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Motivation

Superparamagnetic limit
Novel storage technologies can achieve 
higher densities
Must understand how to use them in 
systemsy
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Overview

Probe-based storage
Physical models
Evaluation
Conclusions
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Probe-Based Storage Device
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Characteristics 

Low power
Density 50nm/bit
100-200Kbit/sec per tipp p
Highly parallel tip arrays
Rectilinear motionRectilinear motion
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Data Layout

tip row 1 reads

tip row 2 reads
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Sector Mapping
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Unconstrained Sled Model
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Dependencies Graph
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Spring Model
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Optimal Control Model
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Overview of Physical Models

Unconstrained sled 
max acceleration/deceleration

Spring model 
constant force 

Optimal controlp
optimally varying force
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Model Dynamics

•optimal control predicts shortest seeks
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•spring model predicts longest seeks



Turnaround Time

•Models do not incorporate turnaround time
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Device Parameters

Parameter Description

m mass

F external force

k spring coefficient

λ damping coefficient

ω resonant frequency

a acceleration

tolt tolerance

settlet settle time

University of California Santa Cruz



Evaluation

Pantheon simulator
Cello (4% sequential)
Snake (38% sequential)( q )
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Snake usr1
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Cello news
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Summary

Upper bound: spring model
Lower bound: optimal control model
Settle time
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Questions

How significant is seek time/transfer 
ti ?time?
Different models/different conclusions?

University of California Santa Cruz



Transfer Time

service
transferseek time transferseek time

turnaround x-moves read/write tip change
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Seek Time

Transfer time dominates seeks for 
t > 4KBrequests > 4KB

Potentially even larger than that
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Implications for Probe-based Storage 
ArraysArrays

Conventional wisdom: 
High concurrency, large stripe size
Low concurrency, small stripe size
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Concurrency, 1 Sled, exp(4KB)
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Concurrency, 20 Sleds, exp(4KB)
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Model Sensitivity Example
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Conclusions

We don’t yet know the “right” model, but
We have a reasonable performance 
range
Seek/transfer time ratio has significant 
implications for system designp y g
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