
Architecture of the Secure File System

James P. Hughes
Storage Technology Corporation

jim@network.com

Christopher J. Feist
Storage Technology Corporation

chris.feist@network.com

October 23, 2000

Abstract

The Secure File System (SFS) provides transpar-
ent, end-to-end encryption support to users accessing
files across any network. In this paper the architec-
ture of the Secure File System is described.

1 Introduction

In this paper we describe the architecture of the Se-
cure File System (SFS) which provides end-to-end
encryption and key management support to users ac-
cessing files on local or networked file systems. The
current architecture consists of an access control list,
smart card authentication, a Group Server, and SFS
Client. In the rest of this paper we describe previ-
ous work in encrypting file systems and outline the
current Secure File System architecture.

2 Previous Work

This section reviews other research and product ef-
forts in encryption for shared, persistent storage.

2.1 Volume Encryptors

Several disk encryption systems are available which
use a device driver layer (called a filter driver in Win-

dows) to encrypt and decrypt data as it is sent to and
received from a disk. These systems include PGP
Disk from Network Associates, the Secure File Sys-
tem by Peter Gutmann at the University of Auck-
land [1], and TorDisk by Alexander Tormasov [2].
Though convenient for protecting whole disk vol-
umes, volume encryptors do not allow access con-
trols on fine-grain objects like directories and files.

2.2 File Encryptors

To achieve end-to-end encryption the encryption can
be done in the presentation layer or application layer.
Brute force encryption at the application layer re-
quires that all applications that need to work with
encrypted files be rewritten to include support for
encryption. This is clearly unacceptable for storage
systems.

Files may be encrypted on a per-file basis us-
ing tools like PGP, developed by Phil Zimmerman
[3]. Though useful for the short-term encryption re-
quirements of a single user, it is not generally use-
ful when managing shared information stored for the
long term because it is based on identity of the con-
sumer. If the consumer is not directly known or
changes (as is the case in many organizations) then
any PGP-encrypted file must be re-encrypted.

277



2.3 File System Encryptors

The Cryptographic File System (CFS) [4] was de-
veloped by Matt Blaze at AT&T. CFS allows users
to encrypt files on a per-directory basis using a sin-
gle key. An NFS layer implemented the encryption,
decryption, and key management locally on a trusted
client: files were encrypted while in transit between
the trusted client the untrusted network and server.
In the original CFS implementation, sharing files re-
quire sharing the keys. The key distribution problem
makes this difficult. Blaze proposed a key manage-
ment scheme that helps address these issues in [5].

The Transparent Cryptographic File System
(TCFS) [6] was developed at the University of
Salerno, Italy. It improves on the CFS design by re-
moving the NFS client encryption layer but still has
a limited key management scheme.

The Satan File System was developed at Carnegie-
Mellon University. The implementation employs C
library modifications that read a file into main mem-
ory, decrypt the data and then deliver it to the ap-
plication. The basic idea is to link the applications
against a set of libraries that provide encrypted ver-
sions of standard library calls. This solves the prob-
lem of rewriting the applications, but the applications
still need to be recompiled or at least re-linked. Also
every program will have to have an unencryptedand
encrypted version for working with encrypted files
or unencrypted files.

IBM’s Distributed File System (originally known
as AFS and then commercialized by Transarc, a
company acquired by IBM) assumes that security is
a network problem. Many systems expect users and
administrators to assume that their implementation
is trusted and that network security measures can be
effectively implemented independently of other se-
curity measures. This also assumes that the security
measures for the backups, HSM, file caches and ad-
ministrators themselves are flawless.

The Networked Attached Secure Disks (NASD)
project [7] at CMU created security for accessing
files on storage devices (NASD disk drives) attached
directly to a network. Network keys are generated
and distributed to the users. The entire system is
based on the file system controller being trusted.
NASD also has a single symmetric master key be-
tween each file system and disk drive.

Microsoft’s Encrypted File System (EFS) is avail-
able in Microsoft NT 5.0. It can encrypt and decrypt
on a per-file and per-directory basis. This system
specifies that there are backup ”persona’s” that have
access to all data in the clear and thus administrative
data protection.

Other related work includes [8], [9], [10], [11].

3 The Secure File System

The Secure File System is being developed as an
OS- and application-independent security middle-
ware. SFS takes an end-to-end approach to data pro-
tection by cryptographically protecting data at the
source and unprotecting the data at the destination.

Cryptographically sealing a file or directory at the
source allows the information infrastructure secu-
rity to be relaxed. Routine system administration,
backup/restore, and archiving need not be trusted nor
even physically secure because the data is protected
at all times.

SFS also allows decentralized access rights, where
small groups of people can define who is allowed to
look at certain information (without the help of an
untrusted system administrator) and what set of rules
must be followed to do so. This is critical because
secure information sharing is required for effective
cross-organiaztional decision making.

We define the following terms:

• Information Producer — has (by definition)

278



�� �� ��� �� � ��

	� �
 � � �� � �
 �� � ��

��� �� �� � ��

�� �� ���� �� ��
� ��

� �� �
� � �� � � ��

� � ��

� �� �

� 
 �� � ��

� � �

� � 
 � �

Figure 1: Secure File System Overview

the data in the clear and has the authority to de-
fine who can ”see” their data.

• Information Consumer — needs (by defini-
tion) the data in the clear and has the (undeni-
able) ability to pass the information on.

• Group Agent — determines group member-
ship (who needs to know), and provides a non-
repudiable audit trail.

Information needs to be communicated between
the producer and the consumer (see Figure 1): ex-
cept for the group agent, no other entity is allowed to
”see” the information in the clear.

Information ownership is based on organizations
and their mandate: producers and consumers can dy-
namically define and create their own groups for in-
formation sharing.

Trusted systems are difficult. Trusted networks of
file systems are virtually impossible. This system
is focusing instead on creating information security
middleware to protect information from producer to

the consumer so that the number of entities that must
be trusted is minimized.

• True ”End-to-End” — other systems encrypt a
link to a web server, but SFS encrypts from the
information producer to information consumer.

• Distributed Membership — defined by the user
deparments, not by system administrators.

• Stored Encrypted — backups, archives, net-
works, etc. are all protected.

• Audit Trails — non-repudiable audit trails of
file access requests are maintained by the Group
Agent.

• Flexible Tag Information — by its purpose(s),
not just the producer’s identity: Board of Direc-
tors, Executive Policy Makers, Project X, etc.

• Cryptographically Enforced — strong encryp-
tion used for the information and smart cards
and PKI used to secure and manage keys.

279



The producer defines ”Access Control Meta-
data”. The access control list (ACL) is a specifica-
tion of purpose of the information which defines the
need to know. This specification of purpose is de-
fined through an access formula which defines the
actions of the consumer to agents of the producer (or
others) to unlock the information produced by the
consumer.

By solving the formula, the key to the file is re-
vealed (potentially only) to the consumer. The for-
mula can be any combination of users, groups, and
projects. Any combination of logical AND and OR
operations as well as N-person control can be used.
N-person control for backups and sensitive informa-
tion requires that multiple identities approve access
or the user has organizational membership. An ex-
ample of the meta data format is shown in Figure 2.

4 Real-world examples

4.1 Private projects within an organization

Every organization has projects that are more sensi-
tive than others. These projects include people that
are not typical IS support personnel. These projects
include corporate reduction projects, employee med-
ical information, mergers and acquisitions, Board of
directors, executive compensation, etc. This sensi-
tive information is typically handled by locking up
paper copies. Long term centralized storage of this
kind of information is both dangerous to a corpo-
ration’s viability and can potentially result in SEC,
civil and criminal penalties.

This kind of sensitive information should not be
stored on centralized file servers because of the large
number of people outside the project membership re-
quired to manage the networks, servers, backups, etc.
It is typical that 5 percent of every organization is In-
formation Systems support personnel. While IS sup-
port is a necessity, the fact that a sensitive 10 per-

son project within a 10,000 person company has 500
people to support them is a significant vulnerability.

While each support person does not have universal
access or knowledge, each of the professional sys-
tems administrators (SA) have access to a portion of
the process. The email SA can surf the email, the
desktop SA has remote access to the desktop ma-
chine, the file server SA can surf the files, the net-
work SA can sniff the networks, the backup SA can
surf the backups and even the person that works in
the warehouse that contains the backup tapes can ei-
ther access the tapes or give others access to this sen-
sitive information.

This system is designed to protect the data from
one project member’s desk to the other. Manage-
ment of the project membership is not an IS job, a
simple to operate, tamper resistant ”group server” al-
lows group membership to be directly managed by a
project member in a decentralized manner.

Once data is protected in this manner, malicious,
disgruntled or just curious employees are no longer
even tempted to access this information because the
information is protected.

A side issue to note is that if a hacker gains ac-
cess to an internal network or even gains access to
a SA account, the protected information will not be
vulnerable.

4.2 Outsourced Information storage

While IS employees are a potential risk, the tendency
of companies to outsource their IS professionals as
well as the IS equipment to outside companies either
at their own location or the other companies location.
This increases the risks to sensitive information. The
same outsourcing company can have a competitor as
a customer and the potential for information cross
pollination is there.

By protecting the information while it is still under
control of the project members, it does not matter

280



who manages the storage.

4.3 Outsourced Intranet Servers

Most companies have many more internal Intranet
web servers than Internet servers. While today it is
possible to outsource the management of the Internet
web server, it is not possible to securely outsource
the intranet web sites without protecting the data in
a way that the administrators of the hosting web site
are not a vulnerability.

This technology can allow all of a companies sen-
sitive intranet information be stored and managed by
outside internet service providers such as America
Online (AOL).

4.4 Sharing sensitive information

Many organizations have partnerships with other or-
ganizations and have a necessity to share sensitive
information with that organization. Today, this is
managed by allowing one organization to have ac-
cess to the other, maybe with leased lines behind the
firewalls. This results in a significant amount of ad-
ministrative overhead for networks and foreign ac-
cess to file servers and significantly higher vulnera-
bility. SFS allows sensitive information to be pro-
tected and then published outside the firewalls so
that the other organization can access the informa-
tion that they need without having unfettered access
to the entire organization.

This sharing can be anonymous to the producing
information or can be with audit trails back to the
producing organization.

Another aspect of sharing sensitive information is
the ability of project members to be able to mandate
multi person control of information access and data
recovery. Other systems lack this fundamental fea-
ture.

5 Components

5.1 Access Control List

The access control list allows the producer to explic-
ity define who has access to their data. It is defined
using XML (eXtensible Markup Language) and al-
lows for several different methods of specifying ac-
cess. The following is a list of keyword and their
definitions which are present in the Secure File Sys-
tem Access Control Lists.

• OwningGroup — The group which owns the
file.

• Writer — The producer of the file.

• ACL — Specifies the begining of the Access
Control List.

• any m = n — Specifies that ’n’ XML sub-blocks
must be satisfied in the current XML block for
access to be permitted.

• individual — Specifies an individual which has
access to the file.

• group — Specifies a group server which will be
used to verify membership in the project.

• project — Specifies a project which has access
to the file.

• key data — The ciphertext of the file’s key en-
crypted to an individual or group server depend-
ing on the enclosing XML block.

An example ACL is shown in Figure 2. This ex-
ample starts out by defining the owning group and
owner of the file. This is then followed by several
blocks of XML which define the access permissions
of the file.

281



The statement ’any m=”1”’ means that only one
of the enclosed blocks must be true to access the file.
The first block uses the individual tag and allows the
user (me@asdf.com) access to the file.

The second block allows access to members of the
”Celeron” project through ”Group Server A”.

The third block shows how access can be seri-
ally specified. To obtain access to the file the user
must be a member of the ”Design” project on ”Group
Server A” AND a member of the ”Pentium” project
on ”Group Server B” (Note: the file key is encrypted
to Group Server B”).

The fourth block specifies that the user must be a
member of the ”Xeon” project on ”Group Server C”
and a member of the ”Merced” project on ”Group
Server B”. The difference between this XML block
and the third XML block is that the key is crypto-
graphically split between the two group servers. So
successful access from ”Group Server C” results in
obtaining half of the file key and successful access
from ”Group Server B” results in obtaining the other
half of the file key.

The fifth and final block states that three of the
five enclosed sub-blocks must be satisfied to permit
access. So three of the individuals listed in must re-
quest access to the file together to obtain access the
file.

It is important to note that an Access Control List
is not valid unless it has been digitally signed by the
producer of the file. This prevents forging of ACL’s
which would undermine the security of the Secure
File System.

5.2 Group Server

The Group Server is the only trusted entity of the
SFS architecture. All file keys are encrypted to the
Group Server’s public key and stored in a header at-
tached to every encrypted file. This header contains
the access control list documented in Section 5.1.

<?XML VERSION="1.0"?>

<FileData>

<!-- What authority am I doing this for -->
<OwningGroup id="myproject"/>

<!-- I write this. -->
<Writer id="me@asdf.com"/>

<ACL>

<!-- Any one of the following options accesses the data -->
<any m="1">

<!-- Or I can read my own data, or else -->
<individual id="me@asdf.com" >

<key data="12341234 12341234 12431234"/>
</individual>

<!-- Or access through the following group -->
<group id="Group Server A" project="Celeron">

<key data="12341234 12341234 12431234"/>
</group>

<!-- Access through the following groups in series -->
<group id="Group Server A" project="Design">

<group id="Group Server B" project="Pentium" >
<key data="12341234 12341234 12431234"/>

</group>
</group>

<!-- Or get half the keys from the following locations-->
<any m="2">

<group id="Group Server C" project="Xeon">
<key data="12341234 12341234 12341234 12431234"/>

</group>
<group id="Group Server B" project="Merced">

<key data="12341234 12341234 12341234 12431234"/>
</group>

</any>

<!-- Escrow -->
<any m="3">

<individual id="VP Engineering">
<key data="12341234"/>

</individual>

<individual id="VP Manufacturing">
<key data="12341234"/>

</individual>
<individual id="VP Operations">

<key data="12341234"/>
</individual>

<individual id="CTO">
<key data="12341234"/>

</individual>

<individual id="CEO">
<key data="12341234"/>

</individual>
</any>

</any>
</ACL>

</FileData>

Figure 2: XML Access Control List

When a user requests access to a file the header is for-
warded to the Group Server which then determines if

282



the user has access to the file. If the user does have
access to the file the file key is then returned to the
user so they are able to decrypt the data.

The Group Server also serves as the single admin-
istrative point of the SFS architecture. All addition
and removal of users from groups and projects is
done on the Group Server. An extensive audit trail is
also kept on the Group Server which can detail what
file was opened, when it was opened, from where,
and who opened it (see Figure 5).

5.3 Smart Cards

Smart Cards are used for authentication of individual
users to the Secure File System. Each smart card
contains its own microprocessor and a small amount
of non-volatile RAM. This allows the user’s private
key to be stored only on the smart card and nowhere
else. Whenever a document or key must be signed or
decrypted all crytpographic functions requiring the
private key are performed by the microprocessor on
the smart card. Using this method the private key
never leaves the smart card. In fact, even the owner
of the smart card will never know his or her private

Figure 3: Group Server Modification

key, only the PIN which unlocks it.

5.4 SFS Client

This component of the SFS Architecture resides on
each individual user’s machine and communicates
directly with the Group Server, Smart Cards and file
system interface. It contains the GUI which the user
uses to control SFS and view the current status of
SFS (see Figure 6). The SFS Client also allows the
user to configure which Group Servers to use when
reading and creating XML files (see Figure 3).

<?XML VERSION="1.0"?>
<FileData>

<OwningGroup id="Single Person Project"/>
<Writer id="chris.feist@network.com"/>

<ACL>
<any m="1">

<individual id="chris.feist@network.com">
<key data="12341234 12341234 12431234"/>

</individual>
</any>

</ACL>
</FileData>

Figure 4: One Person Access ACL

5.5 File System Interface

The file system interface is the OS dependent portion
of the Secure File System. It is designed to catch
all system calls relating to filesystem access and re-
route them to the SFS Client which performs the pro-
tection and unprotection of files.

6 Examples

6.1 File Creation — One Person Access

A private file will be created by the ”producer” and
will only be readable by the ”producer”. This exam-
ple is illustrated in Figure 7.

283



Figure 5: Group Server Audit Trail

6.1.1 File System Interface

The user clicks on the save button of their word pro-
cessor which makes a close() file system call to save
the file. The call is then intercepted by the SFS File
System Interface and rerouted to the SFS Client.

6.1.2 SFS Client

SFS Client recieves the close() call from the File
System Interface and creates an Access Control List
based on what the producer previously specified in
the SFS Client GUI (files are readable only by pro-
ducer). A random symmetric key for file encryption
is then generated by SFS Client and the ACL is ex-
amined to determine whose public key the symmet-
ric key will be encrypted to. SFS Client then deter-
mines that the file key must only be protected with
the producer’s public key and encrypts the symmet-
ric key and inserts it into the ACL (Figure 4). A se-
cure hash of the ACL is then generated and sent to
the Smart Card for signing.

6.1.3 Smart Card

The Smart Card recieves the hash and requires that
the user enter their PIN if it hasn’t been entered in
the current session or if the PIN has timed out. If
the PIN was entered correctly, the Smart Card then
signs the secure hash with the user’s private key and
returns the result to the SFS Client.

6.1.4 SFS Client

SFS Client then recieves the signed hash and attaches
it to the ACL so its authenticity can be verified when
opening the file. The cleartext file is then encrypted
using the symmetric file key previously generated.
The ACL is inserted at the beginning of the file and
passed back to the File System Interface.

6.1.5 File System Interface

The File System Interface recieves the file created by
SFS Client and passes it back to the filesystem.

284



Figure 6: SFS Client Main Screen

6.1.6 User Application

The file is now safely stored on a storage device and
can only be read by the producer.

6.2 File Access — One Person Access

The file created in the previous example will be
opened by the creator of the file. This example is
illustrated in Figure 8.

6.2.1 File System Interface

The user clicks on the open button of their word pro-
cessor which makes an open() system call to open
the file. The call is then intercepted by the SFS File
System Interface and rerouted to the SFS Client.

6.2.2 SFS Client

SFS Client recieves the open() call from the File Sys-
tem Interface and extracts the ACL header (Figure 4)
from the file for processing. SFS Client then checks
to see if the user has access to the file by exam-
ining the ACL. Since the user is permitted access
through the ”individual” keyword no communication

with the Group Server is necessary. The encrypted
file key is then forwarded to the Smart Card.

6.2.3 Smart Card

The Smart Card recieves the encrypted file key and if
the PIN is entered or has been entered in the current
session the file key is decrypted with the private key
on the Smart Card and returned to the SFS Client.

6.2.4 SFS Client

SFS Client recieves the file key from the smart card
and then decrypts the file and returns it to the File
System Interface.

6.2.5 File System Interface

The File System Interface recieves the decrypted file
from the SFS Client and now can return the file to
the user’s word processor.

6.2.6 User Word Processor

The user’s word processor successfully opens the
file.

285



User Application

File System Interface SFS Client Smart Card

?

6

-

¾

¾ »

?

½ ¼6

6.1.16.1.6

6.1.2

6.1.5

6.1.3

6.1.4

¾

½

»

¼
Unsecured Disks

?

6

User Workstation

Unsecured Network

Figure 7: Example: File Creation — One Person Access

User Word Processor

File System Interface SFS Client Smart Card

?

6

-

¾

¾ »

?

½ ¼6

6.2.16.2.6

6.2.2

6.2.5

6.2.3

6.2.4

¾

½

»

¼
Unsecured Disks

?

6

User Workstation

Unsecured Network

Figure 8: Example: File Access — One Person Access

286



6.3 File Creation — Multi-Project Access

A file will be created by the ”producer” and will be
readable only by the producer and users who are ei-
ther members of the ”Hardware Development” and
”ACME 886 Processor” projects or members of the
”Software Development” and ”ACME 886 Proces-
sor” projects. Access will be denied to all other
users.

This example is virtually identical to Example 6.1,
Figure 7.

<?XML VERSION="1.0"?>
<FileData>

<OwningGroup id="Single Person Project"/>
<Writer id="chris.feist@network.com"/>

<ACL>
<any m="1">

<individual id="chris.feist@network.com">
<key data="12341234 12341234 12431234"/>

</individual>

<group id="Eng. GS" project="Hardware Development">
<group id="Eng. GS" project="ACME 886 Processor">

<key data="12341234 12341234 12431234"/>
</group>

</group>

<any m="2">
<group id="Eng. GS" project="Software Development">

<key data="12341234 12341234 12431234"/>
</group>

<group id="Eng. GS" project="ACME 886 Processor">
<key data="12341234 12341234 12431234"/>

</group>
</any>

</any>
</ACL>

</FileData>

Figure 9: Multi-Group Access ACL

6.3.1 File System Interface

The user creates the file in their application and saves
it to a SFS protected directory. The File System In-
terface intercepts the close() system call and reroutes
it to SFS Client.

6.3.2 SFS Client

SFS Client recieves the close() call from the File Sys-
tem Interface and creates and Access Control List
based on the previously stated user specifications.
The generated ACL is displayed in Figure 9.

The remaining steps are identical to the first ex-
ample (Steps 6.1.2 - 6.1.5), except the file key is en-
crypted to the producer and the ”Eng. GS” Group
Server.

6.4 File Access — Multi-Project Access

The file created by the last example will be opened
by a user who is a member of the ”Software Devel-
opment” project and ”ACME 886 Processor” project.
This example is illustrated in Figure 10.

6.4.1 File System Interface

The user opens the SFS protected file inside of their
application which causes an open() system call to be
generated. This call is then intercepted by the SFS
File System Interface and rerouted to the SFS Client.

6.4.2 SFS Client

SFS Client recieves the open() call from the File
System Interface and extracts the ACL header (Fig-
ure 9) from the file for processing. SFS Client ex-
amines the header and finds that the user is not
”chris.feist@network.com”, causing the first XML
block to fail. The user is also not a member of
the ”Hardware Development” project so the second
block fails. Finally, in the third XML block SFS
Client finds that the user is both a member of the
”Software Development” project and the ”ACME
886 Processor” project thus fulfilling the ”any m=2”
requirement in the third block and the original ”any
m=1”.

287



Since the SFS Client has determined access should
be permitted, it generates a secure hash of the ACL
and sends it to the Smart Card.

6.4.3 Smart Card

The Smart Card recieves the secure hash and checks
to see if the correct PIN has been entered. If it has, it
signs the secure hash with the user’s private key and
returns the signature to SFS Client.

6.4.4 SFS Client

SFS Client now sends the XML file along with the
newly created signature to the Group Server to verify
that access is permitted.

6.4.5 Group Server

The Group Server examines the ACL that it has just
recieved and verifies that the original signature (by
the producer) is valid. It then checks to see who
is requesting access, and verifies this be examining
the second digital signature on the ACL. Once this is
done the ACL is examined to see if the user does in
fact have access to the file as the SFS Client does in
section 6.4.2. Since the user does have valid access
to the file the Group Server decrypts the file keys us-
ing its private key and re-encrypts them the the user’s
smart card. The newly encrypted file key is then sent
back to SFS Client.

6.4.6 SFS Client

SFS Client recieves the encrypted file key and passes
it to the Smart Card for decryption.

6.4.7 Smart Card

The Smart Card checks to make sure it has a valid
PIN and decrypts the file key using the user’s private

key. The file key is then returned to the SFS Client.

6.4.8 SFS Client

SFS Client now decrypts the file using the file key
returned from the Smart Card and then returns access
to the File System Interface.

6.4.9 File System Interface

The File System Interface recieves the unprotected
file passed from SFS Client and passes it to the user’s
application.

6.4.10 User Application

The user’s application recieves the unprotected file
and continues functioning as if nothing had hap-
pened.

7 Conclusion

To securely protect the information on a shared net-
work, information must be protected from producer
to consumer. By only securing the infrastructure
(Networks, Backups, etc.) the information is not pro-
tected. Any person with administrative access to the
network, disks or backups can obtain the informa-
tion. The goal of the Secure File System is to combat
this problem which it does using end-to-end encryp-
tion. Thereby protecting the data from the producer
to the consumer and providing the user with trueIn-
formationSecurity.

288



User Application

File System Interface SFS Client

Group Server

Smart Card

¾ »

?

½ ¼6

?

6

-

¾

' -

'

?

6.4.10 6.4.1

6.4.2

6.4.9

6.4.3, 6.4.7

6.4.4, 6.4.8

6.4.6

6.4.7

User’s Workstation

Secured Server

Unsecured Network

Figure 10: Example: File Access — Multi-Project Access

289



References

[1] Peter Gutmann, University of Auckland, New Zealand. The secure filesystem (sfs) for dos/windows.
http://www.cs.auckland.ac.nz/ pgut001/sfs/index.html, September 1996.

[2] Alex Tormasov. The tordisk project. http://www.cs.auckland.ac.nz/ pgut001/sfs/index.html, November
1997.

[3] Phil Zimmerman. Pgp home page. http://web.mit.edu/pgp/.

[4] Matt Blaze. A cryptographic file system for unix. InFirst ACM Conference on Communications and
Computing Security, pages 33–43, Fairfax,VA, November 1993.

[5] Matt Blaze. Key management in an encrypting file system. Boston,MA, June 1994.

[6] University of Salerno. Tcfs home page. http://www.globenet.it/ ermmau/tcfs/index.html, April 1997.

[7] Parallel Data Lab. Nasd home page. http://www.pdl.cs.cmu.edu/NASD/.

[8] Albert Alexandrov, Maximilian Ibel, Klaus Schauser, and Chris Scheiman. Extending the operating
system at the user level: the ufo global file system. InProceedings of the USENIX Annual Technical
Conference, pages 77–90, 1997.

[9] Peter Braam and Philip Nelson. Removing bottlenecks in distributed filesystems. InProceedings of
the 5th Annual Linux Expo, pages 131–139, Raleigh, North Carolina, May 1999.

[10] Scott Guthery and Timothy Jurgensen.Smart Card Developer’s Kit. Macmillan Technical Publishing,
1998.

[11] David Corcoran. http://www.linuxnet.com.

290


	Welcome
	Author Index
	Session Index
	Papers
	Grids
	Stockinger
	Allcock
	Moore

	Storage Applications A
	Jones
	Stone
	Lautenschlager

	File Systems
	Iyengar
	Lim
	Ruwart

	Benchmarks
	Andrews
	Gabrielyan
	Bancroft

	Storage Applications B
	Bird
	Allsman
	Sterling

	Emerging Technologies
	Madhyastha
	Zhang
	Chao


	Bratt Luncheon Talk
	Posters
	Hughes
	Andrews
	Tse
	Cha
	Neil
	Shinkai
	Dashti
	Mueller
	Dwivedi
	Haddon

	Vendor Presentations
	Naegel
	Carino


