Distributed Database Management Systems and the Data Grid

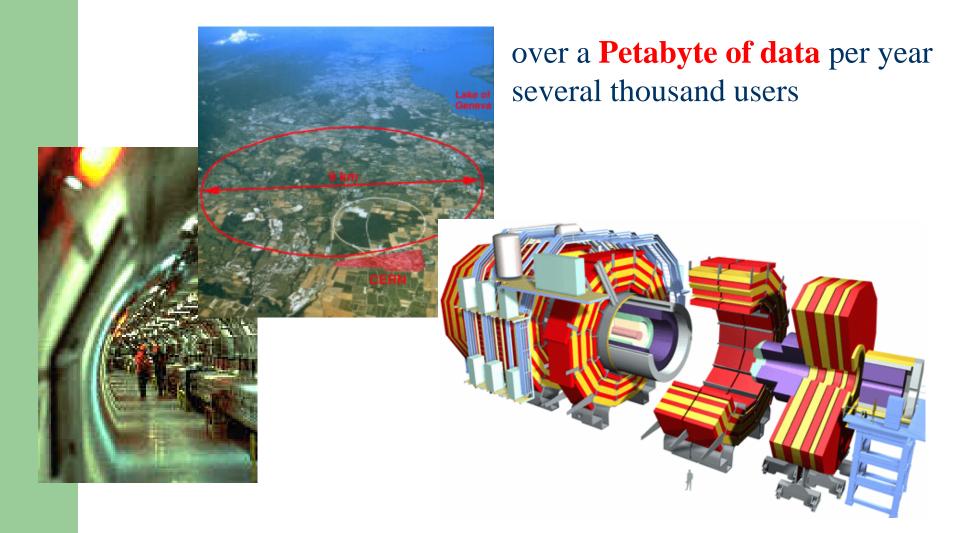
Heinz Stockinger

CERN, European Organization for Nuclear Research, Geneva, Switzerland Inst. for Comp. Science and Business Informatics, University of Vienna, Austria

WIEN

Outline

- Introduction: DB Data Grid
- Related Work in Both Communities
- Replica Catalogues & Directory Service
- ODBMS
- Implications for Grid Applications
- Data Consistency and Replication Methods
- Update Synchronisation
- Conclusion


Introduction

- Computational Grid vs Data Grid
 - scientific applications like data analysis in High Energy Physics (HEP), climate modelling or earth observation
- focus on the data intensive Large Hadron Collider (LHC) experiments of CERN – DataGrid project
- store Petabytes of persistent data

- OO database Grid middleware
- Grid research as well as distributed database research tackles the **problem of data replication** but from a different point of view

CERN: European Organization for Nuclear Research

DB vs Data Grid

- Data Grids are very new in the research community
 - identify the characteristics and requirements of Data Grids and how they can be met in a most efficient way
 - Special attention: data consistency and communication issues
- Optimising data replication and access to data over the WAN
 - not addressed sufficiently in database research
- In DBMS normally only one method for accessing data
- We elaborate on
 - different data consistency models
 - global transactions
 - asynchronous replication

Related Work in DB Research

- Replica synchronisation is based on relatively small transactions
 - In HEP relatively "large" transactions
- Synchronous and asynchronous replication
 - evaluation techniques mostly based on the amount of communication messages
- Cost functions for network or server loads are rarely integrated
- Rather low amount of data as compared to HEP
- Jim Gray "Distributed DBs over WAN don't work"

Related Work in Grid Research

- Globus project
 - Replica catalogue & replica management
- Replication mostly based on file level
 - Is easier than object replication
- Related projects in HEP (Europe U.S.):
 - EU DataGrid GriPhyN PPDG (Particle Physics Data Grid)

What to use ? Commonalities?

- Introducing a replication middle-ware layer that manages replication of files
- Each site will manage data locally with a database management system
- In Grids there are many tools for monitoring applications and network parameters
- Hybrid solution
 - But: restrictions for update-synchronisation
 - Relaxation of transparency and consistency

Replica Catalogues & Directory Services

- Access to replicated data requires specific data and meta data structures
 - object location table vs replica catalogue
- Globus proposes an LDAP replica catalogue (RC)
- Generic RC can be used for any DBMS and file format
 - Manage replicas
 - Heterogeneous data stores
- **Expose RC** to large user community
- Communication protocol is necessary for the exchange of control messages

Objectivity/DB

- Take Objectivity as a sample **ODBMS**
 - Many issues raised are specific to ODBMS
- Data Replication Option (DRO)
 - Synchronous replication
 - populate-replicate vs replicate-populate
 - Dynamic quorum
 - Not optimal for WAN
 - No optimisation for replica access (replica selection ... like in many commercial DB systems)
- Partial replication and associations
 - Has important impact on the replication granularity
- File catalogue
 - Replica catalogue is required

Implications for Grid Applications

- Users need to we aware of Grid **sociological aspect**
- Access replicated files
 - "Grid open" needs a lookup in the RC
 - Cache files locally ?
 - Add files to the catalogue ?
 - Transfer entire file vs sub sets of files
- Pre-fetching/read ahead
 - Query optimisation problem (replica selection)
 - Application can give hint to pre-fetch files
 - Potential for reservation

Data Consistency and Replication Methods I

- Consistency: one of the main issues of replication
 - Easy for read-only data
 - Depends on the frequency of updates and the amount of objects

• Synchronous replication

- Highest degree of consistency (locally and globally)
- 2-Phase Commit protocol for each write transaction
- "bad" response time for write transactions
- Consistency level has to be adapted to the application
- A Data Grid needs to have several levels of consistency
- Middleware: difficult to provide very high consistency
- Global transactions required

Data Consistency and Replication Methods II

- Asynchronous Replication
- Better write preformance than synchr. repl.
- Primary-copy approach (master slave)
 - Updates only done by primary copy
 - High consistency and improved write performance
- Epidemic approach
 - User operations are performed on any single replica and a separate activity compares version information
- Subscription
 - Don't care about consistency
 - Site is free to get data
 - Implemented in GDMP

Grid Data Management Pilot

Communication and Transactions

- Clear need for global transactions
- Do not need to lock all sites
- Difference between control comm. and update comm.
 - Control messages
 - Data transfer
- Use most appropriate protocol for specific use
 - Message passing library
 - FTP, GridFTP
- In ODBMS no such separation

Append Transaction

- Enhance the traditional DBMS transaction system
 - Read write append transactions
- Write can either create new data or change existing data
 - Both transactions require different tasks
 - Append transaction only has to satisfy a uniqueness condition
 - Easy to satisfy for files
- Append transactions don't require locks:
 - Different response time and consistency levels

Update Synchronisation I

- Difficult for a middleware to do replica update at the object level
 - Cannot access single pages or object tables
 - Communicate only the differences between files
- Binary difference approach
 - DB file appears like a binary file
 - Find out about changes between old and new files
 - XDelta can be used for that

Update Synchronisation II

Object-oriented approach

- Create objects that are aware of replicas
- object.create (site1, siteX, siteY);
- Similar to stored procedure approach in RDBMS
- Update synchronisation is done by a replicator object
- object.update_parameter_x (200); // OID = 38-23-222-442
- Exclusive look is required

Conclusion

- data management efforts of the two research communities are combined
- it is appropriate to try to understand the research issues of both communities since data is stored in databases
- combine common ideas to form an efficient Data Grid
- first basis for such an effort
- more about Data Grids
 - http://www.EU-DataGrid.org
 - http://cmsdoc.cern.ch/cms/grid
 - http://www.GriPhyN.org
 - http://www.PPDG.net

Grid Data Management Pilot