinks

Each machine performs its workload in
separate directory and subpool

Scaling

� � � �� ��

�
�

�
�

�
� �

��
� �

��

Creates per Second

Comparison of Extendible Hashing directory
structure to Linear directory structure

GFS and Ext2FS both create a million entry
directory

Measured creates per second at constant
intervals as directory was filled

GFS speed levels off due to uncached hash
table and leaf blocks

Creates Per Second

Current State / Future Work

Basic journaling and distributed recovery working

Speed and reliability improvements soon

Lots of testing

Growable File Systems

Snapshotting

Scalability: 32, 64, ... 2^64

Application level testing: NFS and web serving clusters

Ports to other OSs (FreeBSD, Solaris, back to IRIX)

