

HIGH DATA RATE OPTICAL TAPE RECORDING

W.S. Oakley

LOTS TECHNOLOGY, Inc.

20 April 2001

1274 Geneva Drive Sunnyvale CA 94089

Ph: (408) 747-1111 x66 Fax: (408) 747-0245

e-mail: william.oakley@lotstech.com

NEED: SIGNIFICANTLY IMPROVED PERFORMANCE

- Standards
- Reliability
- Technology Stability

OPTICAL TAPE MEETS THE NEED

• High Data Rates > 100 MB/sec.

Multiple Parallel Bit Tracks & Fast Tape Speed (16 to 80 Bit Tracks; Write & Read @ 11.5 m/sec.)

- High Data Capacity 1 Terabyte per Cassette / Cartridge
 User Data, Native (Uncompressed)
- Fast Data Access 15 Sec. Avg. 1st Access Within 1 TB 34 GB/sec., Due to High Data Density & Fast Tape (1.7 GigaBytes of Data per meter & 20 m/sec.)
- High Reliability Non -Contact Recording
 No Head Wear, Very Low Media Wear
- Low System Costs

Much Higher Capacity/Media Unit

= Less Media, Smaller Robots, 90% Less Volume

Media Archival Now > 100 year
 Reusable Media Soon

LOTS Multi-beam Concept

Focus & Track Servo

BEAMFORMING HOLOGRAM

Single Collimated Beam Input, Multiple Collimated Outputs.

All Beams In Same Focal Plane

- All Beams Diffraction Limited
- Two Dimensional Array
- 8xN Beams, e.g for N = 4

Relative Beam Locations Fixed

• • • • • • •

.

Beam Forming Pattern

 $8 \times 8 \text{ Array} = 64 \text{ Beams}$

Modulator Geometry

 $8 \times 8 \text{ Array} = 64 \text{ Beams}$

Optical Modulation @ 12MHz provides PPM data at 16.7 Mbits/sec. per track, e.g. 64 tracks = 1069 Mbits/sec. ⇒ 800 Mbit/sec. User Data Rate (34% O.H.)

SYSTEM CONFIGURATION

- Track Group Selection by Periscope
- Tracking by Mirror Galvanometer

LOTS High Speed Tape Transport & Optical Servo System

Provides Sub-Micron Tracking
 Peak to Peak Tracking Error = ± 0.050 Microns

BASIC DRIVE FEATURES

25 -100+ MB/sec. Data Rates

1 TeraByte User Capacity

600m of 13 Micron Thick Media

0.8 micron Track Spacing

PPM(2,7) encoding

20 m/sec. Access Tape Speed = 33.3 GB/sec.

No Head Wear & Essentially No Media Wear

Bi-Directional Serpentine Write/Read @ 11.5 m/sec.

~ 15,000 Bit Tracks across 12.7mm Media Width

DATA TRACK CONFIGURATIONS

16 data Tracks + Servo = 25 MB/s. x 800 Track Groups

or

64 data Tracks +Servo = 100 MB/s. x 200 Track Groups

Media Parameters vs. Capacity

'3480' or 'DTF'	April 2001	Future	Access Rate GB/s.
Media Thickness - microns	13	7	
Media Length - m	600	1100	
Capacity, PPM(2,7) - TB	1.1	2.0	33*
Capacity, PWM - TB	1.75	3.2	53
Capacity, PRML - TB	2.5	4.5	80
Time to EOT @ 20 m/s - s	30	55	

^{* 15} sec. Avg. to 1st Access in 1 TB, 10 sec. Avg. to Next Access in 1 TB

CURRENT PRODUCT STATUS

Engineering Prototypes Operating

Commercial Quality Recording

Acceptable SNR & BER

Reliable Tracking

Satisfactory Wear Characteristics, Media & Drive

Product Design in Progress

NO Product Schedule Due to Funding Limitations