
Techniques for Efficiently
Allocating Persistent Storage

Arun Iyengar, Jim Challenger
IBM T. J. Watson Research Center

Hawthorne, New York

Shudong Jin
Department of Computer Science

Boston University

5/24/2009 IEEE Symposium on Mass Storage
Systems

1

Overview

•Motivation For This Work
•Disk ManagementDisk Management
•Memory Management: PMFLF
•Measurements•Measurements
•Summary

5/24/2009 IEEE Symposium on Mass Storage
Systems

2

Motivation
•We have a need for efficient persistent memory to replace or
augment main memory

•Manage very large data structures (large)
•Low startup and shutdown time (persistent)
•Move and replicate structure (mobility)Move and replicate structure (mobility)
•Low overhead (efficient)

•Simple lightweight interfaces:•Simple lightweight interfaces:
•Low level API: malloc() and free()
•Java collection classes: Hashtable, Btree, Queue

5/24/2009 IEEE Symposium on Mass Storage
Systems

3

Motivation
Sydney 2000 use:
•Object Dependence Graph (1.3 GB, 750,000 objects)
•Persistent fragment cache (4 GB, 750,00 objects)
•Persistent expiration table (1,000,000 entries)Persistent expiration table (1,000,000 entries)

Other Proposed Uses
•Routing tables
•Proxy Caches
•Persistent WorldsPersistent Worlds

5/24/2009 IEEE Symposium on Mass Storage
Systems

4

Related Work

DBM, NDBM, GDBM, JDBM, Perl DBM etc., , , ,
•Object size restrictions
•Copyright problems
•Bad fragmentation characteristics•Bad fragmentation characteristics
•Clumsy API
•Scalability problems

Rogue-Wave Btree and Hashtable on Disk
•Undesirable fragmentation characteristicsUndesirable fragmentation characteristics
•Inefficient allocation
•Scalability problems

5/24/2009 IEEE Symposium on Mass Storage
Systems

5

Disk Management Highlightsg g g

•In-Memory freelists for fast allocation and deallocation
•Most allocations and deallocations require single seek/write
P i di h k i f di k i•Periodic checkpoint of disk structures amortizes cost

•Deferred coalescing
•Checkpoint freelists on disk on clean shutdown for fast startp
•Reconstruct freelists from disk scan after system failure

5/24/2009 IEEE Symposium on Mass Storage
Systems

6

Disk Management Ig

Representation on Disk:p

32+ 64-512-

Allocation
Status Size Data

Allocation
Status Size Data

Allocation
Status Size Data

Allocation:
1 seek if block is not split and not tail allocation1 seek if block is not split and not tail allocation

Deallocation:
1 seek if coalescing not required1 seek if coalescing not required

5/24/2009 IEEE Symposium on Mass Storage
Systems

7

Memory Management - PMFLFy g
•Based on Multiple Free List Fit I
(MFLF I)(MFLF I)
•Multiple quick lists reduce splits
•Multiple misc lists for large blocks

2

a1

2

3 3

44
p g

•Acceptable waste permits “close” fit
on misc list to reduce splits
•Defer tail pointer updates

44

5550-70•Defer tail pointer updates
•Defer coalesce
•Adaptive behavior
W k ll i h Di k M I

a1

10071-110

Working Storage Tail

•Works well with Disk Management I

5/24/2009 IEEE Symposium on Mass Storage
Systems

8

PMFLF Experiencep

Did not coalesce:
•No fragmentation for ODG, expiry table and one of
the fragment repositories.
•Some fragmentation in other fragment repository•Some fragmentation in other fragment repository.
Better tuning of quicklists to data would have solved
this.

Fragment caches grew to total of 4GB.g g
No performance problems.

5/24/2009 IEEE Symposium on Mass Storage
Systems

9

Disk Management II
•Maintain lists on disk as well as in memory
•Lists on disk contain both allocated and unallocated blocks
All i / d ll i d i l bi di k

g

•Allocation / deallocation updates single bit on disk
•Can defer update of Disk List Head (DLH) when new

blocks are added
•Some blocks “lost” from lists if failure between checkpoints•Some blocks lost from lists, if failure between checkpoints
•Data is never lost to applications
•Lost blocks can be recovered by header scan and coalesce
•Amortized cost of DLH updates is lowAmortized cost of DLH updates is low

MLH

25 a1 70 a3 50 a4 #Memory

DLH
Disk

(allocated)
25 a1 data -30 a2 data 70 a3 data 50 a4 data

5/24/2009 IEEE Symposium on Mass Storage
Systems

10

Disk Management IIIg
•Maintain lists on disk as well as in memory
•Lists on disk contain only unallocated blocks
All i / d ll i d i l bi di k•Allocation / deallocation updates single bit on disk

•Can defer removal of allocated blocks from disk lists
•Can defer update of DLH when new blocks are added
•Some blocks “lost” from lists if failure between checkpoints•Some blocks lost from lists if failure between checkpoints.
•Data is never lost to applications.
•Lost blocks can be recovered by coalesce operations
•Amortized cost of DLH updates is lowAmortized cost of DLH updates is low

3 3 a1 3 a2 3 a4 #

MLH
Memory

3
DLH

Disk

(allocated)
3 a1 data 3 a4 data#3 a2 data -3 a3 data

5/24/2009 IEEE Symposium on Mass Storage
Systems

11

Measurements
Java2 Hashmap implemented over:

•File System (one file per object)y (p j)
•Database System
•Single file managed by PMFLF, Disk Management I

The Operating System
•Linux RedHat 6.0 Kernel 2.2.13 (Basic Tests)

4 0 f h h•NT 4.0 for throughput tests

The Data
•Object Dependence Graph (March, 2000) with 27,800
objects for basic tests
•ODG and Dec Proxy Log for throughput tests

5/24/2009 IEEE Symposium on Mass Storage
Systems

12

•ODG and Dec Proxy Log for throughput tests

Timings, 27.8K Itemsg ,
2500

1500

2000

1000

1500

S
ec

on
ds PMFLF

File
Database

500

0

Wp IeIvIkRWn

5/24/2009 IEEE Symposium on Mass Storage
Systems

13

Timing Details, PMFLF vs Fileg ,
150

100100

S
ec

on
ds PMFLF

File

50

S

Wp WN R
0

5/24/2009 IEEE Symposium on Mass Storage
Systems

14

Wp WN R

Database Growth

150

200

100

150

ga
by

te
s

PMFLF
File

50

M
eg Database

0
1 2 3 4 5 6 7

5/24/2009 IEEE Symposium on Mass Storage
Systems

15

Summaryy

•Algorithms minimize seek and write operations•Algorithms minimize seek and write operations
•Disk Management I + PMFLF Used in Sydney Server (Java)
•Can be implemented over raw disk or within a file
•Extremely useful for Web workloads

•Persistence of structure
•Large structures don’t strain real memoryLarge structures don t strain real memory
•Simple programming model (hash table interface)
•No restrictions on object size

5/24/2009 IEEE Symposium on Mass Storage
Systems

16

