
March 27-30, 2000 Secure Network Attached File System Design 1

William Freeman & Ethan Miller
University of Maryland Baltimore County

wef@lts.ncsc.mil elm@csee.umbc.edu



March 27-30, 2000 Secure Network Attached File System Design 2

Goal: secure distributed file system
• Existing file systems lack strong security

• Data travels unencrypted on the network
• Data is stored unencrypted on the disk

• Backups & superuser can read data!
• Intruder can read files off disk

• Users can’t verify that data is valid
• Intruder can falsify data on disk
• Intruder can put false data on the network

• Cryptography has become feasible for performance-
critical systems
• Use cryptographic techniques to secure the file system
• Run algorithms on client (if possible) and a server CPU 

associated with each disk



March 27-30, 2000 Secure Network Attached File System Design 3

Secure Network-Attached Disk (SNAD)
• Provides security mechanisms for an underlying file 

system
• SNAD by itself doesn’t handle

• Storage management
• File indexing structures

• SNAD relies on the “base” file system for these
• Provides structures for managing security in the file 

system
• Provides the necessary objects for securing the 

underlying file system
• Where possible, uses existing security techniques



March 27-30, 2000 Secure Network Attached File System Design 4

Basic concepts in SNAD
• For each block of data on disk, keep sufficient 

information to
• Decode the data (at the client)
• Validate the sender of the data
• Ensure data integrity

• Use encryption to keep data secret on disk and in transit
• Decryption only occurs at the client
• Sufficient information to decrypt only available at client!

• Allow anyone to read a block!
• Restrict writing to authorized users
• Goal: prevent compromise of data

• Impossible to protect against denial of service
• Loss of data may occur => make sure it’s noticed!



March 27-30, 2000 Secure Network Attached File System Design 5

High-level system design
• File objects

• Decoding information kept 
as a pointer to a key object

• All blocks in a file encrypted 
with same key

• Metadata kept as in a 
regular file system

• Certificate object
• Verifies writers
• Modification only necessary 

when new users / groups 
added

• Key objects
• Store keys to decrypt files
• Single key object can be 

used by multiple files

FileID1 Key_FileID

Block0

Block1

Block2

Block3

File4

KeyFile1

File2

File3

KeyFile2



March 27-30, 2000 Secure Network Attached File System Design 6

Key objects
• Key objects hold keys for 

encrypting & decrypting files
• One key object per 

“unique” group
• Many files can use one key 

object
• Key objects contain

• File encryption key
• Encrypted with each 

user’s / group’s public key
• Disk doesn’t have enough 

information to decrypt key
• Permission bits for 

modifying the key object
• On file open, appropriate line 

of key object sent to user

KeyFileID Owner
UserID0 E(Pub0,Key) Perm0

UserID1 E(Pub1,Key) Perm1

UserID2 E(Pub2,Key) Perm2

UserID3 E(Pub3,Key) Perm3

Encrypt
with key

Client

File
block

To disk



March 27-30, 2000 Secure Network Attached File System Design 7

Certificate objects
• One certificate object per disk
• One entry per user / group

• User ID
• Public key

• Convenience for creating 
key objects

• Future use for stronger 
security schemes

• HMAC (keyed hash) key
• Timestamp

• Prevents replay attacks 
for that user

• Kept per-user to avoid 
problems of clock skew

• Certificate Object written 
securely...

CertificateFileID Owner

UserID0 Pub0 HMAC_KEY0 Timestamp

UserID1 Pub1 HMAC_KEY1 Timestamp

UserID2 Pub2 HMAC_KEY2 Timestamp

UserID3 Pub3 HMAC_KEY3 Timestamp



March 27-30, 2000 Secure Network Attached File System Design 8

Read operation
• Client opens file

• Receives entry from key 
object (may be cached)

• Obtains file encryption key
• Client requests file block
• Disk reads & sends block

• Generates HMAC using 
requesting user’s HMAC key

• Updates user’s timestamp
• Client receives block

• Uses HMAC to verify the 
integrity of the block

• Uses key to decrypt the file 
block using RC5

HMAC

Block & File ID

User ID

Timestamp

Initialization vector

Data



March 27-30, 2000 Secure Network Attached File System Design 9

Write operation
• Client opens file

• Gets key object entry
• Obtains file encryption key

• Client encrypts file block
• Client prepends timestamp, 

user ID, block & file ID
• Client calculates HMAC & 

sends block to disk
• Disk receives block

• Verifies HMAC, timestamp, 
and write permission

• Updates timestamp
• Writes block to disk

• Metadata & data need not be 
stored together on disk...

HMAC

Block & File ID

User ID

Timestamp

Initialization vector

Data



March 27-30, 2000 Secure Network Attached File System Design 10

Creating a file
• Creating a file using an existing key object

• New file simply points to the existing key object
• All permissions & users listed in key object can use the 

new file
• Creating a file using a new key object

• Client sends contents of key object to disk
• Client needs only public keys of all users to be included in 

the new key object
• Client generates a new RC5 key and encrypts it with the 

public keys of all users in the key object
• File creation proceeds as above



March 27-30, 2000 Secure Network Attached File System Design 11

File system performance
• Clients and servers used nearly identical hardware

• ~350 MHz PowerPC
Faster chips available now

• Fast Ethernet
• 10000 RPM high-performance SCSI disks

• Real-time OS on both client & server
• One client, one server in tests

• Multiple clients & servers being tested currently
Performance appears to scale with additional clients

• Four different groups of experiments
• Reads & writes
• With and without encryption
• Different block sizes for each set of experiments



March 27-30, 2000 Secure Network Attached File System Design 12

File system performance (reads)
• Reads require

• On the client
• 1 decrypt
• 1 hash

• On the disk: 1 hash
• Reads limited by client 

decryption bandwidth
• Almost no performance 

difference for random I/O
• Slight performance drop for 

sequential I/O
• Can be solved by using 

more clients
• Disk CPU not heavily 

loaded
0

10

20

30

40

50

60

70

0 10000 20000 30000 40000
Block size (bytes)

Sequential (raw)
Sequential (crypto)
Random (raw)
Random (crypto)



March 27-30, 2000 Secure Network Attached File System Design 13

File system performance (writes)
• Writes require

• On the client
• 1 encrypt
• 1 hash

• On the disk: 1 hash
• Writes limited by client 

encryption bandwidth
• No performance difference 

for random I/O
• Slight performance drop for 

sequential I/O
• As with reads, more 

clients scale up bandwidth
• Faster clients => less 

performance gap
0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000
Block size (bytes)

Sequential (raw)
Sequential (crypto)
Random (raw)
Random (crypto)



March 27-30, 2000 Secure Network Attached File System Design 14

Security issues
• Data has end-to-end protection

• HMAC protects data in transmission
• Use of HMAC & timestamp prevents spoofing
• Compromised HMAC key => create undetectably fake 

data
• Solve problem using digital signature of HMAC value
• Requires more CPU time => slower

• Data on disk can’t be read
• All data stored encrypted
• Decryption keys not stored in the clear on the disk

• Denial of service still possible
• Flood disks with read (or write) requests
• Attack the disks with a sledgehammer...



March 27-30, 2000 Secure Network Attached File System Design 15

Future work
• Issues related to key objects

• Removing a user from a key object
• Re-encrypt file?
• Re-encrypt new data only?

• Key escrow - include an escrowed “user” in every object
• Stronger protection on writes

• Use HMAC signed by user’s private key
• Signature too slow - speed improvements?

• Integration into an underlying file system
• Currently planning to integrate into scalable file system 

being developed at UMBC
• Integrate into other file systems?



March 27-30, 2000 Secure Network Attached File System Design 16

Summary
• Strong security can be integrated into a scalable file 

system
• CPU performance (even for inexpensive CPUs) is 

sufficient to allow the inclusion of encryption
• Relatively few new structures are needed for encryption

• Performance with encryption isn’t much worse than 
without
Given the dangers of leaving data in the clear on 
storage systems, can we afford not to use end-to-end 
encryption?


