Holographic Recording

Past Problems with Holography

- Material No acceptable material and requirements only vaguely known
- Methods Complex and difficult, limited density
- Laser Extremely costly and unreliable
- Detector Cost and performance
- SLM Performance: slow frame rates otherwise unknown

Multiplexing

- Simple to implement
- Leverages existing technology
- Higher densities in thinner media (350 b/um2)

Array of Stored Holograms

First Generation Drive

Lucent Technologies Bell Labs Innovations

Capacity vs Format

(Blue laser)

Component Summary

High Power Semiconductor Q-well Lasers (developed for DVD-RAM)

Component Summary

• Detectors - CMOS <u>Active Pixel Sensor Arrays</u>

- Custom detector functioning
- Cheaper to produce than CCDs =>\$300 going to \$30
- Lower power, Less heat, Lower noise
- Optimization of data throughput

Developed for digital camera market.

Schematic of a single pixel

Component Summary

• SLM - DMD, Ferroelectric, LC -Silicon

- 2,000 frames/sec
- 80% light throughput, 30-50% 0th order
- Contrast, ~1000:1
- 1280 x 1024 pixels

Developed for display market.

HOE for Reference

Lucent Technologies Proprietary

1 x 2 foot area

Lucent Technologies Bell Labs Innovations

Rotation Setup

First "disks"

Experimental drive

Past Problems with Holography

• Material - No acceptable material and requirements only vaguely known

Methods - Complex and difficult, limited density

Laser - Extremely costly and unreliable

Detector - Cost and performance

SLM - Performance: slow frame rates otherwise unknown

Requirements for Media for Holographic Data Storage

Dynamic Range - High storage densities & rapid read rates

Photosensitivity - Rapid write rates

Millimeter Thickness - High storage densities

Dimensional Stability - High fidelity data recovery

Optical Flatness - High fidelity imaging of data pages

Low Scatter - Low levels of noise in data recovery

Processing - Heat/Solvent Free

Non-volatile readout

Long shelf-life of media

Long archival life of stored data

Environmental/thermal stability

Grating Formation in <u>Conventional</u> Photopolymer Systems

Mechanism

System consists of monomers dissolved in a matrix.

Holographic exposure produces a spatial pattern of photoinitiated polymerization.

Concentration gradient in

diffusion of species.

unreacted monomers induces

Advantages

- High photosensitivity
- Permanent holograms
- Low cost

Problems

- Recording-induced dimensional & bulk refractive index changes
- Limited Thickness
- Optical Quality & Scatter

Diffusion produces a compositional gradient, establishing a refractive index grating.

> Lucent Technologies Bell Labs Innovations

Bell Labs Proprietary Photopolymer System

Two Chemistry Approach

Media are fabricated from independently polymerizable and compatible matrix and imaging components

Resin consists of matrix precursors and imaging components

In-situ formation of cross-linked matrix

Cross-linked matrix: stable holographic gratings - long archival life

Compatible matrix and monomer systems: optical clarity and low levels of light scatter

Independent matrix and monomer systems: no cross-reactions- maximizes refractive index contrast.

Writing chemistry is independent of host formation chemistry

Optical Quality & Thick Media: In-Situ Matrix Formation:

Transmission Interferogram of Media

3" x 3", 1 mm-thick media

Routine fabrication of media with better than $\lambda/4$ / cm flatness enables high fidelity data storage and recovery

Optical Quality: Pixel Matching with Low Bit Error Rates

Expanded view of corner pixels

Lucent Technologies Bell Labs Innovations

Histogram of pixel intensities, a measure of fidelity of data recovery.

Raw BER ~ 10^{-6}

Tunable Dynamic Range with Controlled Dimensional Change

Measure of Dynamic Range: M/#

 $M/\# = N * (\eta)^{1/2}$

 $M/\# = (\Delta n) * (thickness)$

Require media with M/#'s > 10 with ~0.1% dimensional change.

M/# of a series of 200 μm thick media fabricated with writing monomers A-E

To enable 20 MB/s write rates:

 $\Delta n/(mJ/cm^2) \ge 1.2 \times 10^{-6}$

Range of Bell Labs Systems: $1.5 - 9 \ge 10^{-6}$

V Digital Data Storage Capabilities:

Spherical wave multiplexing used to record 4000 480 kbit data pages.

At 48 bits/um² density

 $\Delta y = 1.1 \text{ mm}$ $\Delta x = 9 \ \mu m$ 3.5 Amplitude Signal-to-Noise Ratio 3.0 2.5 2.0 1.5 1.0 ~50% Overhead Allows-Correction to BER ~10⁻¹² 0.5 0.0 1000 1500 2000 2500 500 Hologram Number

Present Status Photopolymer Media

Storage Density	Density Experiment 48 bits/μm ²	t <u>Improved</u> being tested	<u>Goal</u> ≥300 bits/µm ²
Dynamic Range (M/# at 1mm)	3-4	>20	10-15
Photosensitivity (Δn/(nJ/cm ²))	0.18	9	1.2
Millimeter Thickness	1 mm	1 mm	1 mm
Shrinkage	0.1%	0.1%	0.1%
Optical Flatness	<λ/4 /cm	<λ/4 /cm	$<\lambda/2$ /cm
Low Scatter (of ref. power)	<10-6	<10 ⁻⁶	<u>≤</u> 10 ⁻⁶
Heat/Solvent-Free Processing	\checkmark	\checkmark	\checkmark
Non-volatile readout	\checkmark	\checkmark	\checkmark
Shelf-life of media	tested >7 months	in test	>1 year
Archival life of stored data	tests underway		>30 years
Environmental/thermal stability	may require compensation		

Lucent Technologies Bell Labs Innovations

Summary

- Fundamental technology has been developed for a very high performance storage device.
- Need to develop product level proof of concept prototype (18 mo.)
- Starting company to focus the development.
- Partnering with industry leaders to start this process. Imation and a couple of drive companies.

