
Distributed Database Management Systems and the Data Grid

Heinz Stockinger
CERN, European Organization for Nuclear Research, Geneva, Switzerland

Institute for Computer Science and Business Informatics, University of Vienna, Austria
Heinz.Stockinger@cern.ch

tel +41 22 767 16 08

Abstract
Currently, Grid research as well as distributed
database research deals with data replication but
both tackle the problem from different points of
view. The aim of this paper is to outline both
approaches and try to find commonalities between
the two worlds in order to have a most efficient
Data Grid that manages data stored in object-
oriented databases. Our target object-oriented
database management system is Objectivity/DB
which is currently the database of choice in some
existing High Energy Physics (HEP) experiments as
well as in next generation experiments at CERN.
The characteristics of Data Grids are described,
especially within the High Energy Physics
community, and needs for Data Grids are defined.
The Globus toolkit is the Grid middle-ware on
which we base our discussions on Grid research.

1 Introduction
Grid computing in general comes from high-
performance computing, super computing and later
cluster computing where several processors or work
stations are connected via a high-speed interconnect
in order to compute a mutual program. Originally,
the cluster was meant to span a local area network
but then it was also extended to the wide area. A
Grid itself is supposed to connect computing
resources over the wide area network.

The Grid research field can further be divided
into two large sub-domains: Computational Grid
and Data Grid. Whereas a Computational Grid is a
natural extension of the former cluster computer
where large computing tasks have to be computed
at distributed computing resources, a Data Grid
deals with the efficient management, placement and
replication of large amounts of data. However, once
data are in place, computational tasks can be run on
the Grid using the provided data. The need for Data
Grids stems from the fact that scientific
applications like data analysis in High Energy
Physics (HEP), climate modelling or earth

observation are very data intensive and a large
community of researchers all around the globe
wants to have fast access to the data.

In the remainder of this paper we concentrate
on the specific needs of High Energy Physics which
can be regarded as a representative example for
other data intensive research communities. In
particular, we focus on the data intensive Large
Hadron Collider (LHC) experiments of CERN, the
European Organization for Nuclear Research in
Geneva, Switzerland. At CERN, recently the
DataGrid project [1] has been initiated in order to
set up a Data Grid. One of the working groups
explicitly deals with data management in a Data
Grid [2], i.e. in the DataGrid project. The tasks to
be solved include data access, migration and
replication as well as query estimation and
optimisation in a secure environment. In this paper
we deal with the replication aspects that need to be
solved in the DataGrid project. The Globus toolkit
[3] is the middle-ware which we will use for the
Grid infrastructure.

Scientific, data intensive applications use
large collections of files for storing data. As regards
the HEP community, data generated by large
detectors have to be stored persistently in mass
storage systems like disks and tapes in order to be
available for physics analysis. In some HEP
experiments, databases are used to store Terabytes
and even Petabytes of persistent data. The usage of
databases is still a unique feature for a Data Grid.
Let us compare this to the climate modelling
community: in that research domain large
collections of files are available and stored in so
called “flat files” without databases. This requires
additional data management tasks like keeping a
catalogue of available files whereas in some
physics experiments in the HEP community the
database management system (DBMS) takes care of
this.

Currently, some new experiments in HEP use
object-oriented databases management systems
(ODBMS) for data management. This is true for

1

BaBar (an experiment at the Stanford University
where currently about 150 TB of data are available
in Objectivity/DB [4]), as well as for the CERN
experiments, CMS and Atlas. For the CERN
experiments the final decision about the DBMS
(object-oriented or relational, which vendor, etc.)
has not been made yet, but the current software
development processes uses an object-oriented
approach and Objectivity for storing data
persistently. Consequently, we base our work on
object-oriented database management systems and
in particular Objectivity/DB.

Recently, Grid research as well as distributed
database research tackles the problem of data
replication but from a different point of view. The
aim of this paper is to outline their approaches and
to find commonalities in order to have a most
efficient Data Grid that can manage Petabytes of
data stored in object-oriented databases. We will
provide a first basis for such an effort. Since Data
Grids are very new in the research community, we
see a clear need for identifying the characteristics
and requirements of Data Grids and how they can
be met in a most efficient way. Special attention
will be given to data consistency and
communication issues.

Optimising data replication and access to data
over the WAN is not addressed sufficiently in
database research. In a DBMS there is normally
only one method of accessing data. For instance, a
data server serves pages to a client. For the Data
Grid, such a single access method may not be
optimal. Using an ODMBS also has some
restrictions, which are pointed out here and some
possible solutions are given.

We elaborate on different data consistency
models and how global transactions can contribute
to this. Global transactions are built on top of
transactions provided by a database management
system at a local site. As opposed to database
research, a separation of data communication is
required. In particular, global control messages are
exchanged by a message passing library whereas
the actual data files are transported via high-speed
file transfer protocols. A single communication
protocol is usually used in a commercial ODBMS
for exchanging small amounts of data within
database transactions. This communication
mechanism is optimised for relatively small
transactions but may not be optimised for
transferring large files over the WAN with high
performance control information exchanged
between distributed sites. We will propose solutions
for efficient, asynchronous replication and policies
with different levels of data consistency in a Data
Grid.

The paper is organised as follows. Section 2
will give an introduction to related work in the
database as well as the Grid community. The issues
raised there will be further analysed in later sections
of the paper. Section 3 deals with replica catalogues
and directory services that are used in Grid research
and points out how these techniques can be mapped
to the database approach. Section 4 discusses
Objectivity, its replication option and some general
ODBMS aspects. Since we assume that the usage of
Grid applications will not be fully transparent to the
end user, we dedicate Section 5 to possible
implications. Section 6 discusses data consistency
and replication methods known in database research
and practise. Possible update synchronisation
solutions are given in Section 7, which is followed
by concluding remarks.

2 Related work on data replication
We first identify some selected related work in the
database community as well in the Grid
community. From this we derive commonalities
and discuss briefly what the contribution for an
efficient Data Grid can be. The common aspects
will be dealt with throughout this paper.

2.1 Distributed DBMS research
Distributed database research basically addresses
the following issues.
• Replica synchronisation is based on relatively

small transactions where a transaction consists
of several read and/or write operations. In
contrast, in HEP a typical data production job
can write a whole file and thus a transaction
should be relatively “large”.

• Synchronous and asynchronous replication
(more details can be found in Section 6): Most
of the evaluation techniques are based on the
amount of communication messages needed.

• Cost functions for network or server loads are
rarely integrated into the replica selection
process of a DBMS.

• Rather low amount of data as compared to the
Petabyte scale of HEP.

Data access over the WAN and optimisation of
replicas is rarely addressed in database research. In
a DBMS there is normally only one internal method
of accessing data. For instance, a data server serves
pages to a client. In detail, a client sends a request
for data to the DBMS, and the DBMS (in particular
the data server) uses the implemented method for
serving the requested data. For read and write
access the same method is used, independent of the
amount of data accessed. For the Data Grid, a
single access method is not optimal depending on

2

the number of objects to be accessed from a file.
For accessing large amounts of data of a remote
file, the usage of a file transfer mechanism to
transfer the entire file and access the file locally can
be more efficient in terms of response time than
remotely accessing (and thus streaming) many
single objects of a file. More details will be given in
Section 5. Based on cost functions it can be even
more efficient to send the application program to
the remote data [5].

2.2 Grid research
The Globus project provides tools for Grid
computing like job scheduling, resource discovery,
security, etc. Recently, Globus is also working on a
Data Grid effort that enables fast and efficient file
transfer, a replica catalogue for managing files and
some more replica management functionality based
on files. Replica update synchronisation is not
addressed. In the Grid community there is a general
tendency to deal with replication at the file level,
i.e. a single file is the lowest granularity of
replication. This has the advantage that the structure
of the file does not need to be known by the
replication manager that is responsible for
replicating files from one site to another sites over
the WAN. This is also a valid simplification for
most of the HEP replication use cases and, thus, is
also the main focus of this paper. Related work in
the HEP community can be found in the two Data
Grid projects PPDG [6] and GriPhyN [7]. There is
still the possibility to deal with replication at the
object level which requires more sophisticated
techniques than file level replication. Object
handling is addressed in [8]. However, as soon as
data items in a replicated file are changed, these
changes have to be propagated to all other replicas.
This requires the knowledge about the data
structure of the file. Possible solutions to this
problem are given in Section 6.

2.3 Commonalities – the usage of a replication
middle-ware
Research results can be combined from both
communities by introducing a replication middle-
ware layer that manages replication of files (and
possibly some objects) by taking into account that
each site in a Data Grid will manage data locally
with a database management system. Thus, the
middle-ware is responsible for site to site (or inter-
site) replication and synchronisation whereas the
local DBMS takes care of transactions on local
data.

In Grids there are many tools for monitoring
applications and network parameters. These can be
used for filling the gap. Hence, a hybrid solution

between database and Grid research can be
identified.

One of the main questions to be answered is to
what level the replication middle-ware will be able
to replace a pure distributed DBMS approach where
also inter-site replication issues are dealt with.
Clearly, with a replication middle-ware there are
many more restrictions for update synchronisation
and transparent access to data. There will also be a
performance penalty for replica synchronisation.
However, an aim of the replication middle-ware is
to provide several relaxations of the concept of
transparent data access and data consistency. For
the remainder of the paper we assume to use such a
replication middle-ware for a Data Grid.

3 Replica catalogues and directory
services
Access to data is most important for data analysis in
the HEP as well as in any other scientific
community. Access to replicated data requires
specific data and meta data structures and can be
addressed in different ways. A DBMS has an
internal access method whereas in a Grid
environment these data structures are provided
explicitly as a service to the end user. In this
section, emphasis is put on how to combine
techniques from a Data Grid and a database
environment.

The management of replicas requires certain
meta data structures that store information about the
distribution of and access to data. Whereas an
object location table [9] can be the data structure
for managing objects, for files we can use a
directory service holding a replica catalogue.

There are many ways to deal with replica
catalogues and many different protocols and
implementations are available. We want to limit
ourselves here to the approach used by Globus.
Since in the Globus Data Grid effort the replica
catalogue is implemented by an LDAP directory
service, we dedicate this section on analysing how a
directory service can be used for file replication
where files are managed by a local DMBS.

In principle, a DBMS provides, by definition,
a catalogue of files that are available. As for
Objectivity/DB this is an explicit file catalogue. An
LDAP directory service basically does the same for
flat files which may or not have connections
(associations between objects in two or more files)
to each other. Now the questions arise what is the
use of LDAP when data are stored in a DBMS? In
order to answer this question, we identify the key
problems that need to be addressed in a

3

heterogeneous Data Grid environment with many
sources of data: managing replicas of files and
dealing with heterogeneous data stores.
• Managing replicas: As for Objectivity, a file

catalogue exists. The granularity for replication
is now assumed to be on the file level. When
multiple copies of a file exist, they have to be
introduced to a global replica catalogue which
is an extended version of the native file
catalogue of the DBMS. Furthermore, a name
space has to be provided that takes into account
multiple replicas. Both features are
enhancements to a DBMS that only considers
single sources of information. Note that we
assume here that the underlying DBMS does
not support file replication. Using the LDAP
protocol and a database backend, the required
replica catalogue information can be stored.
Another approach is to simply build the
catalogue and the access methods with the
native schema of the DBMS and store the
replica information in a particular file of the
DBMS.

• Heterogeneous data stores: The diversity of
the HEP community requires an approach
which supports heterogeneous data stores since
different kinds of data may be stored in
different formats and also in data stores of
different vendors. Even the two different
database paradigms, relational and object-
oriented, should be supported. In this case, a
standard protocol for directory information like
LDAP seems to be a good choice since replica
location information can be accessed in a
uniform way without the knowledge of the
underlying data store.

Combining a DBMS with a directory service means
to expose the replica catalogue to a larger user
community, where it is not necessary to have a
database specific front end to access the directory
information. However, the LDAP protocol still
needs to have a database backend where the file
information is stored and concurrency mechanisms
have to be established. The database backend can
either be a vendor specific and LDAP specialised
database, or any database of choice like Oracle or
Objectivity/DB. The usage of a directory service
allows an open environment and hence allows the
integration of data sources of different kinds. Note
that the problem of accessing heterogeneous data
sets is not addressed here and may require
mediators for data integration. However,
introducing LDAP is at least a starting point for
extensibility.

Another point important point in replica
management is synchronisation of single sites and

keeping replica catalogues up to date. Using the
LDAP directory service also implies that each site,
that stores replica catalogue information, runs an
LDAP server locally. LDAP commands can be used
for synchronisation. For a homogeneous database
approach, where only a single DBMS is used to
store the entire data of the Data Grid, it may not be
necessary to have an LDAP server for
synchronisation - any communication mechanism
for exchanging synchronisation information
between sites in the Data Grid is sufficient.
However, since each data site using a directory
service will have its own LDAP server, this server
can also be used as a synchronisation point for
distributed sites. Whenever a file is introduced to a
site, this information has to be made public within a
global name space spanning all the other sites in the
Data Grid. The replica synchronisation protocol to
use depends on the data consistency requirements
imposed by the application.

We conclude that the usage of LDAP in
combination with a DBMS seems to be useful in a
heterogeneous environment and for synchronisation
of sites holding replica catalogue information.

4 Objectivity/DB
Since Objectivity is the main ODBMS system we
are referring to in this paper, we dedicate this
section to explaining more details of this product
and problems that we were confronted with when
using Objectivity for wide area data replication.
Some of the problems mentioned are specific to all
object-oriented data stores while others are
Objectivity specific. However, the usage of an
ODBMS allows us some simplifications like a
global namespace and a global schema information.

Objectivity/DB is a distributed, object-
oriented DBMS which has a Data Replication
Option called DRO. This option is optimised for
synchronous replication over a local area network.
In this section, we briefly describe DRO and its
drawbacks, and state complications that one comes
across when persistent objects have to be replicated.

4.1 Objectivity’s data replication option
DRO provides a synchronous replication model on
the file level, i.e. entire Objectivity databases which
are mapped to physical files can be replicated. Note
that in the following section we use the term replica
to refer to a physical instance (a copy) of an
Objectivity file. There are basically two ways to use
DRO: data can be written first, and then
synchronised and replicated (populate - replicate).
Multiple replicas can be created and synchronised
and the data can be written into all the replicas at

4

the same time (replicate - populate). Once a
replica is synchronised with another one, all the
database transactions on a single replica are
synchronised with other replicas.

Objectivity/DRO performs a dynamic quorum
calculation when an application accesses a replica.
The quorum which is required to read or write
replicas can be changed, which provides some
flexibility concerning data consistency. The usage
of a quorum method is well established in database
research and goes back to an early paper [10].

There is one possibility to overcome the
immediate synchronisation. A replica can be set to
be off-line. However, only if a quorum still exists,
data can be written to the off-line replica. There is
no clean way in DRO to perform a real
asynchronous or batch replication where you
specify a synchronisation point in time. An
asynchronous or batch replication method allows
replicas to be out of sync for a certain amount of
time. Reconciliation of updates is only done at
certain synchronisation points, e.g. every hour. The
lack of such an explicit asynchronous replication
method is one of the reasons why DRO is not
considered as a good option for WAN replication.

Like many commercial databases, Objectivity
does not provide any optimisation for accessing
replicas. The replica catalogue only contains the
number of copies and the location of each single
copy of a file. Once an object of a replicated file
has to be accessed, Objectivity tries to get the first
copy of the file which appears in the catalogue. It
does not examine the bandwidth to the site nor
takes into account any data server load. Some
operations such as database creation require all
replicas to be available. When we talk about
Objectivity in any other section or subsection of
this paper we mostly ignore the fact that DRO
exists and thus see Objectivity only as a distributed
DMBS with single copies of a file. However, these
single copies of a file can exist at distributed sites in
the Data Grid and thus remote access to Objectivity
data is possible.

4.2 Partial replication and associations
In this paper, as well as in many Grid
environments, replication is regarded to be done on
the file rather than on the object level and hence a
file is regarded to be the smallest granularity of
replication. In Objectivity, single objects are stored
in containers. Several containers are stored together
in an Objectivity database which corresponds to a
file. Each object can have associations (also called
links or pointers) to other objects which may reside
in any database or container. Let us now assume
that two objects in two different files are connected

via one association. When an Objectivity database
(a file) is replicated, this association gets lost when
only one of the files is replicated. Note that there is
still the possibility of remotely accessing objects.
Hence, the replication decision has to be carefully
made and possible associations between objects
have to be considered. This may result in
replicating a set of files in order to keep all the
associations between files. Furthermore, this also
imposes severe restrictions on partial replication
where only particular objects of a file are
replicated. Again, when a certain set of objects is
selected which does not have associations to objects
which are not in the set, the replication set is
association safe. This is a particular restriction of
object-oriented data stores and does not only hold
for Objectivity.

This is also an import difference and
complication compared to a relational DBMS.
Whereas in an ODBMS an object can be stored in
any file, in a relational database data items are
stored in tables that have well defined references to
other tables.

4.3 The Objectivity file catalogue
The integration of files into the native Objectivity
file catalogue is done with a tool called ooattachdb
which adds a logical file name of the physical
location into the catalogue. Furthermore, it
guarantees that links to existing Objectivity
databases are correct. The schema of the file is not
checked. This feature is used when a file created at
one site has to be integrated into the file catalogue
of another site.

Since the native catalogue only has a one-to-
one mapping from one logical to one physical file,
replicas are not visible to the local site (not taking
into account DRO). Furthermore, it is possible to
have single links from one site to another one. For
instance, site 1 has a file called X and this file shall
be shared (not replicated) between several sites.
The file name and the location can be integrated
into the local file catalogue and a remote access to
the file can be established. Note that this requires an
Objectivity Advanced Multi-threaded Server
(AMS) running or the usage of a shared file system
like AFS that connects both sites. The AMS is
responsible for transferring (streaming) objects
from one machine to another one and thus
establishes a remote data access functionality. We
want to address the more general solution where no
shared file system is available.

In the HEP community it is generally agreed
and proven that DRO is not optimised for the use in
a WAN. Hence, all our discussions here neglect the
DRO of Objectivity/DB and we conclude that the

5

current implementation of DRO is not a feasible
solution for the HEP community.

5 Implications for Grid applications
We claim that the usage of files that are replicated
in a Data Grid will have implications for Grid
applications that are new to the HEP user
community. We want to address explicitly some
possibilities of how a replicated file instance can be
accessed and give some implications of read ahead
assumptions.

5.1 Accessing replicated files
A standard way to access a database in Objectivity
is to issue an “open” command on the physical file.
This concept is unique for the object-oriented
database concept and very much resembles the
UNIX way of accessing files. However, if a single
object is accessed, the file which it belongs to is
transparent to the user. Once an object handle or
reference is available, the object ID to this object
contains information about the file to which it
belongs. Since the native Objectivity “open” works
on the Objectivity catalogue rather than on the
global replica catalogue, the user does not have
access to the whole name space in the Data Grid.
The “open” has to be adapted to do the lookup and
the data access via the directory service. Plug-ins
are required to transfer the requested data to the
user application. This is still an open issue and
needs further research concerning:
• caching files locally
• adding the file to the local catalogue and

creating a replica: this may only be useful
when data are accessed frequently

• transferring the whole file versus only sub
sets of a file

Objectivity provides functionality for transparently
accessing data stored on tapes. This is done by
using an extension of the AMS backend that checks
if a file is locally stored on disk and fetches the file
from tape if it is not found on disk. This
functionality can be extended to go to a global
replica catalogue and fetch files from remote sites.
This would provide a transparent way of accessing
replicas of files. We will further investigate this
option.

5.2 Read ahead
Reading data ahead (pre-fetching) before using
them is a commonly used optimisation technique.
However, this imposes another problem, which we
want to illustrate by an example. Let us assume a
file size of 2 GB and a program that wants to access
5 objects in the file where each object has a size of

10 kB. It is obvious that we want to transfer the
requested objects rather than the whole file, and
having unnecessary information transferred over
the network. There is a clear need for a mapping
instance that maps requested objects to files in
order to determine in which files the requested
objects reside. Based on the type (class definition in
the data definition language of the ODBMS) of the
objects it can be roughly determined how much
data needs to be transferred over the network
(depending on how much dynamically allocated
information is stored in the object). This problem
cannot be solved when only the “open” file operator
is used. Only at runtime the application can
determine which data are needed and a pre-fetching
of requested objects can tackle this problem. We
can summarise this as a query optimisation problem
where access to the data shall be optimised by
providing only the necessary objects that are
required. Related work can be found [11,12].

Pre-fetching can also be addressed at the file
level. We assume that a user is aware that files are
distributed to different sites in the Grid and the time
to access data very much depends on the location of
the requested file. We further assume that an object
in a file can only be accessed when the whole file is
available locally at the client site. This is assumed
for simplicity and we neglect the fact of accessing
some parts of a file remotely. In the worst case, all
the requested files are available remotely and need
to be transferred to the local site. If the size of a file
is large and also the amount of requested files is
high, the I/O part of an application takes a long
time before the actual computation on the data can
be done. The application can give a hint to the
system to tell it how long it would need to serve the
required files and when the computation can be
started. Thus, data can be pre-fetched before the
application is using the data. In the Grid
environment, the necessary information for pre-
fetching files can be provided by diverse
monitoring tools and information services.

This is also a sociological aspect of Grid
applications in the sense that a user of a data-
intensive application requests its data in advance.
One can also reserve the network bandwidth and
start the application at a certain point in the future.

6 Data consistency and replication
methods
One of the main issues in data replication is the
consistency of replicas. Since a replica is not just a

6

simple copy of an original but still has a logical
connection to the original copy, we have to address
the data consistency problem. The easiest way to
tackle the consistency problem is in the field of
read-only data. Since no updates of any of the
replicas are done, the data is always consistent. We
can state that the consistency can reach its highest
degree. Once updates are possible on replicas, the
degree of data consistency normally has to be
decreased (provided we have read and write access
to data) in order to have a reasonable good response
time for accessing data replicated over the WAN.
Clearly, consistency also depends on the frequency
of updates and the amount of data items covered by
the update. Thus, we can state that the degree of
data consistency depends on the update frequency,
amount of data items covered by the update and the
expected response time of the replicated system, i.e.
the Data Grid.

Let us now identify in more detail the
different consistency options which are possible
and which are reasonable for HEP and within the
DataGrid project.

In this section we also introduce the term
global transaction which has to be distinguished
from a local transaction. A local transaction is done
by the DBMS at the local site whereas a global
transaction is an inter-site transaction which spans
multiple sites and thus multiple database
management systems. Furthermore, local
consistency is maintained by the DBMS whereas
the global consistency spans multiple sites in the
Data Grid.

6.1 Synchronous replication
The highest degree of consistency can be
established by having fully synchronous replicas.
This means that each local database transaction
needs to get acknowledgements from other replicas
(or at least a majority of replicas). In practice, as
well as in the database research community, this is
gained by global transactions which span multiple
sites. Objectivity/DRO supports such a replication
model. Each time a single local write transaction
takes place, the 2-phase-commit protocol and
normally also the 2-phase-locking protocol are used
to guarantee serialisability and global consistency.
This comes at the cost of relatively worse
performance for global writes compared to local
writes with no replication at all. Consequently, one
has to decide carefully if the application requires
such a high degree of consistency.

We derive from this statement as well as from
the current database literature that the type of
replication protocol and hence the data consistency
model has to be well adapted to the application.

Data in the DataGrid project will have different
types and not all of them require the same
consistency level. In this paper, we try to point out
briefly where different replication policies are
required. Furthermore, we claim that a replication
system of a Data Grid should not only offer a single
policy but several ones which satisfy the needs of
having different data types and degrees of
consistency.

For a middle-ware replication system it is
rather difficult to provide this high degree of
consistency since global, synchronous transactions
are difficult to establish. Within a DBMS a global,
synchronous transaction can be an extension of a
conventional, local transaction, i.e. the DBMS
specific locking mechanism is extended to the
replicas. Since a distributed DBMS like Objectivity
has built-in global transactions, no additional
communication mechanism like sockets or a
message passing library is required. Hence, the
performance for an integrated distributed DBMS is
superior to middle-ware replication systems that
have to use external communication mechanisms.

Now the following question arises: why not
use a distributed DBMS like Objectivity to handle
replication? Several points are already covered in
Section 4 but there is another major point.
Objectivity does not provide flexible consistency
levels different kinds of data. Hence, we aim for a
hybrid solution where a local site stores data in a
DBMS which also handles consistency locally by
managing all database transactions locally. A Grid
middle-ware is required to provide communication
and co-ordination between the local sites. The
degree of independence of a single site needs to be
flexibly managed. A form of global transaction
system is necessary. Let us illustrate this by an
example. Some data are allowed to be out of sync
(low data consistency) whereas other types of data
always need to be synchronised immediately (high
consistency). Thus, global transactions have to be
flexible and do not necessarily always have to
provide the highest degree of consistency.
Furthermore, a site may even want to be
independent of others once data are available.

6.2 Asynchronous Replication
Based on the relative slow performance of write
operations in a synchronously replicated
environment, the database research community is
searching for efficient protocols for asynchronous
replication at the cost of lower consistency.
Currently, there is no standard for replication
available, but a few commonly agreed solutions:
• Primary-copy approach: This is also known

as “master-slave” approach. The basic idea is

7

that for each data item or file a primary copy
exists and all the other replicas are secondary
copies [13]. The updates can only be done by
the primary copy which is the owner of the file.
If a write request is sent to a secondary copy,
the request is passed on to the primary copy
which does the updates and propagates the
changes to all secondary copies. This policy is
implemented in the object data stores Versant
[14] and ObjectStore [15]. Also Oracle
provides such a feature. The primary-copy
approach provides a high degree of data
consistency and has improved write
performance features compared to synchronous
replication because the lock on a file has not to
be agreed among all replicas but only by the
primary copy.

• Epidemic approach: User operations are
performed on any single replica and a separate
activity compares version information (e.g.
time-stamps) of different replicas and
propagates updates to older replicas in a lazy
manner (as opposed by an eager, synchronous
approach) [16]. Thus, update operations are
always executed locally first and then the sites
communicate to exchange up-to-date
information. The degree of consistency can be
very low here and this solution does not
exclude dirty reads or other possible database
anomalies. Such a system can only be applied
for non time-critical data since the propagation
of updates can also result in conflicts which
have to be solved manually.

• Subscription and relatively independent
sites: Similar to the epidemic approach,
another policy is that a site only wants to have
data and does not care about consistency at all.
When any other site does updates on a
particular file, only certain sites are notified of
the updates. This follows a subscription model
where a site subscribes explicitly to a data
producing site. A site that has not subscribed is
itself responsible to get the latest information
from other sites. This allows a site to do local
changes without the agreement of other sites.
However, such a site has to be aware that the
local data is not always up-to-date. A valid
solution to this problem is to provide an export
buffer, where the newest information of a site
is stored, and an import buffer, where a local
site stores all the information that needs to be
imported from a remote site. For instance, a
local site has finished writing 10 different files
and puts the file names into the export buffer.
A remote site can than be notified and transfers
the information from the export buffer to its

local import buffer and requests the files if
necessary. This approach allows more
flexibility concerning data consistency and
independence for a local site. A site can decide
itself which data to import and which
information to filter. Furthermore, a data
production site may not export all the locally
available information and can filter the export
buffer accordingly. A valid implementation of
this approach can be found in the Grid Data
Management Pilot (GDMP) [17].

6.3 Communication and Transactions
As outlined above, there is a clear need for global
transactions. Such a transaction does not
necessarily need to create locks at each site, but at
least a notification system is required to automate
and trigger the replication and data transfer process.
In general, there is a clear separation between
exchanging control messages which organise locks
and update notifications, and the actual data
transfer. This is an important difference to current
database management systems. Replication
protocols are often compared by the amount of
messages sent in order to evaluate their
performance. The type of a message is dependent
on the DBMS. A message of the same type is then
sent to do the actual update using the same
communication protocol. In Data Grids where most
of the data are read-only, we can divide the required
communication into the following two parts. This
concept is also realised in GDMP [17].
• control messages: These are all messages that

are used to synchronise distributed sites. For
instance, one site notifies another site that new
data are available, update information is
propagated, etc. To sum up, replication
protocols are using these control messages.

• data transfer: This includes the actual transfer
of data and meta data files from one site to
another one.

This separation is similar to the FTP protocol where
we also have this clear separation between the two
tasks [18]. The main point for this separation is to
use the most appropriate protocol for a specific
communication need. Simple message passing is
appropriate for exchanging control messages
whereas a fast file transfer protocol is required to
transfer large amounts of (large) files. In a Grid
environment both protocols are provided. To be
more specific, in Globus the GlobusIO library can
be used for control messages and Grid-FTP
implementation [19], which is based on the WU-
FTP server and the NC-FTP client, serves as the
data transport mechanism. A single communication
protocol used in an ODBMS like Objectivity may

8

not be optimal for transferring large files over the
wide area network.

6.4 Append Transactions
Based on the HEP requirements, we see a need to
increase the traditional DBMS transaction system
by a new transaction, called append transaction.

In a conventional DBMS there exist only two
different kinds of transactions: read and write
transactions. A write transaction itself can either
write new data (append) or update existing data. In
terms of data management, these two operations
require different tasks. Whereas an update
transaction has to prevent concurrent users from
reading old data values, an append transaction only
has to make sure that the data item to be added
satisfies a uniqueness condition. A uniqueness
condition is a condition which guarantees that a
data item appears only once and can be identified
uniquely. In HEP this condition can be satisfied by
the following feature: sites often write data
independently and do not change any previously
written data items. Since different sites will write
different data by definition (thus we can derive an
inherent parallelism in the data production phase),
this uniqueness condition will hold. This is true for
HEP specific reconstruction software as well as
simulated data created via Monte Carlo processes.

Objectivity provides object IDs and unique
database IDs for single files. Hence, it has to be
guaranteed that newly created objects do not have
the same OID (the same is true for database IDs).
Since an append transaction does not have to lock
the whole file but only the creation of new objects,
it can allow multiple readers at the same time while
an append transaction creates new objects. This
again allows for having different consistency and
response time levels.

6.5 File replication with Objectivity using a
replication middle-ware
Driven by real world replication requirements in
High Energy Physics, we want to give a possible
approach for replication of read-only Objectivity
database files. In principle, replication of
Objectivity database files does not impose a big
problem concerning data consistency. Each site has
to have its Objectivity federation that takes care of
managing files and the Objectivity file catalogue.
There are several ways to deal with a file
replication of read-only files. It has to be
guaranteed that a unique Objectivity naming
scheme is applied by all sites in the Data Grid. We
outline two possible approaches.

Each site can create a database file. In order to
provide unique database names, a global transaction

has be called before the actual file creation. The
transaction checks in each local Objectivity file
catalogue if the file already exists. If not, the site
creates the database locally and initiates a database
creation at the remote sites as well. All remote
replicas of a specific file have to be locked since
only one site can write into a file at a time. Once
the local site has completed the writing process, the
lock on the remote replicas is released. For such a
system we require a replica catalogue at each site in
addition to the local federation catalogue. In the
replica catalogue a flag is needed for initiating a
lock on a file. The actual file locking has to be
implemented with a call to the Objectivity database.
Furthermore, each transaction on a file in the
Objectivity file catalogue has to be done via the
replication catalogue. Consequently, a database
user is not allowed to use the conventional
Objectivity “open” to create a new file but has to
contact the replica catalogue in order to write a new
database file. All database transactions have to go
through a high level API that always contacts the
replica catalogue first.

An easier approach, which is currently used in
the CMS experiment, is the allocation of
Objectivity database IDs to different remote sites.
This guarantees only a unique database-ID
allocation but not a unique name for a database.
Consequently, in order to have a fully automatic
system, a unique name space has to be provided.
This can only be guaranteed if on creation of a
database file the name is communicated to other
sites and then agreed on. However, another solution
is to provide a naming convention like adding the
host and domain name of each local site to the
database name. This also guarantees unique file
names. The populate-replicate approach also does
not require the locking of remote replicas which
allows for a faster local write. This is a common
approach for asynchronous replication.

7 Possible Update Synchronisation for a
Data Grid
In the previous sections we have mainly addressed
replication of read-only files. Although most of the
data in the High Energy Physics are ready-only,
there will be some replicated data that will change
and thus need update synchronisation. In this
section we provide some possible update
synchronisation strategies which can be
implemented using a replication middle-ware for
the Data Grid.

We have already described that it is rather
difficult for a middle-ware system to do replica

9

update synchronisation on the object rather than on
the file level since a middle ware system cannot
access DBMS internals like pages or object tables.
A common solution in database research is to
communicate only the changes of a file to remote
sites. Since an Objectivity database file can only be
interpreted correctly by a native Objectivity
process, the file itself appears like any binary file
and a conventional process does not see any
structure in the file. We call this the binary
difference approach. As second possibility to
update data stored in an ODBMS, we use an object-
oriented approach which requires knowledge about
the schema and data format of the files to be
updated. Both approaches are outlined in this
section.

7.1 Binary Difference Approach
There is also the possibility to use a tool called
XDelta [20], which produces the difference
between any two binary files. This difference can
than be sent to the remote site. This site can then
update the file, which is out of date, by merging the
diff file with the original data file. XDelta is a
library interface and application program designed
to compute changes between files. These changes
(deltas) are similar to the output of the "diff"
program in that they may be used to store and
transmit only the changes between files. However,
unlike diff, the output of XDelta is not expressed in
a human-readable format - XDelta can also apply
these deltas to a copy of the original file(s).

7.2 Object-oriented approach
Another approach is to create objects that are aware
of replicas. In principle, an object can be created at
any site and the creation method of this object has
to take care of or delegate the distribution of this
object. The class definition has to be designed in a
way that there is some information on the amount
and the site of replicas. For instance, an object
should be created at site 1 and replicated to the sites
X and Y. A typical creation method can look like
follows:

object.create (site1, siteX,
siteY);

The advantage of this approach is that all the
necessary information is available to create the
object at any site. When an update on one of the
objects is done, the update function has to be aware
of all the replicas and the sites that need to be
updated. This can be compared to the stored
procedure approach which is known in the
relational database world. In principle, the model

presented here has similar ideas. A local site may
update immediately and can store the updates into a
log file. Based on the consistency requirement of
remote sites, the log information is sent to the
remote sites which apply the same update function
as the original local site.

The update synchronisation problem is then
passed to a ReplicatorObject that is aware of
replicas and the replication policy. The
ReplicatorObject in turn can provide different
consistency levels like updating remote sites
immediately, each hour, day, etc. When large
amounts of data are used, there may be most likely
a scalability problem of managing all the logging
information. However, since each object is
identified by a single OID, only the parameters of
an update method together with the OID have to be
stored.

object.update_parameter_x (200);
// OID = 38-23-222-442

The log file stores the triple (x/38-23-222-442/200)
where the first argument is the parameter of the
object, the second the OID and the third the new
value of the parameter.

The modus operandi for communicating the
changes is like the following. A local site gains an
exclusive, global lock on the file and updates the
required objects. In parallel the log file is written.
The file itself is transferred to remote sites with an
efficient file transfer protocol whereas the remote
sites are notified via control messages.

Since such a replication policy is rather cost
intensive in terms of exchanging communication
messages sending data, it should only be applied to
a relatively small amount of data. In the HEP
environment, there exist many meta data sources
like replica catalogues, indices etc. which require a
high consistency of data. For such data this
approach is useful.

8 Conclusion
The data management efforts of the two research
communities distributed databases and Grid deals
with the problem of data replication where the Grid
community specifically deals with large amounts of
data in wide area networks. In the HEP community,
data are often stored in database management
systems, and it is appropriate to try to understand
the research issues of both communities: distributed
databases and Grid; analyse differences and
commonalities, and combine common ideas to form
an efficient Data Grid. We have presented research
issues and possible solutions. Thus, we provide a

10

first basis for the effort of combining both research
communities.

Acknowledgement
We want to thank colleagues from the following
groups for fruitful discussions: DataGrid work
package “Data Management” (including CERN,
Caltech, LBL and INFN), CMS Computing group
(CERN, Princeton and Caltech), Globus project in
Argonne and ISI, BaBar experiment at SLAC and
colleagues taking part in the Data Grid discussions
in the Grid Forum 5 in Boston.

References
[1] The European DataGrid Project :

http://www.cern.ch/grid/
[2] Wolfgang Hoschek, Javier Jaen-Martinez,

Asad Samar, Heinz Stockinger, Kurt
Stockinger, Data Management in International
Data Grid Project, 1st 1EEE, ACM
International Workshop on Grid Computing
(Grid'2000), Bangalore, India, 17-20 Dec.
2000.

[3] The Globus Project, http://www.globus.org
[4] Objectivity Inc., http://www.objectivity.com
[5] Heinz Stockinger, Kurt Stockinger, Erich

Schikuta, Ian Willers. Towards a Cost Model
for Distributed and Replicated Data Stores,
9th Euromicro Workshop on Parallel and
Distributed Processing PDP 2001, IEEE
Computer Society Press, Mantova, Italy,
February 7-9, 2001.

[6] Particle Physics Data Grid (PPDG),
http://www.ppdg.net

[7] GriPhyN, http://www.griphyn.org
[8] Koen. Holtman, Peter van der Stok, Ian

Willers. Towards Mass Storage Systems with
Object Granularity. Proceedings of the IEEE
Mass Storage Systems and Technologies,
Maryland, USA, March 27-30, 2000

[9] Koen Holtman, Heinz Stockinger, Building a
Large Location Table to Find Replicas of
Physics Objects, Proc. of Computing in High

Energy Physics (CHEP 2000), Padova, Febr.
2000.

[10] D.K. Gifford. Weighted Voting for replicated
data. ACM-SIGOPS Symp. on Operating
Systems Principles, Pacific Grove, December
1979.

[11] Kurt Stockinger, Dirk Duellmann, Wolfgang
Hoschek, Erich Schikuta. Improving the
Performance of High Energy Physics Analysis
through Bitmap Indices. 11th International
Conference on Database and Expert Systems
Applications , London - Greenwich, UK,
Springer-Verlag, Sept. 2000.

[12] L. M. Bernardo, A. Shoshani, A. Sim, H.
Nordberg. Access Coordination of Tertiary
Storage for High Energy Physics
Applications. IEEE Symposium on Mass
Storage Systems, College Park, MD, USA,
March 2000.

[13] Yuri Breitbart, Henry Korth. Replication and
Consistency: Being Lazy Helps Sometimes,
Proc. 16 ACM Sigact/Sigmod Symposium on
the Principles of Database Systems, Tucson,
AZ 1997.

[14] Versant, Inc. http://www.versant.com/
[15] ObjectStore http://www.exceloncorp.com

/products/objectstore.html
[16] Divyakant Agrawal, Amr El Abbadi, R.

Steinke: Epidemic Algorithms in Replicated
Databases (Extended Abstract). PODS 1997,
1997.

[17] Asad Samar, Heinz Stockinger. Grid Data
Management Pilot (GDMP): A Tool for Wide
Area Replication, IASTED International
Conference on Applied Informatics (AI 2001),
Innsbruck, Austria, 2001.

[18] J. Postel, J. Reynolds, RFC 959: File Transfer
Protocol (FTP), October 1985.

[19] Globus Project, Universal Data Transfer for
the Grid, White Paper, 2000.

[20] Joshua P . MacDona ld , XDel ta ,
http://www.XCF.Berkeley.EDU/~jmacd/xdelt
a.html

11

Contact Sheet

Heinz Stockinger
CERN
CMS Experiment, Computing Group
Bat. 40-3B-15
CH-1211 Geneva 23
Switzerland

Heinz.Stockinger@cern.ch
tel +41 22 767 16 08
fax +41 22 767 89 40

12

	Welcome
	Author Index
	Session Index
	Papers
	Grids
	Stockinger
	Allcock
	Moore

	Storage Applications A
	Jones
	Stone
	Lautenschlager

	File Systems
	Iyengar
	Lim
	Ruwart

	Benchmarks
	Andrews
	Gabrielyan
	Bancroft

	Storage Applications B
	Bird
	Allsman
	Sterling

	Emerging Technologies
	Madhyastha
	Zhang
	Chao

	Bratt Luncheon Talk
	Posters
	Hughes
	Andrews
	Tse
	Cha
	Neil
	Shinkai
	Dashti
	Mueller
	Dwivedi
	Haddon

	Vendor Presentations
	Naegel
	Carino

