
43

File Virtualization with DirectNFS
Anupam Bhide, Anu Engineer, Anshuman Kanetkar, Aditya Kini

{anupam, anu, anshuman, aditya}@calsoftinc.com
CalSoft Private Limited, Pune 411 013, India

Tel: +91 20 567-4644
Fax: +91 20 567-7279

Christos Karamanolis, Dan Muntz, Zheng Zhang
{christos,dmuntz,zzhang,gary_thunquest}@hpl.hp.com

HP Research Labs
1501 Page Mill Road, Palo Alto CA 94304-1126

tel: +1 650 857-1501
Gary Thunquest

HP Colorado
{gary_thunquest}@hp.com

Abstract
There is a definite trend in the enterprise storage industry to move from Network
Attached Storage (NAS) solutions to high performance Storage Area Networks (SAN).
This transition is not easy because of the well-entrenched NAS infrastructure that has
already been deployed. This paper attempts to define a file system that can leverage the
existing NAS software infrastructure along with evolving SAN technology to provide
the benefits of high performance storage access while reducing the cost of migrating to
these networks.
In this paper, we propose a new network file system, DirectNFS, which allows NAS
clients to take full advantage of the performance and scalability benefits of SANs. In
order to achieve this goal, the system presents a NAS interface to existing NAS clients
while allowing DirectNFS clients to access storage directly over shared SAN, i.e.
clients bypass the server for data access. A server maintains the NAS interface for
legacy clients and arbitrates access to metadata by DirectNFS (SAN aware) clients. This
metadata server ensures that the system is operable for both legacy NAS clients as well
as DirectNFS clients. The communication protocol of DirectNFS is designed as an
extension of traditional network file systems protocols, such as NFS and CIFS.
A prototype of DirectNFS has been built for Linux, as an extension to the native NFSv2
implementation. Initial results demonstrate that the performance of data intensive
operations such as read and write is comparable to that of local file systems, such as
ext2.

1. Introduction
For the past few years, there has been an increasing trend to replace NAS storage
systems by SAN. The primary reasons for this migration have been the increased data
storage requirements that constantly plague the enterprise computing environment.
SANs provide seamless expansion, combined with high throughput, and increased
manageability. However, NAS architecture has been around for many years and has a
well-entrenched installed base. The migration to SAN makes this NAS infrastructure
obsolete and adds to the cost of already expensive SAN systems. One major drawback
of the SAN systems that are deployed now is the lack of interoperability. However, this

44

situation will eventually be remedied as more users adopt SANs and as SAN standards
evolve.
Today, with multiple operating systems and multiple vendor platforms present in most
data centers, SAN inter-operability is highly valued. NAS technologies, on the other
hand, are mature and interoperable. They use de-
facto standards such as NFS[1] and CIFS[2] to
provide data access. NFS clients are available for
almost all platforms. Both NFS and CIFS have
mechanisms to control and synchronize
simultaneous access to shared data. These
inherent features of NAS were taken advantage
of in the design of DirectNFS.
A simple way of using the SAN, as shown in
Figure 1, is to retain the familiar client/server
model, with all the storage resources on the SAN
appearing as local disks to the server. All the file
accesses by clients in this scenario are forced to pass
through the file server. This creates heavy loads on the file server.

In order to eliminate this overhead of data being copied through both SAN and LAN,
the clients must be given the ability to access the data directly through SAN. To enable
clients to access data directly, we have to provide them with a file location map that
describes on which device and on which block the file data resides - information that is
maintained as part of the metadata of the file system.

There have been different solutions to the distributed storage problem, ranging from
“Shared Everything” to “Shared File Volume” architectures. In a “Shared Everything”
filesystem, all clients maintain data as well as metadata portions of the file system. Most
of the cluster file systems follow this approach (Petal /Frangipani[3], GFS[4]). In a
“Shared File Volume” filesystem, one central entity is in charge of updating the data
and metadata. Most client / server file systems follow this approach (NFS, CIFS). In a
“Shared Everything” approach the implementation of the file system and its recovery on
failure is complex. On the other hand, in a “Shared File Volume” approach, the
scalability and performance of the file system are limited due to the existence of a
single server. In the design of DirectNFS we have chosen to tread a middle ground
between these two approaches. We have chosen to create a shared architecture for data,
by making the clients aware of the physical layout of each file, which allows the clients
to access data directly through the SAN. However, we do not allow clients to modify
the metadata directly. Once we allow the clients to access data directly, the NAS-
provided guarantees of single system semantics break down. This is unacceptable
because a lack of single system semantics would lead to corruption of the file system.
The solution is to create an entity that enforces these semantics, and this entity in
DirectNFS is known as the metadata server. The metadata server is responsible for all
metadata modifications in the file system. Since most filesystem metadata operations
are atomic in nature, a single authority in charge of metadata modifications makes file
system implementation and recovery easier. The metadata server also provides NAS

LAN

SAN

Figure 1: SAN with NAS Clients

45

interfaces to legacy clients for interoperability. This approach does have a drawback of
introducing a single point of failure (metadata server) which makes the system less fault
tolerant as compared to “shared everything” file systems. We believe that the potential
gains from implementing a “shared
everything” file system and making it
compatible with legacy clients are not
worth the complexity of the
implementation.

DirectNFS clients are allowed to
cache the block metadata, or the
information pertaining to location of files.
Coherency is enforced using a lease
protocol. The metadata server acts as an
arbitrator between the clients to make sure
that the cached metadata is valid. The
network architecture of DirectNFS is shown in Figure 2. By adding a SAN connection
and DirectNFS software to each client, clients can utilize the file server for file system
metadata access, locking, and coherency, but they read and write file data directly from
the storage, bypassing the file server. The introduction of a simultaneous data access
path can improve file serving performance through parallel and direct transfer of data
between the data sources and the client systems. This also achieves better utilization of
the file server by reducing the CPU and network load on the metadata server. Clients
that either do not have a SAN connection or do not have the DirectNFS software can
continue to access data through the server using the NFS or CIFS protocol clients,
which they already have. This makes DirectNFS a powerful tool in migration of
existing LAN/NAS combination to SAN.
We have implemented a GNU/Linux prototype of DirectNFS. Many platforms such as
FreeBSD, Solaris and HP-UX were considered for reference implementation.
GNU/Linux was chosen primarily because of the ease of source code availability,
general acceptance in terms of usage and the support from the large community of
hackers.

In our GNU/Linux prototype, we have demonstrated throughput comparable to that
of a local (ext2) file system. Thus, we provide client applications the ability to have
both shared file access and near local file system performance simultaneously. We have
also observed lower server resource utilization in the metadata server compared to a
NAS server, which implies that DirectNFS can support more clients than traditional
NAS servers. DirectNFS implementation is transparent to applications running on the
clients: no source code changes are necessary to client applications. During system
operation, DirectNFS can be turned on or off without altering the file system semantics.
In this paper, in section two we talk about the goals associated with the DirectNFS
design, section three talks about the design in detail. Section four of this paper deals
with the Linux prototype. Section five discusses work done previously in this area. In
section six, we highlight the performance achievements of DirectNFS. We present
future directions for DirectNFS in section seven, and conclude in section eight.

LAN

SAN
Metadata
Server

Figure 2: DirectNFS Network Architecture

46

2. DirectNFS Design Goals
In this section, we provide a list of design objectives of the DirectNFS architecture. In
subsequent sections, we discuss the DirectNFS architecture in greater depth.
• Storage Scalability - Storage space must scale well with the continuous

accumulation of data.
• High Performance - DirectNFS aims to provide a high performance remote file

system, with orders of magnitude performance improvements over traditional NAS
protocols.

• File System Scalability and Recovery - To create a simple distributed file system
that can provide both scalability and recoverability.

• Independence from Physical File Systems - DirectNFS must be able to run
irrespective of the underlying physical file system that is used for storage.

• Portability - DirectNFS should be portable to other Operating systems without
much effort.

• File Virtualization over SANs - Enable the seamless integration of Storage Area
Networks into NAS environments by adding a “File Virtualization” layer on top of
the block-level interface that SANs provide.

3. Design

The basic philosophy behind the design of
DirectNFS is the separation of data from
metadata operations to increase parallelism
in file system operations. Only read and
write operations are taken over by
DirectNFS client software, all the other file
system operations are still performed
through the NAS protocol. This makes
DirectNFS design portable, thereby
enabling us to use the same design on a
host of other platforms including NT, BSD,
Solaris and HP-UX.
The Figure 3 shows these operations more
clearly, the communication between the
DirectNFS client and metadata server. This

communication includes lease protocol communication to maintain metadata coherency,
the metadata information requests and NAS protocol functionality that is not intercepted
by DirectNFS. The legacy NAS client communicates with the metadata server as if it
were an ordinary NAS server.

3.1.Architecture Overview
This section provides an overview of DirectNFS architecture including DirectNFS
extensions to the NFS protocol, cache coherency mechanisms, optimizations, and
security.

Figure 3: DirectNFS Architectural Overview

LAN

Metadata
Server

NAS Protocols

DirectNFS Protocol
Direct Data Access

Legacy
NAS
client

SAN

47

3.1.1. Extensions to NFS
DirectNFS defines extensions to the NFS-RPC[5] protocol that implement the
separation of the data/metadata path. This includes new RPCs used by the clients to
retrieve the physical location of files on the storage (block lists) and additional RPCs to
enforce cache coherency. The native RPC set of NFS is used to perform metadata
operations on the server.
The new RPCs implemented by DirectNFS are,

• GETBLKLIST : This RPC allows the clients to get the block list of the files that
are present in the system. The arguments to this RPC are the NFS file handle
and the byte range for which the block list is requested.

• GETLEASE : This RPC is used by the DirectNFS client to acquire the lease for
locally cached metadata. This RPC can be piggy backed on the GETBLKLIST
RPC. The argument is the NFS file handle and duration. The reply sent by the
server indicates whether the requested lease has been granted or denied.

• VACATELEASE : This RPC is used by the metadata server to ask a client to
release the lease it has on certain file. The argument to this RPC is NFS file
handle.

• VACATEDLEASE : This RPC is issued by the client, when it releases an lease
due to the request from the metadata server.

Using these RPCs, clients are able to retrieve the physical locations of files and access
them directly without conflict.
3.1.2. Metadata Caching and Cache Coherency
DirectNFS clients use extensions to the NAS RPC protocols to retrieve file metadata,
i.e. physical block and device numbers. This file metadata is then cached locally on the
client in a Block-Number Cache (BNC). This allows DirectNFS clients to cache the
most frequently used physical block numbers for files that are most frequently used.
However, introducing a distributed cache also introduces coherency issues, which we
solve using a leases-based protocol.
A lease is a time-bound object granted by a lease server to a lease client. In DirectNFS,
a lease is granted on a per-file basis to clients by the metadata server. The lease
guarantees the client that as long as its lease is valid; it holds the most current copy of
the data object (i.e. the cached list of blocks for the file). Multiple clients are allowed to
share leases on the same data object for read-only access. However, any changes to this
data by a third party can only be made when the server has revoked all other leases.
This revocation is either done explicitly by notifying the client, or implicitly, if the
leases time out. In either case, once the lease expires, the lease-holder has to discard the
cached data protected by the lease.
The time-bound property of leases ensures simple recovery of clients/servers in case of
a crash or network failure. Neither the client nor the server maintains any state. In case
of a system crash, the leases that were issued before the system went down will expire,
which brings the system to a known, stable state. This makes the recovery algorithm
extremely simple to implement, especially when compared to the NLM protocol or
other Distributed Lock Managers.
However, this coherency mechanism does not protect the system against SAN
partitions, which may lead to data corruption – it is assumed that the SAN provides a
reliable and available service for data delivery.

48

When the DirectNFS client needs to read/write a block of data, it first ensures that it has
the right lease for the kind of access it needs to
perform. The interaction between DirectNFS
clients and metadata server for lease acquisition
in write and read scenarios is illustrated in
figures 4 and 5 respectively.
Once the lease has been validated, the client
looks up the Block Number Cache for the
physical location of the data. The metadata
server is then queried for metadata information
only in the event of a cache miss.
Metadata caching is augmented with “write
allocation gathering”. This is the process of
deferring disk block allocations during file
writes. In DirectNFS, we do write allocation by
gathering write requests at the client. Smaller
byte-range requests are merged into larger
requests, thereby reducing the number of
metadata requests to the server. This
significantly improves performance, by reducing
the number of requests to the server that the
server has to service. “Write gathering” [6]
performed by NFS is similar in its approach
and it is used to exploit the fact that there are
often several write requests for the same file presented to the server at about the same
time.
3.1.3. Write Gathering
Distributed-system file access patterns have been measured many times[7]. It has been
found that sequential access is the most common access pattern.
Under DirectNFS, for every write request, a cache miss would result in a
GETBLKLIST RPC being sent to the metadata server. To improve write performance, a
technique called write gathering is employed that exploits the fact that there are often
several write requests for the same file called about the same time. With this technique
the data portions of these writes are combined and a single metadata update is done that
applies to them all. In this way, the number of RPCs being sent out would dramatically
reduce, and considerably improve write performance.
The performance for write gathering depends on the periodicity of the deferred write
requests to the server. Two events can trigger this: the write back cache being flushing
periodically and an eviction notice received at the client.
3.1.4. File Virtualization
One of the major issues of merging SAN and NAS is the basic unit upon which they
operate. The legacy NAS protocols operate at a “File” level abstraction. However, the
SAN systems normally present the block level interfaces that are leveraged by
filesystems.
In the DirectNFS design, we were faced with the problem of maintaining support for
legacy clients, which meant that we needed to maintain the file level abstraction. On the

Client A Client B

1

2

3
4

5

6

Get Read Lease

Grant Lease

Vacate Lease

Vacated

Get Write Lease

Grant Write Lease

Meta Data Server

Figure 5: Sequence Diagram for Lease Protocol
Interactions (Read-Write Conflict Case)

Figure 4: Sequence Diagram for Lease Protocol
Interactions (Read-Sharing Case)

Client Client B

1

2

3
4

Get Read Lease

Grant Lease

Grant Read Lease

Get Read Lease

Meta Data Server

49

other hand, the benefits of the SAN can be leveraged if and only if we went down to the
block level. In order to solve this problem we created a “virtualized file interface over
SAN”, where the legacy NAS clients are under the impression that the NAS server
stores the files, but the DirectNFS clients went below the file abstractions to leverage
the SAN performance by using block device interface directly. In order to implement
this duality, we had to achieve the data-metadata split and create other mechanisms like
the lease framework in order to tackle complexities arising out of the merger of SAN
into NAS.
The DirectNFS file system had to merge these two different worldviews to create a high
performance distributed file system, which offered a NAS interface. This was achieved
by maintaining a “Virtual File Interface”. However, the DirectNFS client behavior can
be compared more to block device driver, than really a NAS file system client. In other
words, we introduced the SAN abstractions and performance to the NAS protocols
without breaking it. This unification of SAN of under NAS is what is referred to as file
virtualization in DirectNFS.

3.1.5. Security Considerations
There are certain assumptions that are critical to DirectNFS architecture that need to be
pointed out while understanding the security mechanisms in DirectNFS. They are
• The base NFS protocol operates on atomic data entities known as files.
• DirectNFS does not alter the semantics of NFS protocol
• DirectNFS relies on the file system and block device layer to provide security that is

needed.
DirectNFS has modified the VFS layer[8] of NFS communication not the NFS
semantics. The real physical file system must be present for DirectNFS to work. This is
a strict requirement because we still rely on the file abstraction to maintain the
coherency of data.
In DirectNFS, the file system layer is responsible for security and data coherency. In
order to solve the coherency problem at file level, we have created a framework of
leases ensuring that coherency is maintained at the file system level.

However, in case of rogue agents who can access the storage system at the block
interface by bypassing DirectNFS completely, the possibility of unauthorized access
remains, unless the block access mechanism (block device driver) provides security.
We currently provide only file level security but do not provide block level security.
NASD [9] addresses the issue of block level security with the help of special hardware.
If the shared storage contains security mechanisms, for example iSCSI [10] has security
mechanisms built in and when DirectNFS operates on those environments it can be
made to run in a secure mode by leveraging these underlying mechanisms. Thus
DirectNFS relies on existing infrastructure to take care of security (iSCSI, Fiber
channel[11], NFS). This is a conscious design decision made in favor of making this
protocol run on extremely varied range of hardware.

50

4. Implementation of the Linux Prototype
The implementation philosophy of DirectNFS was to reuse existing libraries as far as
possible and to maintain portability. It was implemented as a kernel loadable module on
Linux 2.4.4, and it consists of roughly 8000 lines of code on the client and 1500 lines of
code on the server.

4.1.DirectNFS with FiST
In order to make the implementation easier and portable we have used FiST (File
System Translator). FiST [12] is a stackable file system generator. It defines its own
highly abstract Domain-Specific Language (DSL) for describing file-system filters. A
compiler translates the DSL description to C code for various operating systems. FiST
also provides the necessary infrastructure for interposing the generated filter between
the VFS (Virtual File System) and the natively installed file systems in the kernel. FiST
played an important role in the initial phase of the implementation, when we used it to
generate a code skeleton for a simple, pass-through file system that interposed itself
between the VFS layer and the NFS client.
On the DirectNFS client, the Linux DirectNFS module can be thought of as consisting
of these sub-modules:
1. The DirectNFS Filter/Redirector – This component interposes itself between the

VFS and the NFS client module. It intercepts all file I/O operations (read, write) and
redirects them as block I/O requests over the SAN. This was achieved by modifying
the basic FiST-generated filter to enable us to intercept I/O operations instead of
passing them down the file system stack, which is the default FiST policy. The I/O
interception code in the redirector is system-dependent. The redirector also contains
the Block Number Cache, where the client caches location information for each file
that is accessed over DirectNFS.

DirectNFS Redirector Lease
Service

NFS Client
Transport
Wrapper

VFS

Lease
Service

knfsd

DirectNFS

RPC Client/Server RPC Client/Server

Transport
Wrapper

DirectNFS Client DirectNFS Server

Physical File System

VFS

SAN

Figure 6: DirectNFS Software Architecture

51

2. Leasing Service – This is a distributed protocol, which allows multiple DirectNFS
clients to keep their cached metadata coherent. The leasing service has been built as
a library that is independent of the transport mechanism underneath it. This allows
us to plug in any transport mechanism by writing a transport wrapper for the
mechanism.

3. Transport Wrapper – This provides an interface between the leasing service and
the transport layer, in this case - RPC. This wrapper allows the file system client to
query file location information (i.e. block numbers) from a central server and to
communicate lease requests to the server.

The DirectNFS server module consists of:
1. Leasing Service – This is the server-side counterpart of the leasing service. It is

responsible for maintaining a list of lessees for each file, and to resolve lease
conflicts.

2. Transport Wrapper – The transport wrapper on the server as on the client provides
an interface between the leasing service and the transport layer. This wrapper allows
the server to interface with file system clients that query for file location
information and to communicate lease rejections or grants to them.

3. DirectNFS client – A DirectNFS client is interposed between VFS and the physical
file system, to provide lease-based coherency for locally originating file accesses.
This could be from local applications trying to access the physical file system or
from knfsd while it is serving legacy NAS clients.

The DirectNFS module on the client is responsible for trapping file open, close, sync,
unlink, read, and write calls. Since these operations access the location information of
the file, the file’s lease is tested for validity. If the lease is invalid, it is acquired by
issuing a GETLEASE RPC to the metadata server. For read and write operations, the
Block Number Cache is looked up for cached block numbers. On a cache miss, a
request is sent to the server, with a piggybacked lease request, if required. This is done
with the GETBLKLIST RPC. Once the client is granted a valid lease on the file, and
receives the requisite file location information, it accesses those blocks directly over the
SAN.
In the event that the client receives a VACATE RPC, which signals the server ordering
an eviction of the lease that the client holds on the metadata, the client flushes the cache
that is associated with the file, and then proceeds to inform the DirectNFS server by
sending the VACATED RPC.
Note that the DirectNFS Leasing Service makes the following assumptions:
1. The lease is time-bound, has a fixed duration, and must be renewed explicitly at the

server in order for its time period to be extended.
2. The clock skew between the participating entities in the lease protocol is bounded.
3. The time taken by the client to flush its cached after eviction is bounded.
Lease conflicts are resolved by the lease server using the matrix in Table 1.

 Read Write
Read Shareable Non

Shareable
Write Non

Shareable
Non
Shareable

Table 1: Compatibility Matrix for DirectNFS Leases

52

5. Performance
One of the principal objectives of
DirectNFS is performance. In this
section, we present the performance
numbers that we obtained from the
prototype implementation. We have
measured the performance of
DirectNFS against other file systems
like ReiserFS[13], ext2 and NFS
versions 2 and 3[14]. The systems
under test were three HP Netserver LC
2000, Pentium III’s -933 Mhz with 128

MB RAM and 256KB L2 cache. The
machines were running Redhat

Linux, with custom-built kernels from the
2.4.x series. They were connected to a
JBOD (HP Rack Storage/12) of four Ultra 3
Hot-Swap SCSI[15] disks 9 GB each. The
system was set up in a SCSI multi-initiator
arrangement, with two machines acting as
DirectNFS clients, and one machine as the
DirectNFS metadata server, with all three
machines sharing access to the JBOD
through a shared SCSI bus. This was used
to emulate a SAN. The benchmarking

utility that we used was Iozone [16].
We benchmarked the performance of
DirectNFS with varying file sizes and
record sizes. From the data, we observed
no significant variations in the
comparative figures. Hence, we have
included the performance figures of read,
write, reread and rewrite of a 2GB file
over ResierFS, DirectNFS, Ext2, NFS2
and NFS 3. Figure 7 is a the performance
graph of various file system read

throughputs for varying file sizes, with fixed record size of 256 KB. The rest of the
graphs - Figures 8, 9 and 10 - carry comparisons of write, re-read and re-write
operations. These figures indicate that DirectNFS performances are comparable to local
file systems.

Read Comparison

0
5000

10000
15000
20000
25000
30000
35000

2 GB 1 GB 500
MB

100
MB

File Size

K
B

 /
Se

c

DirectNFS
Ext 2
Reiser
NFS 2
NFS 3

Figure 8: Read Comparison

Write Comparison with 2 GB file

0

5000

10000

15000

20000

25000

30000

2 GB 1 GB 500 MB 100 MB

File Size

K
B

/ S
ec

DirectNFS

Ext 2

Reiser

NFS 2

NFS 3

Figure 7: Write Comparison ReWrite Performance

0

5000

10000

15000

20000

25000

30000

35000

2 GB 1 GB 500 MB 100 MB

Fi l e S i z e

Direct NFS

Ext 2

Reiser

NFS 2

NFS 3

Figure 9: Rewrite Comparison

53

The write performance of DirectNFS shown in Figure 8 is slightly worse than Ext2 and
ReiserFS. Re-read and re-write were tested so that we could measure the effects of the
Linux page cache.
We have measured throughput for these
four operations with varying file sizes
starting from 100 MB up to 2GB and
varying record sizes starting from 4 KB up
to 256 KB. Since the throughput figures
we obtain did not vary significantly across
these series, we reproduce data for 256KB
record sizes only. The file sizes selected
were suitable large, as we expect the
primary use of DirectNFS to be
multimedia applications (e.g. streaming
media servers), which use large files.
Note that NFS v2 and v3 throughput
figures that we measured were very close
to each other. Even though NFS 3
implements Asynchronous writes, NFS 2
clients under the Linux use write caching and by default run with synchronous writes
set to off. This hides the RPC latency of NFS from client applications. However, we
wanted to compare against real world performance and hence we tried to measure
against the fastest NFS performance possible.
From a glance at the throughputs for read and re-write tests, it appears that DirectNFS
performance comes close to matching the performance of both ReiserFS as well as ext2.
This can be accounted for by the metadata cache, which contains logical to physical
block translations, and improves the performance of DirectNFS, bringing it close to
ext2 and in some cases surpassing it (this is because the mapping function for the cache
is less expensive than the corresponding lookup operation in EXT2 or ReiserFS). We
also examined the effect of record size on performance. Figure 11 is a comparative
graph for the read operation for various file systems with fixed file size but with varying
record size. We did not observe any significant effect of record size on throughput of
any of the file systems under consideration. This is most likely due to the pre-fetching
in the VFS layer.

If we look closely at the performance
relative to NFS2 or NFS3, we see that
the performance improvements that are
achieved are significant, and are 2 to 3
times that of the Linux implementation
of NFS.
There are two measures of goodness for
a network file system, the first is the
throughput that each client can expect
from the file system, and the second is
the server scalability. DirectNFS

Re-Read Comparison

0

5000

10000

15000

20000

25000

30000

35000

2 GB 1 GB 500 MB 100 MB

Fi l e S i z e

Direct NFS

Ext 2

Reiser

NFS 2

NFS 3

Figure 10: Re-Read Comparison

Figure 11: Comparison with varying record size

Comparison with varying record size

0
5000

10000
15000
20000
25000
30000
35000

4KB 64KB 256KB

record size

K
B

 /
Se

c

DirectNFS
Ext 2
Reiser
NFS 2
NFS 3

54

addresses both of them by increasing the client throughput by a factor of 2 to 3 as
compared with competing NAS technologies like NFS, and increases the server
scalability significantly by reducing CPU utilization at the server.
A look at Figure 12 shows the relative CPU utilization of DirectNFS with NFS. The
tests that were carried out were sequential read, sequential reread, sequential write, and
sequential rewrite. Now, if we look at the NFS performance, we can conclude that NFS
(with a single client running Iozone tests on a file of size 1GB) requires a mean CPU
utilization of more
than 20%. Thus, the
scalability of the
server is limited to the
number of clients that
access the NFS server
at any point of time.
However, a look at the
DirectNFS numbers
for the same test
conditions shows a
radically different
scenario. One can see
that there is an initial
period where the CPU
utilization is roughly at an average of 10%, with a peak utilization of 20%. This is
because of aggressive pre-fetching of metadata by the DirectNFS client during the start
of file I/O. This accounts for the lower CPU utilization on the server when servicing a
DirectNFS client as compared to a NFS client.
Thus, it can be seen that the CPU utilization is significantly lower than NFS utilization
for the same one client setup that we used to measure NFS utilization. This indicates
that the DirectNFS metadata server may scale better than NFS servers.
Another key parameter by which scalability can be judged is the amount of network
traffic, expressed in terms of the number of RPCs that are required for a given operation
to take place. A measurement of the number of RPCs that are required to run the given
set of tests reveals that DirectNFS uses about a tenth of the total number that is required
for NFS. This can be explained by the fact that the number of metadata requests in
DirectNFS is drastically lower than NFS because of write allocation gathering and the
metadata pre-fetching performed by the client. This makes the data-metadata split
attractive, as this considerably reduces the traffic on the network and makes DirectNFS
a lot more scalable.
Overall, DirectNFS performs significantly better than NFS for all of the tests,
outperforming it by a factor of 2 to 3.
DirectNFS has been designed to counter network bottlenecks and ‘store-and-forward’
overheads on NAS servers. So, the server CPU and I/O subsystem are no longer the
bottleneck. Introducing parallelism to storage access also means that the system will
scale as the available bandwidth for the storage network increases. Isolating storage
traffic on to a separate network allows for better utilization of the messaging network by

Figure 12: CPU utilization figures for a single client setup

55

other network application protocols.
6. Future Work

1. Client Side Disk Caching: To further improve performance, the size of the
cache that holds the physical block translations should be made as large as
possible. To overcome the memory size limitations that we will come across
when dealing with large files and clients with multiple such workloads, the
block translations can be stored on disk. Thus, the limitation that currently exists
on the number of cacheable translations increases greatly, helping us to achieve
greater scalability.

2. Volume metadata caching: When the metadata server receives a
GETBLKLIST request, the DirectNFS filter uses the physical file system’s
bmap operation to obtain the physical block numbers for the requested byte
range. Normally, the block buffer cache would cache the most frequently used
blocks in the storage system. Servers normally have a large amount of RAM,
and we feel that caching the entire metadata for the file volume is feasible. In
fact, for a file system formatted with 4KB-sized blocks, the cost of caching all
the physical block numbers of the volume is about 1MB per GB.

7. Related Work
There are some interesting existing systems in the distributed File Systems space.
Storage Tank [17] follows a similar approach for moving the data access path away
from the server. However, the design of Storage Tank lacks the portability of
DirectNFS. This is because DirectNFS uses a portable approach leveraging the ability
of a code generator like FiST to drastically reduce the porting of the file system to
multiple platforms. Many cluster file systems such as the Veritas Cluster File System
[18] are layered above and integrated with a proprietary physical file system. CMU’s
Network Attached Secure Disks requires Intelligent Devices, which embed some file
system functionality in the Storage devices thus handling various issues like security,
scalability and object management. NASD addresses the security aspects of a SAN
based file system well, but the need for manufacturers to incorporate these changes into
disks highlights the problem associated with this approach.
 Other similar work in the area includes Frangipani/Petal, Tivoli’s SANergy [19] and
EMC’s Celerra[20].

8. Conclusion

DirectNFS presents an optimum blend of NAS and SAN storage technologies. It uses
traditional distributed file system protocols such as NFS for meta-data access, with
extensions for direct data access using SANs. The end result is a distributed file system
that scales much better at high loads and has a data throughput that is a factor of 2 to 3
better than existing NAS protocols. In fact, this performance was comparable to that of
a local file system.
The portable design of DirectNFS makes it relatively simple to port to other operating
systems. In the future, we plan to port DirectNFS to other platforms such as HP-UX,
Windows2000 and FreeBSD and add CIFS compatibility.

56

Acknowledgments
We would like to take this opportunity to thank Anandamoy Roychowdhary, who
played an important role in both the design as well as the implementation of Direct
NFS.
We are grateful to Sunu Engineer, who helped with the design.
We would also like to thank Alban Kit Kupar War Lyndem, Tanay Tayal and Gurbir
Singh Dhaliwal who helped with the implementation.

References

[1] Sun Microsystems, NFS: Network File System Protocol Specification, RFC

1094, 1988.
[2] P. J. Leach, A common Internet file system (CIFS/1.0) protocol, Technical

report, Network Working Group, Internet Engineering Task Force, December 1997.
[3] C. A. Thekkath, T. Mann, and E. K. Lee., Frangipani: A Scalable Distributed File

System., In Proceedings of the 16th ACM Symposium on Operating Systems
Principles, Oct. 1997.

[4] Kenneth W. Preslan, A 64-bit, Shared Disk File System for Linux, Proceedings
of the Sixteenth IEEE Mass Storage Systems Symposium held jointly with the
Seventh NASA Goddard Conference on Mass Storage Systems & Technologies,
1999

[5] Sun Microsystems., Open Network Computer: RPC Programming., The official
documentation for Sun RPC and XDR.IBM Inc.

[6] Chet Juszczak, Improving the Write Performance of an NFS Server (1994),
Proceedings of the USENIX Winter 1994 Technical Conference, 1994

[7] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K. Ousterhout.
Measurements of a distributed file system., Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles. pages 198-212, 1991

[8] D. S. H. Rosenthal., Requirements for a "Stacking" Vnode/VFS Interface”, UNIX
International, 1992

[9] G. Gibson et al., File Serving Scaling with Network-Attached Secure Disks,
Proceedings of the ACM Int. Conf. on Measurements and Modeling of Computer
Systems (SIGMETRICs `97), Seattle, WA, June 15-18, 1997.

[10] Y. Klein and E. Felstaine., Internet draft of iSCSI security protocol.
http://www.eng.tau.ac.il/~klein/ietf/ietf-kleiniscsi -security-00.txt, July 2000

[11] ANSI, Fiber Channel Transmission Protocol (FC-1), ANSI draft standard
X3T9.3/90-023, REV 1.4, July 6, 1990.

[12] Erez Zadok, FiST: A System for Stackable File System Code Generation, PhD
thesis. Columbia University, May 2001.

[13] NameSys Inc., The ResierFS file system, http://www.resierfs.org, 2001
[14] B. Callaghan, B. Pawlowski and P. Staubach, NFS v3 Protocol Specification,

RFC 1813, June 1995.
[15] ANSI, SCSI-3 Fast-20 Parallel Interface, X3T10/1047D Working Group,

Revision 6.

57

[16] W. Norcutt, The IOZone file system benchmark, Available from
http://www.iozone.org/, April 2000

[17] Storage Tank Software, http://www.ibm.com/, 2000
[18] Veritas Inc. Veritas Cluster File System, http://www.veritas.com, 2001
[19] Mercury Computer Systems Inc., High Speed Data Sharing among Multiple

Computer Platforms, http://www.sanergy.com, 2001
[20] EMC Corporation, Celerra, http://www.emc.com, 2001

58

