IP Block Storage Protocols

David L. Black EMC Corporation

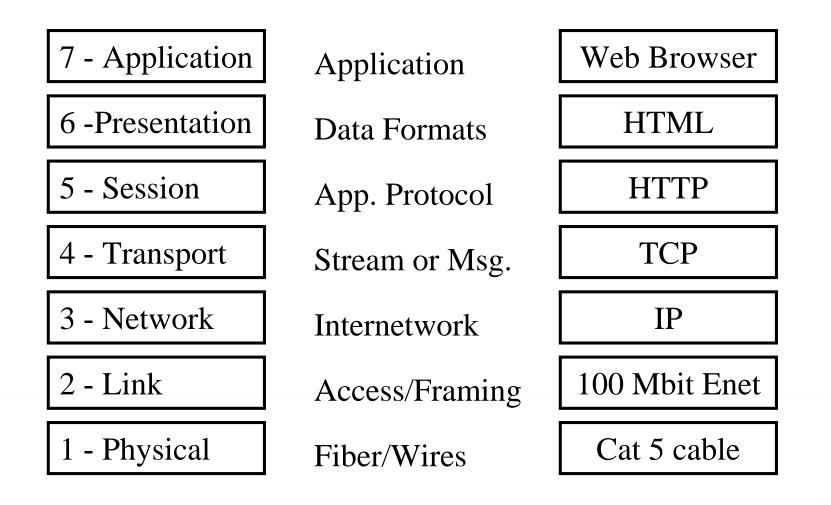
IETF IP Storage Working Group Co-Chair

April, 2001

IETF and the IP Storage Working Group

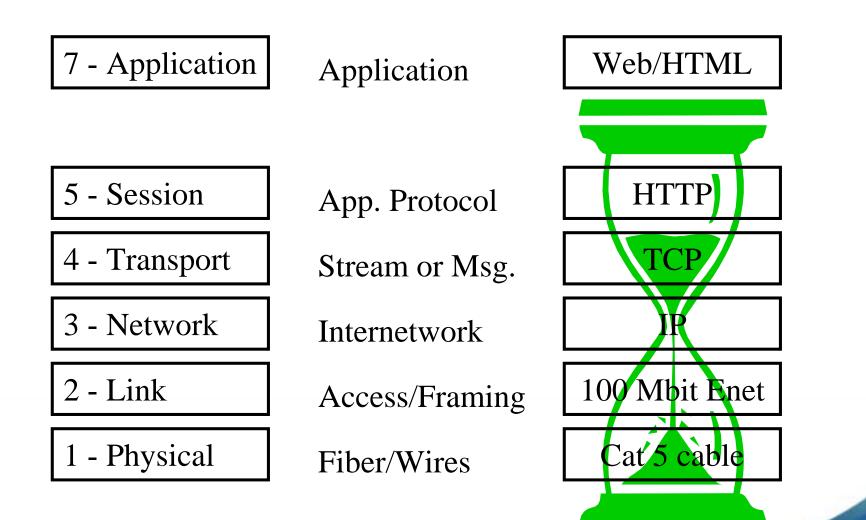
IETF = Internet Engineering Task Force

- Internet engineers: IP, TCP, UDP, etc.
- "Rough Consensus and Running Code": Interoperability emphasis
- Standards documents: RFCs (Request For Comments)
- IPS WG = IP Storage (ips) Working Group
 - Block storage over IP, based on existing protocols (SCSI, FC)
 - About 9 months old
 - Chairs: David L. Black (EMC), Elizabeth Rodriguez (Lucent)
- Getting Involved
 - Join the mailing list: ips-request@ece.cmu.edu
 - Read the drafts linked to IPS WG charter on www.ietf.org
 - Come to our meetings

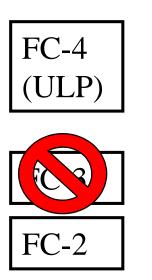

Outline

Background

- Network and Fibre Channel layers
- SCSI concepts
- SCSI-based protocol
 - iSCSI
 - IP network with SCSI as a network service
- Fibre Channel-based protocols
 - FCIP and iFCP
 - FC fabric (or lookalike) using IP connectivity



IP Network Layers


EMC²

IP Network Layers - In Practice

EMC²

Fibre Channel Layers

Upper Layer Protocols FCP (SCSI), VI, FICON, IP, etc.

Frames and signaling protocols

8b/10b coding and protocol

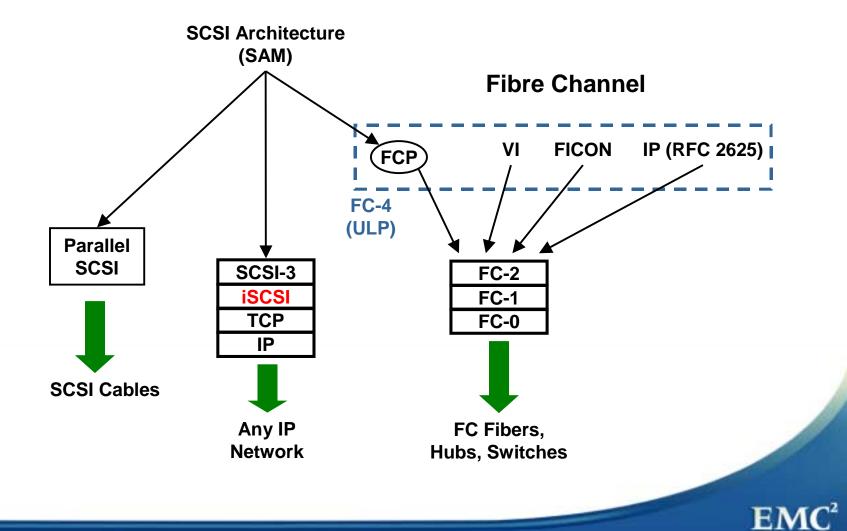
Wire/Fibre and Transceivers

SCSI Concepts

- *Initiator* connects to *Target*
 Host connects to Storage Device
- *Target* exports *Logical Units* Storage Device exports Volumes
- Logical Units have Logical Unit Numbers (LUNs)
 - Numbering is per-target
 - Same LU may have different LUNs at different targets
- Active Discovery
 - "Bus walker" finds accessible targets

Outline

Background


- Network and Fibre Channel layers
- SCSI concepts

SCSI-based protocol

- iSCSI

- IP network with SCSI as a network service

iSCSI and Protocol Stacks

iSCSI Concepts

■ iSCSI Session: one Initiator and one Target

- Multiple TCP connections allowed in a session
 - Exploit network parallelism
 - Error recovery across connections
- Most communication is based on SCSI
 - E.g., Ready-to-Transmit (R2T) for target control of write data
 - Important additions
 - Login phase for connection setup
 - Text-based parameter negotiation
 - Explicit logout for clean teardown

iSCSI Error Handling

Sequence numbers detect missing things

- Commands, responses, data blocks
- Goal: Avoid SCSI retry if at all possible
 - Explicit iSCSI command retry can be used
- CRC: Work in progress
 - 32-bit CRC polynomial in current draft (not using IEEE CRC-32)
 - Defining a new 64 bit CRC considered and rejected
 - Separate CRCs computed over header and data
- Multiple Initiator support
 - AutoSense is mandatory
 - Auto Contingent Allegiance should be implemented

iSCSI Naming

- Rationale
 - Targets may share <IP address, TCP port>
 - Initiators and Targets may have multiple IP addresses
 - Unique names are important for third party commands
- Two types of globally unique names:
 - WWNs (EUI)
 - Reversed hostname (DNS) as naming authority
 - OUI and forward DNS being removed from draft
- New nameserver protocol: iSNS
 - Source of name to <IP address, TCP port> bindings
 - World Wide Unique Identifiers: REJECTED
 - New global naming abstraction not needed

iSCSI Security Requirements/Goals

- Authentication: Who are you? Prove it!
 - Mutual Authentication: Initiator to Target AND vice-versa
- Integrity: Have these bits been tampered with?
 - Cryptographic integrity, not just checksum or CRC
 - Must be linked to authentication to prevent regeneration attack
- Authorization: What are you allowed to do?
 - iSCSI: Controls who can connect to which Target
 - LU, LUN and/or volume authorization is a SCSI issue, not iSCSI
 - Confidentiality: Has this data been disclosed?
 - MUST implement Authentication and Integrity

iSCSI Security

Secure IP connection prior to iSCSI Login:

- Integrity, authentication, and optionally confidentiality
- Will use IPSec or TLS (SSL successor)
 - Have not decided which one, yet
- Inband authentication
 - SRP and Kerberos in current draft
 - Public key and Radius mechanisms will be added
 - Kerberos-based integrity checks (if Kerberos is used)
- Security work is still in progress
 - How does IPSec or TLS authentication relate to iSCSI names?
 - Which mechanisms MUST be implemented?

iSCSI and Framing

- iSCSI is a message-based protocol
 - Header indicates message length
- TCP is a byte-stream protocol
 - No message or record boundaries
 - Packet boundaries may not match iSCSI messages
- Suppose the network drops an iSCSI header
 - TCP will retransmit, eventually
 - But there's data in flight that iSCSI can't parse
 - How long is the missing message?
 - Where does all that data get buffered?

More iSCSI and Framing

What if a header CRC check fails?

- TCP won't retransmit
- Where does the next header start?
 - Can we avoid closing the TCP connection?

iSCSI includes a general "interface" to framing

- Actual framing mechanisms are optional
- Can be negotiated via iSCSI
- Possible Framing Mechanisms
 - TCP framing: draft-williams-tcpulpframe-01.txt
 - Markers: appendix of iSCSI draft
 - Word-stuffing: status and interest unclear

iSCSI Discovery and Boot

Discovery - How does the "bus walker" find targets?

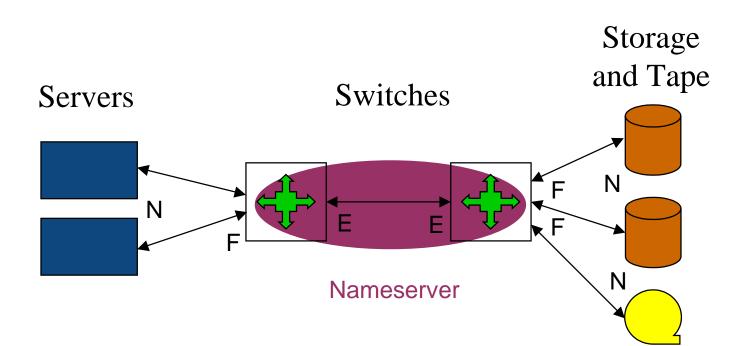
- Static configuration (simple, small scale)
- SLP for intermediate scale discovery
- iSNS for larger scale and zoning support
 - SLP can discover iSNS server
- ISCSI bootstrap support: Mostly a variant of discovery
 - Have to discover the boot target (and the boot device)
 - Most practical boot issues are implementation (BIOS, etc.) rather than protocol specification issues.

Fibre Channel-Based Protocols

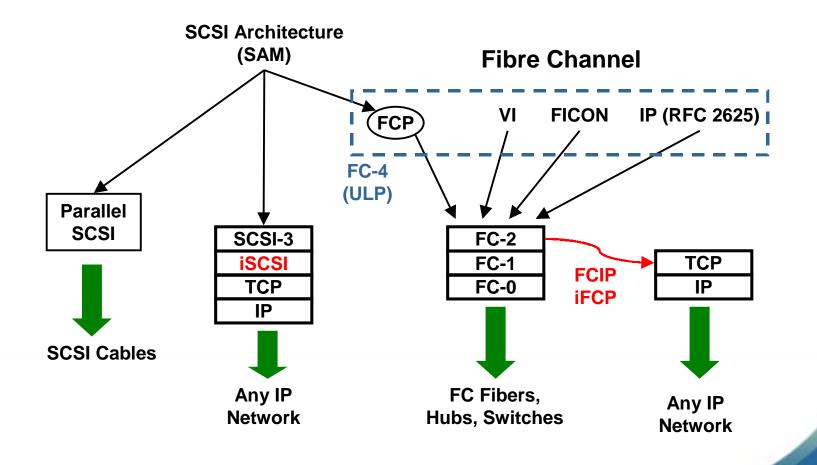
- FC Fabric (or lookalike) using IP connectivity
 - Little to no interest in Fibre Channel Arbitrated Loop (FC-AL)
- Tunnel
 - FCIP IP network is transparent to FC fabric
- Gateway
 - iFCP IP network implements FC fabric
- But first, some Fibre Channel background ...

Fibre Channel Fabric Port Types

Devices (host or server HBAs, storage targets) — *N_Port*: "Node"

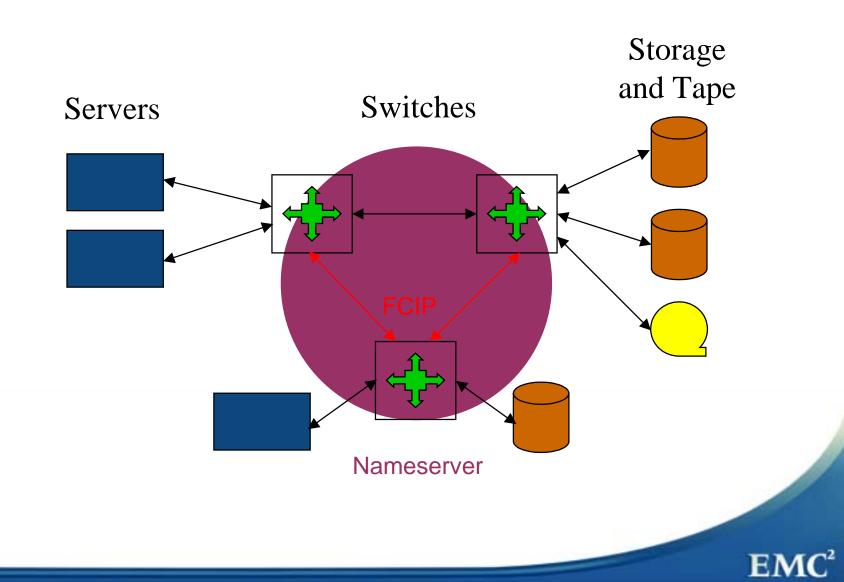

- Switch ports connected to devices
 - F_Port: "Fabric"
 - N_Port must be connected to an F_Port and vice-versa
- Switch ports connected to switches
 - E_Port: "Extension"
 - E_Port must be connected to an E_Port
 - Additional port types exist (L, G, B, etc.)

Fibre Channel Fabric Operation


- The "Fabric" is a visible first-class entity
- Fabric Login
 - Node logs into fabric as part of initialization
- Fabric Nameserver
 - Integrated into switches (fabric service)
 - Stores <name, address> records based on logins
 - <64-bit WWN, 24-bit S_ID/D_ID>
- Discovery: Node downloads nameserver info
 Soft Zoning: limit info given to each node
 - Extensive switch to switch communication

Fibre Channel Fabric Example

FCIP, iFCP and Protocol Stacks

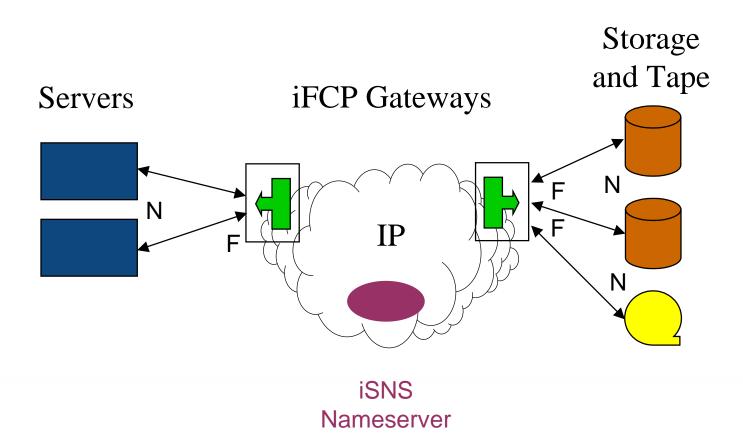


FCIP: Fabric Interconnection Protocol

Situation

- Two Fibre Channel fabrics
- Want to use IP to connect them and form a single fabric
- Solution: FCIP
 - Tunnel Fibre Channel through an IP network
 - Encapsulate FC-2 Frames in TCP/IP
- FCIP connection is transparent to switches
 - Looks like a pair of connected E_Ports
 - Fabric services run transparently
- iSNS can help with tunnel setup

FCIP Fabric Example



iFCP: Fibre Channel Gateway Protocol

Situation

- Fibre channel devices (no switches)
- Want to attach devices to an IP network
- Solution: iFCP gateways + iSNS
 - iFCP Gateway implements F_Port
 - N_port devices attach to gateway
 - Gateway implements interface to "fabric"`
 - iSNS server implements fabric nameserver
 - Gateway registers with iSNS on fabric login
 - Discovery info obtained from iSNS server by the gateway
 - Soft zoning implemented by iSNS server

iFCP Example

EMC²

FCIP and iFCP Addressing

- FCIP: No changes to Fibre Channel addressing
- iFCP: Gateway is an address translator
 - Translates 24-bit FC addresses (e.g., S_ID, D_ID) to
 - IP address of remote gateway +
 - 24-bit address of N_Port beyond gateway
 - Translation set up by two types of events
 - Information retrieval from iSNS
 - iSNS info includes IP address information
 - Encapsulated frame arrives from new source

FCIP/iFCP work in progress

Both protocols encapsulate FC-2 frames

- Common encapsulation format under development
- Information in protocol headers will differ
- Robustness improvements to encapsulation
 - Header CRC
 - Re-sync to data stream after Header CRC failure
- Time outs
 - Prevent network delays from violating FC Time Out Values
 - Timestamp transmitted frames and discard stale ones
 - Security may follow iSCSI direction

iSCSI/FCIP/iFCP Status and Timetable

Active work underway on all three protocols, e.g.,

- Protocol header format changes
- Determining required security mechanisms
- Next IETF IP Storage Working Group meetings:
 - April 30, May 1 in Nashua, NH (at T10 meetings)
 - Plus a discussion on structure of a SCSI MIB in May 2 T10 CAP meeting
 - Week of August 6 in London, UK (at IETF meetings)
- Current timetable: Finish main specifications in September
 - IPS WG charter will be revised over the summer
 - Milestones may change at that time

IP Block Storage Protocol Summary

SCSI-based Protocol

- iSCSI

- IP network with SCSI as a network service

- Fibre Channel-Based Protocols
 - FC SAN (or lookalike) using IP connectivity
 - Tunnel
 - FCIP IP network is transparent to FC fabric
 - Gateway
 - iFCP IP network implements FC fabric
- iSNS nameserver for storage
 - Applies to all three protocols, required only by iFCP

Standards Organizations

SCSI: T10

- www.t10.org
- Fibre Channel: T11.3
 - www.t11.org
- IETF IP Storage Working Group
 - http://www.ietf.org/html.charters/ips-charter.html
 - Latest versions of drafts are linked to that page
 - Co-chairs: David Black (EMC), Elizabeth Rodriguez (Lucent)
- Active coordination on overlapping matters

