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Abstract

This paper discusses the design and implementation of a video server which uses
tertiary device as a source of media archiving. In order to handle the tertiary device in
the framework of disk-based stream service model, an effective disk caching mecha-
nism is devised together with stream scheduling and admission control mechanisms.
The proposed system has been implemented on a general-purpose operating system
and its design principles are validated the with real experiment results. The results
guide us how streaming servers with tertiary storage should be configured in real en-
vironments.

1 Introduction

Most of the video-on-demand servers currently in use or under development uses large
capacity harddisks as its primary content repository. The harddisk-based VOD server pro-
vides a fast and reliable content access. However, VOD service usually requires a large
amount of disk space, hundreds of gigabytes or even petabytes, for the contents and there-
fore the space requirement is in constant demand as multimedia contents are in wide-
spread[1]. One approach to support the massive storage requirement of VOD server is
to use tertiary storage - such as tape library or magneto-optical jukebox. A tertiary storage
device typically consists of drives, cartridges and media exchanger. It has a very large stor-
age capacity, but the media access time is significantly reduced due to the excessive media
exchange time.

Supplementing a harddisk-based video server with tertiary storage devices requires
many technical challenges[2, 3]. The handling of media contents should employ the hierar-
chical storage management concept. Not all contents can directly be streamed from the ter-
tiary device and therefore all or parts of the frequently-accessed contents should be cached
in harddisk. In this process, an efficient media staging mechanism which satisfies the tim-
ing constraints of continuous media is needed as well as the effective harddisk management
mechanism for the cached media. The addition of tertiary device in a media storage hierar-
chy makes the scheduling and admission control policies of video server complicated. The
scheduling mechanism for media staging should be integrated appropriately into the disk-
based stream scheduling principle. The criteria of a new stream admission should also be
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decided upon the operating and management principles of secondary and tertiary storage
devices. Some research results are found in the literature regarding the use of tertiary de-
vice for media service. The works are mainly focused on media placement[4, 5, 6], media
fetching[5, 6, 7], I/O scheduling[8, 9], and media caching[6, 10, 11] strategies. Most of
these works are approached and validated by simulations and it is rare to find works based
on real implementations.

This paper presents the design and implementation of a MO-jukebox based video stream-
ing server. The server uses harddisk as a cache for staging media from the jukebox. We
discuss the server structure, stream scheduling algorithm, disk caching mechanism and ad-
mission control algorithm. The proposed system has actually been implemented on Win-
dows platform and its performance is analyzed with the experimental results. The paper
is structured as follows. Section 2 describes the system structure and details the stream
scheduling, disk caching and admission control policies. Section 3 discusses the experi-
mental results. Section 4 concludes the paper.

2 System Structure

This section discusses the system structure of the proposed jukebox-based streaming server
and details the stream staging and scheduling, disk caching and admission control policies.

2.1 Server Overview

There are a few design considerations when including tertiary device into the storage hier-
archy for real-time streaming service. Due to the mechanical movement of media changer,
the media access time is slower in several order than that of harddisk. A streaming server
should service multiple streams periodically and concurrently. This requires the frequent
exchange of media in tertiary device. Therefore, in order to support many concurrent
streams efficiently, a systematic management of storage components is necessary and it
includes an efficient I/O scheduling which reduces the media exchange time.

The storage hierarchy for video service consists of three layers: main memory, harddisk
and tertiary storage. A conventional streaming server requires only main memory and
harddisk with which media is periodically read from harddisk, buffered into main memory
and then transmitted to network. In a video server with tertiary storage, however, the
harddisk plays an important role of stream caching. As the access bandwidth of tertiary
storage is lower than that of harddisk, the media stream should be pre-fetched from tertiary
device and buffered into harddisk in a timely manner. In this process, the harddisk may
store a complete or a part of media. Since the capacity of harddisk is limited, an efficient
disk cache management mechanism is necessary and its implementation should consider
the real-time characteristics of continuous media.

Figure 1 shows the structure of server components. The server consists of three main
components: Service and Process Management Subsystem, I/O Management Subsystem
and Resource Management Subsystem. The service and process management subsystem
listens to end-user service requests, controls the service admission and schedules the sys-
tem threads to deliver the requested media in real-time. The I/O management subsystem
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Figure 1: Server architecture

provides a device-driver level control of tertiary device. It is also in charge of I/O schedul-
ing for the efficient data transfer between tertiary and harddisk. The staging scheduler and
staging optimizer are the key components. Staging means the process of data movement
from tertiary to harddisk cache. The staging scheduler decides the order of tertiary data ac-
cess based on the parameters such as media rate, device bandwidth, amount of cached data.
The staging optimizer enhances the utilization of tertiary device bandwidth. The resource
management subsystem consists of several managers for system-wide resources and each
manager maintains its own information or resource table.

A user’s service request is processed as follows. The listener in the service and process
management subsystem detects a new service request. The admission of this request is
decided by the admission controller. The decision is based on the availability of system
resources which is constantly maintained by the resource management subsystem. Once
admitted, the request updates the resource usage and is ready for stream scheduling. The
system scheduler which controls both the disk access and tertiary access periodically sched-
ules the stream request to meet its timing constraints. The actual access of tertiary device is
done by the tertiary storage manager which controls the media exchanger and disk drives.
This way, media in tertiary device is read into disk cache by the scheduler and then trans-
ferred to network via system memory.

2.2 Staging Scheduling

The system scheduler is an important component for the reliable and guaranteed delivery
of continuous media. It consists of two modules: process scheduler and staging scheduler.
Both schedulers are running periodically based on the EDF principle. The process sched-
uler determines the execution order of disk and network accesses according to the degree of
service emergency. The staging scheduler determines the priority of tertiary access based
on media rate, device bandwidth, amount of cached data.
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Figure 2: Concept of stream scheduling

The staging period (or local period),Tlocal, is set as a multiple of process scheduling
period (or system period),Tsystem and it is calculated as in Equation 1. It is decided by the
consuming time of a fixed-size cache block (Scacheblock) by the most demanding stream rate
(max(R1; R2; � � � ; Rn)) allowed by the server.

Tlocal =

6664
Scacheblock

max(R1;R2;���;Rn)

Tsystem

7775� Tsystem (1)

The tertiary staging occurs when the media asked by the current service request is not
cached on disk or the amount of cached media is not enough. The degree of staging emer-
gency is decided by the amount of media already cached in disk - that is, by its playing time
(Tcached(i) =

Scached(i)

Ri

). The staging rate of each media access is determined by Equation 2
which considers both the media rate and the amount of data already cached in disk. The
staging may act on each period or once in a multiple of staging periods. Here, the staging
size is fixed.

Rstaging(i) =
Scaching(i) � Ri

Scached(i) + Scaching(i)

(2)

Figure 2 illustrates the concept of process scheduling and staging scheduling.

2.3 Disk Caching

The harddisk plays a key role in streaming media from tertiary device. It provides a buffer
space to mediate the access rate of harddisk and tertiary device. Also, as the capacity of
harddisk is limited, the harddisk should be used as a big cache and therefore an efficient
management of disk cache is necessary. The cache management for continuous media is
inherently different from that of conventional objects such as text or images. The conven-
tional method focuses on increasing the cache-hit ratio whereas, for continuous media, the
caching structure and its replacement policy should consider the sequentiality of cached
media.
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The disk cache consists of fixed-size cache blocks and its size is determined by the
media rate and the tertiary device bandwidth. When a stream requests media, the requested
portion of media should be placed on disk cache. In order to prevent the initial cache miss,
a certain amount of media is pre-loaded for each video in tertiary storage. The size of pre-
loaded media is a multiple of cache block and it is never replaced by cache replacement
policy. Figure 3 shows the state change of a cache block during its life cycle. A cache block
is in one of the following seven states:NONE, REQUEST, CACHING, PREFETCHED, CACHED,
USING, COMPLETE.

The cache replacement policy is based on several criteria. First, the cache blocks of
active streams (the streams currently under service) are not replaced. That is, only the
cache blocks occupied by inactive stream are the target for replacement. Second, a full-
cached video is not replaced. This is to reflect the fact that a full-cached video has a high
possibility of being requested again. Third, the replacement of cached blocks is done in
reverse order. This is to guarantee the sequentiality of media even in disk cache. Based
on theses principles, the victim block is decided by calculating thecache distancefor each
inactive video (Equation 3) in diskcache.

Tcachedistance(i) =
Scached(i)

Ri

(3)

By selecting the video whose cache distance is the biggest, the aggregate bandwidth
requirement of tertiary device is minimized. Meanwhile, if there is no inactive blocks,
the full-cached videos are then considered for replacement. Figure 4 details the cache
replacement algorithm.

2.4 Admission Control

In order to provide a guaranteed service for each admitted stream, a new stream request
should be evaluated for its admission. The admission control determines the admission
based on the current resource availability of the server. There are multiple criteria for the
resource availability: disk bandwidth, network bandwidth, amount of cached media and
staging bandwidth.

Msystem �
nX

i=1

Mi +M(i+1) min(Bdisk; Bnet) �
nX

i=1

Ri + R(i+1) (4)
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Ncomplete �
nX

i=1

Ncaching(i) +Ncaching(i+1) (5)

Btertiary �
nX

i=1

Rstaging(i) +Rstaging(i+1) (6)

Equation 4 limits that the admission of a new stream should not exceed the total system
memory (Msystem). It also regulates that the additional requirements of disk and network
bandwidth should meet the streaming requirement (min(Bdisk; Bnet)). Equation 5 checks
the availability of disk cache space for a new stream. The number of cache blocks which
can currently be replaced by the replacement policy (Ncomplete) should be equal or big-
ger than the sum of the number of cache blocks required for a new stream (Ncaching(i+1))
and the number of cache blocks that the current streams will need to their completions
(
Pn

i=1Ncaching(i)). Equation 6 checks the availability of tertiary bandwidth for a new
stream. The sum of the staging bandwidth requirement of a new stream (Rstaging(i+1))
and the aggregate bandwidth of currently active streams (

Pn
i=1Rstaging(i)) should be less

than the maximum staging bandwidth (Btertiary).
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3 Experiments and Results

The server is implemented on a general-purpose operating system with an actual tertiary
device. Based on the experimental results, this section discusses the performance and char-
acteristics of the system components.

3.1 Experimental Setups

The server has been developed on a Windows 2000 platform which is equipped with a HP
Magneto-Optical jukebox (HP-80fx). HP-80fx has 16 slots, one drive and one media ex-
changer. The jukebox control is implemented with the RSM (Removable Storage Manage-
ment) API which is provided with Windows 2000. The video data used in the experiments
are MPEG-1 encoded media.

The key objective of the experiments is to evaluate the performance characteristics of
the implemented server experimentally. In particular, the server scheduling policy, the
disk cache management policy and the admission control policy are validated with real
system runs. We have setup an environment where a number of streams concurrently access
the videos in tertiary storage and the video access pattern follows the well-known Zipf
distribution[12]. There are 30 videos in tertiary storage and they are constantly requested
in one minute interval. Three different� values of Zipf distribution (0.0, 0.5, 1.0) are used
to emulate the video access pattern. Figure 5(a) shows the access distribution used in the
experiment. The access pattern is highly skewed by Zipf(0.0) whereas Zipf(0.0) induces an
even distribution.

3.2 Results Analysis

Several aspects of the server performance have been evaluated. We have traced the number
of active streams, the tertiary bandwidth, and the deadlines. With all these experiments two
different size of disk cache (6GB and 12GB) are used to evaluate the effect of cache size,

Figure 5(b) shows the trace of the number of admitted streams for two access distribu-
tions and two cache sizes. It is apparent that for the highly skewed access pattern (Zipf(0.0))
the number of admitted streams is larger than Zipf(1.0). This is due to the fact there is high
possibility of cache hit for the popular videos. The figure also shows that the number of
admitted streams is highly dependent on the size of disk cache.

Table 1 details the performance statistics of the 3 hour experiment runs. It shows the
admission ratio as well as the detailed reasons for the admit denials. The admission ratio
increases both with the disk cache size and the skewness of access distribution. An inter-
esting fact is the admission ratio is sensitive to the access distribution. For instance, the
performance difference between Zipf(0.5) and Zipf(0.0) is trivial for both cache sizes, but
the admission ratio sharply increases as� approaches 0. In fact, the distribution of admis-
sion is similar to the video access distribution used in the experiment (Figure 5(a)). The
table also shows the reason for admission denials. There are three factors for denial: lack
of staging bandwidth (Equation 6), disk caching capacity (Equation 5) and lack of system
resource (Equation 4). When the disk cache is 6GB, the admission denial is mainly caused
the caching capacity and the lack of staging bandwidth. The lack of staging bandwidth
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Table 1: Performance statistics

Zipf Cache Total Total Admit Total Staging Cache System
(�) Size Requests Admits Ratio Denies B/W Limit Sp. Limit Res. Limit

6 GB 180 114 63.3 % 66 16 50 00.0
12 GB 180 134 74.4 % 46 33 0 13
6 GB 180 60 33.3 % 120 13 107 00.5
12 GB 180 96 53.3 % 84 82 2 0
6 GB 180 54 30.0 % 126 17 109 01.0
12 GB 180 92 51.1 % 88 82 6 0

effects the admission in the initial stage of service. That is, since the pre-loaded media
segments are relatively small, there is little time left for each media to access media from
tertiary device and this consequently overloads the tertiary access. However, as the caching
process continues the primary cause of admission denial moves to the limited size of disk
cache. With 12GB disk cache, the main cause of admission denial is found to be the lack
of staging bandwidth. In this case, the size of disk cache is big enough to satisfy Equation
5.

Figure 6 shows the traces of available staging bandwidth for Zipf(0.0) and Zipf(1.0).
The graphs drop sharply in the beginning and rise appropriately according to other fac-
tors. Note that the reason for the initial decrease of the available staging bandwidth is
explained above. With 6GB cache, the available staging bandwidths increase sharply for
both Zipf(0.0) and Zipf(1.0). This is because the streams requesting new videos cannot be
admitted to the system due to the lack of caching space (Equation 5). With 12GB, how-
ever, the available staging bandwidth increases gradually because of the high cache-hit ratio
(Zipf(0.0)). For Zipf(1.0), the bandwidth availability stays low due to the low cache-hit ra-
tio. These results strongly validate that the disk caching and admission control policies
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work as expected.

4 Conclusion

This paper presented the design and implementation of a streaming server which uses ter-
tiary device as a source of media archiving. Considering the excessive access delay of
tertiary device, we have devised an effective disk caching system and related operating
principles with which continuous media is directly streamed from tertiary storage and the
system resources are highly utilized. We have actually implemented the system and val-
idated the key design principles with real experiment results. The experiments show that
there are many factors governing the performance of tertiary-based media server. The
server performance is basically limited by the hardware-specific factors such as the media
exchange time and access bandwidth of tertiary device. However, depending on the ac-
cess distribution and the size of disk cache, in particular, the performance varies greatly.
This fact guides us how streaming servers with tertiary storage should be configured in real
environment and under what circumstances the servers are used effectively.

The implemented system is fully functional. The current server provides only a simple
playback of media. A true streaming server should, however, support more complex way of
media access such as random access, forward or reverse scan. These require a sophisticated
method of staging scheduling, disk caching and admission control. This is part of our future
research.
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