
Characterizing Long Term Usage of a Mass Storage System
At a Super Computer Site

_

Joshua C. Neil
Los Alamos National Laboratory

Los Alamos, NM 87545
jneil@lanl.gov

Abstract

 One of the primary mass storage systems in use at the Los Alamos National
Laboratory (LANL) is the Common File System, or CFS. CFS went into production in
1979, servicing supercomputer environments, and later was expanded for use with a
broader networked workstation environment. It is now used by a very large user
population at LANL. It can be used by any employee for storage purposes, and is used
by all of the large supercomputers at LANL. CFS is being phased out for the
supercomputing environment due to the need for a more scalable mass storage system
design. To our benefit, records have been kept for the last seven years of all activity on
CFS. A statistical analysis of these records has been performed, to understand how the
mass storage system was used over a long period of time. Example usage statistics
include maximum and average file sizes, data rates, and bytes moved for each month.
Trends and observations about these usage statistics will be presented.
 The paper will also present some study in the effects of environmental changes and
their implications for CFS. An example of an environmental change question is: how
does new media technology affect the usage or management of the system?
 Study of the performance of the storage system over this long period of time will also
be presented. Characterization of performance and how migration, environmental
factors, and usage-affected data rate performance as well as time-to-first-byte
performance is examined.
 Some conclusions about usage and its effect on planning, design, and operation of
mass storage systems will be discussed. It is hoped that the analysis of actual long run
usage data of a mass storage system in a demanding supercomputing environment will
provide interesting lessons that can be applied to the planning, design, and operation of
future mass storage systems.

1 Introduction

At Los Alamos National Laboratory, one of the mass storage systems in use is the
Common File System (CFS). CFS was developed in the late seventies to provide a
centralized file server capability for a large heterogeneous computing network running a
variety of operating systems (e.g. CTSS, NOS, MVS, VMS, UNIX) [1]. For the past
seven years, a log has been kept on the usage of CFS. This paper presents a statistical
analysis of these seven years. Important topics include statistics on the usage of the
system, environmental change and its effect on usage or management, the effects of

313

migration, environmental changes, and usage on performance, and some comments on
future planning.

2 Usage

Usage is a very important aspect of this analysis. The performance of CFS is well known
at least by the Los Alamos community, and therefore not the topic of this paper. But how
CFS was actually used is less well known. Is CFS being used to its fullest extent, and if
so, how often, and for what type of files?

The maximum data rate of CFS is 3.8 Mbytes/sec for a single file. This rate is rarely
achieved, and appears to depend almost entirely on the client's performance limitations
and usage models. In figure 1, it is clear that the average data rate is far below the
maximum rate possible, and even the monthly maximum rate actually achieved is
generally below the performance limit of CFS.

D a t a r a t e
i n K b / s e c

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

314

Figure 1

D a t a s i z e
i n M b

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

1 4 0 0

1 5 0 0

1 6 0 0

1 7 0 0

1 8 0 0

1 9 0 0

2 0 0 0

2 1 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

Figure 2

As seen in figure 2, almost all files are much smaller than the maximum file size (around
2.05 Gb). Generally, only large files (.5 to 2 Gb) achieve the maximum data rate due to
file transfer startup, client efficiency, and network issues. With these two graphs in mind,
it is clear that the system does not achieve its maximum data rates most of the time, since
it is primarily being used for small files.

An interesting feature of data rates is the rates corresponding to different request types.
As seen in figure 3, gets (data transfer out) achieved the highest data rates. Many clients
when writing the file, run it through a pipe. For example,

tar -cvf - . | cfs store -:file

315

This is very slow, as it has to run through a pipe on the client’s operating system. Many
operating systems buffer at 512 bytes, so tar writes 512 bytes to a buffer, then a context
switch occurs and CFS (the client program) writes the 512 bytes on the network destined
for CFS, and then context switches back to the tar program and the cycle repeats. This is
extremely inefficient. It is often done so that clients do not have to have enough disk
space to first do the tar and then do the CFS store. This accounts for the slowness of
saves/replaces. Gets are not generally piped in the same way.

We can also see that saves are generally performed at faster rates than replaces. This is
due to the fact that many backup usage patterns exist where the files are tar-piped to CFS
and replace the old backup file. On the other hand, many saves involve a code scheme
that is saving supercomputing application dumps and saving time steps. These time step
dumps are typically created as new files, whereas backups and backup-type usage
patterns often replace files. The inefficiency of the tar-pipe technique is one reason the
usage statistics show a faster rate for saves versus replaces.

316

G e t
S a v e

R e p l a c e

D a t a r a t e
i n K b / s e c

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

1 4 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

Figure 3

Another interesting aspect of usage is bytes moved. From figure 4, it is clear that most of
the time the amount of data moved into the system was more than the amount of data
moved out of, or moved internally within the system, except in those times when
technology change necessitated the need for large amounts of internal movement.
These internal movements are known as migrates. Also, it is clear that more data was
saved than was retrieved. Users tended to save everything, and retrieve only a small
percentage. This is in line with the idea that CFS is a basically infinite storage, and
saving everything is better than the risk of losing something needed in the future.

317

M o v e I n
M o v e I n s i d e

M o v e O u t

D a t a s i z e
i n G b

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

Figure 4

Figure 5 indicates the growth of CFS. The system grew around 1.5 Tb/month. Figure 6
shows the total bytes moved each month. This includes migrates, gets, saves and
replaces. Contrary to expectation, the system did not trend toward more bytes moved as
time progressed, but instead fluctuated fairly drastically. It is probable that there was a
much more significant trend toward more data movement previous to the time covered by
this study. The fluctuation certainly is in part due to various supercomputing projects
that took place at different times during the seven-year period. Another possible reason

318

for fluctuation is the effects of recharge (charges imposed on the client for space
utilization). When recharge rates are changed, users either used the system less or more
depending on the nature of the change. The important fact here is that it did fluctuate,
and future designs should not assume linear growth. In addition, CFS is a mature system,
and does not display the same growth behavior as a storage system in the beginning of its
life might.

D a t a s i z e
i n G b

0

1 0 0 0

2 0 0 0

3 0 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

Figure 5

319

D a t a s i z e
i n G b

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

Figure 6

3 Time-to-First-Byte Performance

Wait time is another area that we examined. Wait time is the difference between request
time and time of first byte transferal. In order to discuss wait time, it is necessary to
describe how CFS works in a little more detail. CFS is comprised of tapes and hard
disks. The tapes are stored in StorageTek robotic tape silos, which have used 1/2 inch 18
and 36 track and serpentine tapes for active files and serpentine and helical scan
technology for large inactive files. When a request for a certain tape is received, the
system instructs the robot to find the tape and load it into the drive. This procedure
accounts for much of the wait time seen. A problem can occur when more than one user
requests the same tape. In this case, user requests are queued, and wait time starts adding
up. Wait time for hard drives is only due to the maximum number of tasks that CFS

320

allows for the system or user. Needless to say, wait times for files stored on tape are
much larger than for those stored on disk. Within tapes, however, some surprising results
were obtained. In figure 7, we see one such result, namely, that wait time for gets was
comparable to wait times for saves.

G E T
1 4 8 . 0 6

R E P L A C E
1 6 7 . 5 0

S A V E
1 4 2 . 0 7

Figure 7

The way CFS handles replaces is to simply write to a new location in the system, and
then update the metadata on the directory accordingly. Wait time on saves and replaces
occurs because either the drives are busy when the system receives the request, or the
directory metadata is busy being updated. There is a trade-off here. On the one hand, a
system might only allow new files to be transferred to disk, in which case migrates will
be necessary to move large files onto tape. The advantage is that the size of the file can
be quickly determined, and tape usage is minimized. In the case of CFS, however,
writing directly to tape is allowed. In fact, tape is the default media if the user does not
specify file size. The system then runs the risk that the file was small, and a migrate is
required to move the data to disk. The wait time for saves and replaces might be reduced
by reserving drives for save/replace tasks. In this case, save/replace requests would not
have to wait for a drive in use by the system.

4 Migration

One of the more surprising results of this study is the data produced on migrate requests.
Migrates are the most prevalent request in CFS. This can be seen in figure 8.

321

D E L E T E
1 6 0 6 6 7 3
4 . 3 3 %

G E T
3 1 9 2 3 9 1
8 . 6 0 %

M I G R A T E
1 1 9 7 4 0 9 2
3 2 . 2 7 %

R E P L A C E
2 0 9 6 6 1 9

5 . 6 5 %

S A V E
3 5 4 6 7 4 0

9 . 5 6 %

S T _ S E S S
1 4 3 1 5 6 9 9
3 8 . 5 8 %

O T H E R
3 7 1 7 7 8
1 . 0 0 %

Figure 8

ST_SESS is the code for the start of any session. It will be recorded for any transaction
in CFS.

Many situations require migrate requests. For example, if the user does not specify a file
size when saving to CFS, the system assumes largest file size, and places the file on a
large tape. After transfer is complete, if the size is small enough, the system will migrate
the data to disk.

Another example of migration is the upgrading of media technology. If better, cheaper,
or just different disk or tape technology is implemented, then it is necessary to migrate
data from older technologies to the newer one. This can be seen in Figure 9. The spikes
occurring correspond to the following upgrades in technology:
May 1995 -- Partial upgrade in disk technology
December 1995 -- Finish of upgrade in disk technology
April 1998 -- Upgrade in tape technology
November 1999 -- Upgrade in disk technology

322

F i l e s i z e > 4 8 8 M B
F i l e s i z e > 1 M B < 4 8 8 M B
F i l e s i z e < 1 M B

N u m b e r
o f R e q u e s t s

0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

Figure 9

Another interesting feature of this graph is the file size. All of the spikes correspond to
very small file sizes. One feature prevalent in our results was the fact that the majority of
the system's resources were used in migrating very small files. This is possibly the most
important observation made during this study. Even though this system is oriented
towards supercomputer storage, these small files have a huge effect. It is their sheer
number that causes so much migration and maintenance to be necessary. Unfortunately,
even in the supercomputing world, these small files are prevalent, and unavoidable.
Future designers of large storage systems should necessarily take them into account. As
previously noted, the system only attains its maximum data rates for very large files. It is
clear, then, that much of the system's potential for a fast data rate is not used frequently,
but only when very large files are being worked with. The old problem of capability
versus capacity rears its ugly head once again.

In figure 10 we see the type of migrates which took place. From figures 9 and 10
combined, one can see the type of media the system uses for different sizes, i.e. small
files are on disk and large ones on tape.

323

T a p e t o T a p e
T a p e t o D i s k
D i s k t o T a p e
D i s k t o D i s k

N u m b e r
o f R e q u e s t s

0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

Figure 10

The spikes correspond to the disk and tape technology upgrades. If you ignore these
spikes, then disk-to-tape migrates become the prevalent form of migration. These are
movements of small, generally seldom used files to tape to keep the disks clear. Even
with a system like CFS, which allows direct tape storage, there is still plenty of disk-to-
tape movement.

5 Effects of Media Upgrade on Management

Media upgrades definitely require attention in the management of such a storage system.
Media upgrades lead to large spikes in migration, as well as many months, if not years of
background migration to catch up to the new technology without affecting user
performance. Background migration can in part be attributed to tape technology
upgrades, which are generally implemented at a slower rate. The large spikes generally
come from disk upgrades, since it is important to move the data quickly onto new disks
due to space and power constraints.

These spikes must be carefully monitored to ensure that real users are not affected. If the
spikes result in lower performance, a rethinking of the management of the system might
be required, so as to maintain performance for real user requests. Certainly migration
should not affect the users. Referring to figure 11, however, we can see that these spikes
did not adversely affect CFS performance.

324

Vs. Number of Requests (green)
Time

i n S e c .

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

D E C 9 4 D E C 9 5 D E C 9 6 D E C 9 7 D E C 9 8

N u m b e r
o f R e q u e s t s

0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

Figure 11

The request numbers seen in figure 11 reflect the large migrations occurring at that time,
but wait time appears to be truly independent of request numbers. This indicates that the
system was properly managed, and users saw no ill effects.

6 Future Work

Further analysis of CFS may yield many more important results. Simply describing the
system and its usage is only the first step. One interesting area is the effect of technology
on the system. A finer look at peak load times versus average rates for the system would
be worthwhile, in order to get a better idea of the range of usage one can expect. Further
investigation into the wait time associated with saves and replaces could be fruitful as
well. Is this wait time due to a lack of enough drives, or is there some other cause for this
delay? Another interesting avenue for research is in prediction. Is there an analogous

Maximum and Average Wait Time by Month
Vs Number of Requests (in light gray)

325

situation to Moore's Law for large-scale storage? Our data so far has not behaved
according to Moore's Law. What is the explanation for this? What other predictors, if
any, exist? A more detailed study of usage is also of interest. Is it necessary to design a
storage system that can achieve Gbyte/sec data rates when users only achieve Mbyte/sec
due to client constraints, usage patterns, and the overwhelming effect of small files? Is
all this migration really necessary, and exactly how much of an effect does it have on the
overall performance?

7 Conclusions

The data suggest that the system was mainly used in a way the designers expected.
Maximum data rates were only achieved for large files. Most files were fairly small, so
the system wasn't used to its fullest potential most of the time from a data-rate
perspective. A few surprises were encountered, however. The most important surprise
encountered was the preponderance of migrates. The system performed migrates three
times more than it handled user requests. The main bulk of these migrates was performed
on small files. Future designers should note this. It is very important, in view of this
finding, that small files need to be handled in a very efficient way to maintain the overall
efficiency of the system.

Future designers might want to note that the majority of files on a system such as CFS are
in the 80 Mbytes range. The large majority of users were workstations, which limited the
transfer rate. The only users able to take full advantage of the systems performance were
supercomputers, which comprised a small fraction of the overall usage of the system. It
might be far cheaper to design a system that handles lower demand clients separately,
especially since the trend to date has been to increase the maximum file size. As the gap
grows between the biggest files and the smallest ones, the contention between capability
and capacity will increase, and some solution must be found.

References

[1] M. W. Collins. and C. W. Mexal. The Los Alamos Common File System.
 Tutorial Notes, Ninth IEEE Symposium on Mass Storage Systems, IEEE, Oct.
 1988.

326

	Welcome
	Author Index
	Session Index
	Papers
	Grids
	Stockinger
	Allcock
	Moore

	Storage Applications A
	Jones
	Stone
	Lautenschlager

	File Systems
	Iyengar
	Lim
	Ruwart

	Benchmarks
	Andrews
	Gabrielyan
	Bancroft

	Storage Applications B
	Bird
	Allsman
	Sterling

	Emerging Technologies
	Madhyastha
	Zhang
	Chao

	Bratt Luncheon Talk
	Posters
	Hughes
	Andrews
	Tse
	Cha
	Neil
	Shinkai
	Dashti
	Mueller
	Dwivedi
	Haddon

	Vendor Presentations
	Naegel
	Carino

