Low-Cost Disc-Based Real-time Gbps Data System

Alan R. Whitney
MIT Haystack Observatory
awhitney@haystack.mit.edu

Application

- Radio astronomy data collection for Very Long Baseline Interferometry observations
- Data collected at individual antennas, then combined to form single antenna
- Signal-to-noise ratio of observations is proportional to data rate, so highest data rates are sought
- Typically 1 Gbps continuously for 24 hrs at 10 stations (110 TB/day), repeated several times a month; incompressible data
- Data recycled after processing (~1 month cycle time); initial processing reduces data volume by factor 10³ to 10⁴.

• <u>Problem</u>

- Currently using in-house-designed magnetic-tape equipment for continuous
 1 Gbps, but expensive, aging, unreliable, difficult to transport
- Media cost ~\$1000/station/hr
- Need to develop new low-cost system based on commercial technology

• Goal of this short presentation

- Briefly describe problem, work to date
- Connect with others who may have similar needs

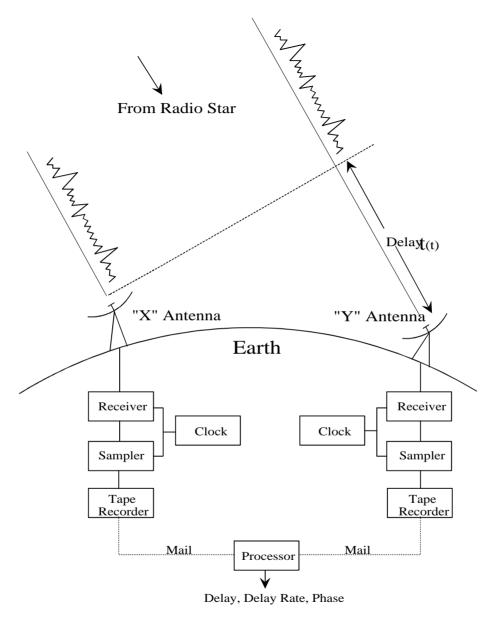
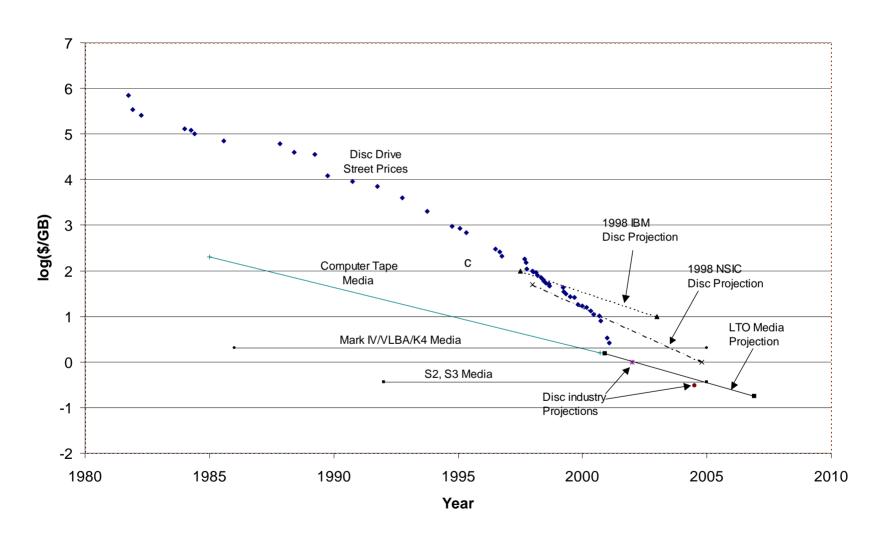


Figure 1: Basic VLBI Block Diagram


Goals of System Design

- Minimum of 1 Gbps data rate
- Based primarily on unmodified COTS components
- Low-cost
- Modular, easily upgradeable
- Robust operation, low maintenance cost
- Easy transportability
- Conformance to VSI interface specification
- Gb Ethernet interface
- Minimum 24-hour unattended operation at 1 Gbps

COTS Candidates for System Design

- COTS Buses and Interfaces
 - VME
 - PCI
 - SCSI
- COTS Computer Platforms
 - PC
 - Motorola 68000 family
- COTS Recording technologies
 - Magnetic tape (initial focus)
 - Magnetic disc
 - Optical disc
- COTS OS's
 - Linux
 - Windows
 - Various real-time OS's (Lynx, VxWorks, etc)

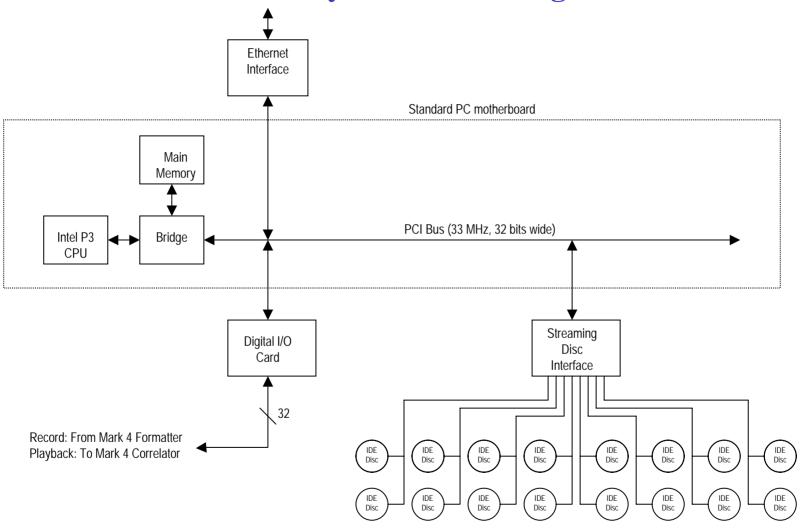
Tape vs. Disc Price Comparison

Media Selection

- Expect IDE-interface magnetic hard-disc prices will fall below computer magnetic-tape prices within ~1 year based on \$/GB; SCSI-based discs remain significantly more expensive
- IDE hard disc price vs capacity/performance will continue to drop rapidly
 - Now near \$3/GB, expected to drop to \sim \$1/GB within \sim 12-18 months, to \sim \$0.30/GB by \sim 2004-5
 - More likely to find COTS-based solution with magnetic discs than with magnetic tape or other media
- Conclusion: Next generation systems should be based on magnetic disc technology using standard IDE (aka EIDE, ATA) interfaces

Other Advantages of IDE Magnetic Discs

- Readily available inexpensive consumer product; continually improving in price/performance
- Self contained; don't have to buy expensive tape drives, so host system can be inexpensive
- Rapid random access to any data
- Essentially instant synchronization on playback
- Unlike tape, no headstacks to wear out or replace ever!


Mark V Hardware Components

- Standard PC in rack-mount case
 - 256 MB main memory
 - Standard PCI bus
 - 800 MHz Pentium 3
- General Standards HPDI32 digital I/O card
 - 32-bit wide I/O at up to 20 MHz clock rate
 - 1 MB FIFO buffer
- Boulder Instruments StreamStor multiple-disc interface
 - Support up to 16 IDE discs at streaming data rate to 800 Mbps
- 2 StorCase 9-disc chassis (8 used)
- 16 IBM Deskstar 46-GB disc drives
 - Each mounted in a hot-swappable DataPort V carrier
- Total system cost <\$25K

Mark V VLBI Demonstration System

Mark V System Block Diagram

System Characteristics

- 736 GB disc storage (with current 46 GB discs)
- Recording/playback 32 parallel bit-streams at up to 18 Mbps/bit-stream (576 Mbits/sec)
 - Direct PCI-to-PCI transfer from I/O card to disc interface card
- Only four simple manual functions implemented
 - Record start recording from beginning of media
 - Append append recording to end of existing recording
 - *Play* reproduce starting at specified byte position
 - Fetch data to file fetch specified data to standard Windows file(s)
- All functions fully tested
- Conception to completed system in <2 months

Status and Plans

- Upgrade to 1 Gbps within 6-8 months
- Add VSI interfaces for general-purpose real-time streaming with full time resolution (to the bit level)
 - VSI interface has been internationally adopted by VLBI community, Japanese high-energy physics community

Costs

- Within ~1 year, expect disc costs to drop to ~\$1/GB with ~125 GB single-drive capacity (tape media cost is ~\$2/GB)
- Industry projection ~1 TB drive for ~\$300 (\$0.30/GB) by ~2004-5.
 A single Mark V with 16 such drives will record 1 Gbps for ~34 hours unattended!
- Cost of system is expected to remain <~\$25K.

Towards 'Real' Real-Time

- Real-time data transmission over dedicated fibers is being pursued, but:
 - Most antennas are deliberately remote and 'last mile' costs are high
 - Current costs for Gbps international networks are far too high (the cost/bandwidth of a 747 loaded with tapes still can't be beat!)
- Data-buffering at both antenna and central processor is likely to be required for some time
- Nevertheless, we expect to begin limited demonstrations of real-time data transmission during the next year.

Conclusions

- Gbps real-time COTS-based system is readily achievable today
- Magnetic-disc technology is rapidly becoming cost competitive with magnetic tape and has many advantages
- Choice of magnetic discs allows use of most modern, least expensive disc technology at all times
- Cost of host system is much cheaper than magnetic-tape system (i.e. no tape drives!)
- Multi-Gbps operation is economical with simple parallel operation of multiple systems
- Comments, questions welcomed at awhitney@haystack.mit.edu