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Abstract 
There is a definite trend in the enterprise storage industry to move from Network 
Attached Storage (NAS) solutions to high performance Storage Area Networks (SAN).  
This transition is not easy because of the well-entrenched NAS infrastructure that has 
already been deployed. This paper attempts to define a file system that can leverage the 
existing NAS software infrastructure along with evolving SAN technology to provide 
the benefits of high performance storage access while reducing the cost of migrating to 
these networks. 
In this paper, we propose a new network file system, DirectNFS, which allows NAS 
clients to take full advantage of the performance and scalability benefits of SANs.  In 
order to achieve this goal, the system presents a NAS interface to existing NAS clients 
while allowing DirectNFS clients to access storage directly over shared SAN, i.e. 
clients bypass the server for data access. A server maintains the NAS interface for 
legacy clients and arbitrates access to metadata by DirectNFS (SAN aware) clients. This 
metadata server ensures that the system is operable for both legacy NAS clients as well 
as DirectNFS clients. The communication protocol of DirectNFS is designed as an 
extension of traditional network file systems protocols, such as NFS and CIFS.  
A prototype of DirectNFS has been built for Linux, as an extension to the native NFSv2 
implementation. Initial results demonstrate that the performance of data intensive 
operations such as read and write is comparable to that of local file systems, such as 
ext2. 

1. Introduction 
For the past few years, there has been an increasing trend to replace NAS storage 
systems by SAN. The primary reasons for this migration have been the increased data 
storage requirements that constantly plague the enterprise computing environment. 
SANs provide seamless expansion, combined with high throughput, and increased 
manageability.  However, NAS architecture has been around for many years and has a 
well-entrenched installed base. The migration to SAN makes this NAS infrastructure 
obsolete and adds to the cost of already expensive SAN systems. One major drawback 
of the SAN systems that are deployed now is the lack of interoperability. However, this 
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situation will eventually be remedied as more users adopt SANs and as SAN standards 
evolve. 
Today, with multiple operating systems and multiple vendor platforms present in most 
data centers, SAN inter-operability is highly valued.  NAS technologies, on the other 
hand, are mature and interoperable. They use de-
facto standards such as NFS[1] and CIFS[2] to 
provide data access. NFS clients are available for 
almost all platforms. Both NFS and CIFS have 
mechanisms to control and synchronize 
simultaneous access to shared data.  These 
inherent features of NAS were taken advantage 
of in the design of DirectNFS. 
A simple way of using the SAN, as shown in 
Figure 1, is to retain the familiar client/server 
model, with all the storage resources on the SAN 
appearing as local disks to the server. All the file 
accesses by clients in this scenario are forced to pass 
through the file server. This creates heavy loads on the file server. 
 
In order to eliminate this overhead of data being copied through both SAN and LAN, 
the clients must be given the ability to access the data directly through SAN. To enable 
clients to access data directly, we have to provide them with a file location map that 
describes on which device and on which block the file data resides - information that is 
maintained as part of the metadata of the file system.   
 
There have been different solutions to the distributed storage problem, ranging from 
“Shared Everything” to “Shared File Volume” architectures. In a “Shared Everything” 
filesystem, all clients maintain data as well as metadata portions of the file system. Most 
of the cluster file systems follow this approach (Petal /Frangipani[3], GFS[4]). In a 
“Shared File Volume” filesystem, one central entity is in charge of updating the data 
and metadata. Most client / server file systems follow this approach (NFS, CIFS). In a 
“Shared Everything” approach the implementation of the file system and its recovery on 
failure is complex. On the other hand, in a “Shared File Volume” approach, the 
scalability and performance of the file system are limited due to the existence of a 
single server. In the design of DirectNFS we have chosen to tread a middle ground 
between these two approaches. We have chosen to create a shared architecture for data, 
by making the clients aware of the physical layout of each file, which allows the clients 
to access data directly through the SAN. However, we do not allow clients to modify 
the metadata directly. Once we allow the clients to access data directly, the NAS-
provided guarantees of single system semantics break down. This is unacceptable 
because a lack of single system semantics would lead to corruption of the file system. 
The solution is to create an entity that enforces these semantics, and this entity in 
DirectNFS is known as the metadata server. The metadata server is responsible for all 
metadata modifications in the file system. Since most filesystem metadata operations 
are atomic in nature, a single authority in charge of metadata modifications makes file 
system implementation and recovery easier. The metadata server also provides NAS 

LAN 

SAN 

Figure 1: SAN with NAS Clients 
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interfaces to legacy clients for interoperability.  This approach does have a drawback of 
introducing a single point of failure (metadata server) which makes the system less fault 
tolerant as compared to “shared everything” file systems. We believe that the potential 
gains from implementing a “shared 
everything” file system and making it 
compatible with legacy clients are not 
worth the complexity of the 
implementation. 

DirectNFS clients are allowed to 
cache the block metadata, or the 
information pertaining to location of files. 
Coherency is enforced using a lease 
protocol. The metadata server acts as an 
arbitrator between the clients to make sure 
that the cached metadata is valid. The 
network architecture of DirectNFS is shown in Figure 2. By adding a SAN connection 
and DirectNFS software to each client, clients can utilize the file server for file system 
metadata access, locking, and coherency, but they read and write file data directly from 
the storage, bypassing the file server. The introduction of a simultaneous data access 
path can improve file serving performance through parallel and direct transfer of data 
between the data sources and the client systems. This also achieves better utilization of 
the file server by reducing the CPU and network load on the metadata server. Clients 
that either do not have a SAN connection or do not have the DirectNFS software can 
continue to access data through the server using the NFS or CIFS protocol clients, 
which they already have.  This makes DirectNFS a powerful tool in migration of 
existing LAN/NAS combination to SAN. 
We have implemented a GNU/Linux prototype of DirectNFS. Many platforms such as 
FreeBSD, Solaris and HP-UX were considered for reference implementation. 
GNU/Linux was chosen primarily because of the ease of source code availability, 
general acceptance in terms of usage and the support from the large community of 
hackers. 

In our GNU/Linux prototype, we have demonstrated throughput comparable to that 
of a local (ext2) file system. Thus, we provide client applications the ability to have 
both shared file access and near local file system performance simultaneously. We have 
also observed lower server resource utilization in the metadata server compared to a 
NAS server, which implies that DirectNFS can support more clients than traditional 
NAS servers. DirectNFS implementation is transparent to applications running on the 
clients: no source code changes are necessary to client applications.  During system 
operation, DirectNFS can be turned on or off without altering the file system semantics.   
In this paper, in section two we talk about the goals associated with the DirectNFS 
design, section three talks about the design in detail. Section four of this paper deals 
with the Linux prototype. Section five discusses work done previously in this area. In 
section six, we highlight the performance achievements of DirectNFS. We present 
future directions for DirectNFS in section seven, and conclude in section eight. 
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Figure 2: DirectNFS Network Architecture 
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2. DirectNFS Design Goals 
In this section, we provide a list of design objectives of the DirectNFS architecture. In 
subsequent sections, we discuss the DirectNFS architecture in greater depth. 
• Storage Scalability - Storage space must scale well with the continuous 

accumulation of data. 
• High Performance - DirectNFS aims to provide a high performance remote file 

system, with orders of magnitude performance improvements over traditional NAS 
protocols. 

• File System Scalability and Recovery - To create a simple distributed file system 
that can provide both scalability and recoverability. 

• Independence from Physical File Systems - DirectNFS must be able to run 
irrespective of the underlying physical file system that is used for storage. 

• Portability - DirectNFS should be portable to other Operating systems without 
much effort. 

• File Virtualization over SANs - Enable the seamless integration of Storage Area 
Networks into NAS environments by adding a “File Virtualization” layer on top of 
the block-level interface that SANs provide.    

3. Design 
 
The basic philosophy behind the design of 
DirectNFS is the separation of data from 
metadata operations to increase parallelism 
in file system operations. Only read and 
write operations are taken over by 
DirectNFS client software, all the other file 
system operations are still performed 
through the NAS protocol. This makes 
DirectNFS design portable, thereby 
enabling us to use the same design on a 
host of other platforms including NT, BSD, 
Solaris and HP-UX.  
The Figure 3 shows these operations more 
clearly, the communication between the 
DirectNFS client and metadata server. This 

communication includes lease protocol communication to maintain metadata coherency, 
the metadata information requests and NAS protocol functionality that is not intercepted 
by DirectNFS. The legacy NAS client communicates with the metadata server as if it 
were an ordinary NAS server. 

3.1.Architecture Overview 
This section provides an overview of DirectNFS architecture including DirectNFS 
extensions to the NFS protocol, cache coherency mechanisms, optimizations, and 
security. 
 

Figure 3: DirectNFS Architectural Overview 
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3.1.1. Extensions to NFS 
DirectNFS defines extensions to the NFS-RPC[5] protocol that implement the 
separation of the data/metadata path. This includes new RPCs used by the clients to 
retrieve the physical location of files on the storage (block lists) and additional RPCs to 
enforce cache coherency. The native RPC set of NFS is used to perform metadata 
operations on the server. 
The new RPCs implemented by DirectNFS are,  

• GETBLKLIST : This RPC allows the clients to get the block list of the files that 
are present in the system. The arguments to this RPC are the NFS file handle 
and the byte range for which the block list is requested.  

• GETLEASE : This RPC is used by the DirectNFS client to acquire the lease for 
locally cached metadata. This RPC can be piggy backed on the GETBLKLIST 
RPC. The argument is the NFS file handle and duration. The reply sent by the 
server indicates whether the requested lease has been granted or denied. 

• VACATELEASE : This RPC is used by the metadata server to ask a client to 
release the lease it has on certain file. The argument to this RPC is NFS file 
handle.  

• VACATEDLEASE : This RPC is issued by the client, when it releases an lease 
due to the request from the metadata server. 

Using these RPCs, clients are able to retrieve the physical locations of files and access 
them directly without conflict. 
3.1.2. Metadata Caching and Cache Coherency 
DirectNFS clients use extensions to the NAS RPC protocols to retrieve file metadata, 
i.e. physical block and device numbers.  This file metadata is then cached locally on the 
client in a Block-Number Cache (BNC).  This allows DirectNFS clients to cache the 
most frequently used physical block numbers for files that are most frequently used.  
However, introducing a distributed cache also introduces coherency issues, which we 
solve using a leases-based protocol. 
A lease is a time-bound object granted by a lease server to a lease client. In DirectNFS, 
a lease is granted on a per-file basis to clients by the metadata server. The lease 
guarantees the client that as long as its lease is valid; it holds the most current copy of 
the data object (i.e. the cached list of blocks for the file). Multiple clients are allowed to 
share leases on the same data object for read-only access. However, any changes to this 
data by a third party can only be made when the server has revoked all other leases. 
This revocation is either done explicitly by notifying the client, or implicitly, if the 
leases time out. In either case, once the lease expires, the lease-holder has to discard the 
cached data protected by the lease. 
The time-bound property of leases ensures simple recovery of clients/servers in case of 
a crash or network failure. Neither the client nor the server maintains any state. In case 
of a system crash, the leases that were issued before the system went down will expire, 
which brings the system to a known, stable state. This makes the recovery algorithm 
extremely simple to implement, especially when compared to the NLM protocol or 
other Distributed Lock Managers. 
However, this coherency mechanism does not protect the system against SAN 
partitions, which may lead to data corruption – it is assumed that the SAN provides a 
reliable and available service for data delivery.   
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When the DirectNFS client needs to read/write a block of data, it first ensures that it has 
the right lease for the kind of access it needs to 
perform. The interaction between DirectNFS 
clients and metadata server for lease acquisition 
in write and read scenarios is illustrated in 
figures 4 and 5 respectively. 
Once the lease has been validated, the client 
looks up the Block Number Cache for the 
physical location of the data. The metadata 
server is then queried for metadata information 
only in the event of a cache miss.    
Metadata caching is augmented with “write 
allocation gathering”. This is the process of 
deferring disk block allocations during file 
writes. In DirectNFS, we do write allocation by 
gathering write requests at the client. Smaller 
byte-range requests are merged into larger 
requests, thereby reducing the number of 
metadata requests to the server. This 
significantly improves performance, by reducing 
the number of requests to the server that the 
server has to service. “Write gathering” [6] 
performed by NFS is similar in its approach 
and it is used to exploit the fact that there are 
often several write requests for the same file presented to the server at about the same 
time. 
3.1.3. Write Gathering 
Distributed-system file access patterns have been measured many times[7]. It has been 
found that sequential access is the most common access pattern.   
Under DirectNFS, for every write request, a cache miss would result in a 
GETBLKLIST RPC being sent to the metadata server. To improve write performance, a 
technique called write gathering is employed that exploits the fact that there are often 
several write requests for the same file called about the same time. With this technique 
the data portions of these writes are combined and a single metadata update is done that 
applies to them all. In this way, the number of RPCs being sent out would dramatically 
reduce, and considerably improve write performance.  
The performance for write gathering depends on the periodicity of the deferred write 
requests to the server. Two events can trigger this: the write back cache being flushing 
periodically and an eviction notice received at the client.  
3.1.4. File Virtualization 
One of the major issues of merging SAN and NAS is the basic unit upon which they 
operate. The legacy NAS protocols operate at a “File” level abstraction. However, the 
SAN systems normally present the block level interfaces that are leveraged by 
filesystems.   
In the DirectNFS design, we were faced with the problem of maintaining support for 
legacy clients, which meant that we needed to maintain the file level abstraction. On the 
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other hand, the benefits of the SAN can be leveraged if and only if we went down to the 
block level. In order to solve this problem we created a “virtualized file interface over 
SAN”, where the legacy NAS clients are under the impression that the NAS server 
stores the files, but the DirectNFS clients went below the file abstractions to leverage 
the SAN performance by using block device interface directly. In order to implement 
this duality, we had to achieve the data-metadata split and create other mechanisms like 
the lease framework in order to tackle complexities arising out of the merger of SAN 
into NAS. 
The DirectNFS file system had to merge these two different worldviews to create a high 
performance distributed file system, which offered a NAS interface. This was achieved 
by maintaining a “Virtual File Interface”. However, the DirectNFS client behavior can 
be compared more to block device driver, than really a NAS file system client. In other 
words, we introduced the SAN abstractions and performance to the NAS protocols 
without breaking it. This unification of SAN of under NAS is what is referred to as file 
virtualization in DirectNFS. 
 
3.1.5. Security Considerations 
There are certain assumptions that are critical to DirectNFS architecture that need to be 
pointed out while understanding the security mechanisms in DirectNFS. They are 
• The base NFS protocol operates on atomic data entities known as files.  
• DirectNFS does not alter the semantics of NFS protocol 
• DirectNFS relies on the file system and block device layer to provide security that is 

needed. 
DirectNFS has modified the VFS layer[8] of NFS communication not the NFS 
semantics. The real physical file system must be present for DirectNFS to work. This is 
a strict requirement because we still rely on the file abstraction to maintain the 
coherency of data. 
In DirectNFS, the file system layer is responsible for security and data coherency. In 
order to solve the coherency problem at file level, we have created a framework of 
leases ensuring that coherency is maintained at the file system level.   
 
However, in case of rogue agents who can access the storage system at the block 
interface by bypassing DirectNFS completely, the possibility of unauthorized access 
remains, unless the block access mechanism (block device driver) provides security.  
We currently provide only file level security but do not provide block level security. 
NASD [9] addresses the issue of block level security with the help of special hardware. 
If the shared storage contains security mechanisms, for example iSCSI [10] has security 
mechanisms built in and when DirectNFS operates on those environments it can be 
made to run in a secure mode by leveraging these underlying mechanisms. Thus 
DirectNFS relies on existing infrastructure to take care of security (iSCSI, Fiber 
channel[11], NFS). This is a conscious design decision made in favor of making this 
protocol run on extremely varied range of hardware.  
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4. Implementation of the Linux Prototype 
The implementation philosophy of DirectNFS was to reuse existing libraries as far as 
possible and to maintain portability. It was implemented as a kernel loadable module on 
Linux 2.4.4, and it consists of roughly 8000 lines of code on the client and 1500 lines of 
code on the server.  
 

4.1.DirectNFS with FiST 
In order to make the implementation easier and portable we have used FiST (File 
System Translator). FiST [12] is a stackable file system generator. It defines its own 
highly abstract Domain-Specific Language (DSL) for describing file-system filters. A 
compiler translates the DSL description to C code for various operating systems. FiST 
also provides the necessary infrastructure for interposing the generated filter between 
the VFS (Virtual File System) and the natively installed file systems in the kernel.  FiST 
played an important role in the initial phase of the implementation, when we used it to 
generate a code skeleton for a simple, pass-through file system that interposed itself 
between the VFS layer and the NFS client.  
On the DirectNFS client, the Linux DirectNFS module can be thought of as consisting 
of these sub-modules: 
1. The DirectNFS Filter/Redirector – This component interposes itself between the 

VFS and the NFS client module. It intercepts all file I/O operations (read, write) and 
redirects them as block I/O requests over the SAN. This was achieved by modifying 
the basic FiST-generated filter to enable us to intercept I/O operations instead of 
passing them down the file system stack, which is the default FiST policy. The I/O 
interception code in the redirector is system-dependent.  The redirector also contains 
the Block Number Cache, where the client caches location information for each file 
that is accessed over DirectNFS. 

DirectNFS Redirector Lease 
Service

NFS Client 
Transport 
Wrapper

VFS 

Lease 
Service

knfsd 

DirectNFS 

RPC Client/Server RPC Client/Server

Transport 
Wrapper

DirectNFS Client DirectNFS Server

Physical File System 

VFS 

SAN 

Figure 6: DirectNFS Software Architecture 
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2. Leasing Service – This is a distributed protocol, which allows multiple DirectNFS 
clients to keep their cached metadata coherent. The leasing service has been built as 
a library that is independent of the transport mechanism underneath it. This allows 
us to plug in any transport mechanism by writing a transport wrapper for the 
mechanism. 

3. Transport Wrapper – This provides an interface between the leasing service and 
the transport layer, in this case - RPC. This wrapper allows the file system client to 
query file location information (i.e. block numbers) from a central server and to 
communicate lease requests to the server. 

The DirectNFS server module consists of: 
1. Leasing Service – This is the server-side counterpart of the leasing service. It is 

responsible for maintaining a list of lessees for each file, and to resolve lease 
conflicts. 

2. Transport Wrapper – The transport wrapper on the server as on the client provides 
an interface between the leasing service and the transport layer. This wrapper allows 
the server to interface with file system clients that query for file location 
information and to communicate lease rejections or grants to them. 

3. DirectNFS client – A DirectNFS client is interposed between VFS and the physical 
file system, to provide lease-based coherency for locally originating file accesses. 
This could be from local applications trying to access the physical file system or 
from knfsd while it is serving legacy NAS clients. 

The DirectNFS module on the client is responsible for trapping file open, close, sync, 
unlink, read, and write calls. Since these operations access the location information of 
the file, the file’s lease is tested for validity. If the lease is invalid, it is acquired by 
issuing a GETLEASE RPC to the metadata server. For read and write operations, the 
Block Number Cache is looked up for cached block numbers. On a cache miss, a 
request is sent to the server, with a piggybacked lease request, if required. This is done 
with the GETBLKLIST RPC. Once the client is granted a valid lease on the file, and 
receives the requisite file location information, it accesses those blocks directly over the 
SAN. 
In the event that the client receives a VACATE RPC, which signals the server ordering 
an eviction of the lease that the client holds on the metadata, the client flushes the cache 
that is associated with the file, and then proceeds to inform the DirectNFS server by 
sending the VACATED RPC.  
Note that the DirectNFS Leasing Service makes the following assumptions: 
1. The lease is time-bound, has a fixed duration, and must be renewed explicitly at the 

server in order for its time period to be extended.  
2. The clock skew between the participating entities in the lease protocol is bounded.  
3. The time taken by the client to flush its cached after eviction is bounded. 
Lease conflicts are resolved by the lease server using the matrix in Table 1. 

 Read Write 
Read Shareable Non 

Shareable 
Write Non 

Shareable 
Non 
Shareable 

 
Table 1: Compatibility Matrix for DirectNFS Leases
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5. Performance 
One of the principal objectives of 
DirectNFS is performance. In this 
section, we present the performance 
numbers that we obtained from the 
prototype implementation.  We have 
measured the performance of 
DirectNFS against other file systems 
like ReiserFS[13], ext2 and NFS 
versions 2 and 3[14].  The systems 
under test were three HP Netserver LC 
2000, Pentium III’s -933 Mhz with 128 

MB RAM and 256KB L2 cache. The 
machines were running Redhat 

Linux, with custom-built kernels from the 
2.4.x series. They were connected to a 
JBOD (HP Rack Storage/12) of four Ultra 3 
Hot-Swap SCSI[15] disks 9 GB each. The 
system was set up in a SCSI multi-initiator 
arrangement, with two machines acting as 
DirectNFS clients, and one machine as the 
DirectNFS metadata server, with all three 
machines sharing access to the JBOD 
through a shared SCSI bus. This was used 
to emulate a SAN. The benchmarking 

utility that we used was Iozone [16]. 
We benchmarked the performance of 
DirectNFS with varying file sizes and 
record sizes. From the data, we observed 
no significant variations in the 
comparative figures. Hence, we have 
included the performance figures of read, 
write, reread and rewrite of a 2GB file 
over ResierFS, DirectNFS, Ext2, NFS2 
and NFS 3. Figure 7 is a the performance 
graph of various file system read 

throughputs for varying file sizes, with fixed record size of 256 KB. The rest of the 
graphs - Figures 8, 9 and 10 - carry comparisons of write, re-read and re-write 
operations. These figures indicate that DirectNFS performances are comparable to local 
file systems.  
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The write performance of DirectNFS shown in Figure 8 is slightly worse than Ext2 and 
ReiserFS. Re-read and re-write were tested so that we could measure the effects of the 
Linux page cache.  
We have measured throughput for these 
four operations with varying file sizes 
starting from 100 MB up to 2GB and 
varying record sizes starting from 4 KB up 
to 256 KB. Since the throughput figures 
we obtain did not vary significantly across 
these series, we reproduce data for 256KB 
record sizes only. The file sizes selected 
were suitable large, as we expect the 
primary use of DirectNFS to be 
multimedia applications (e.g. streaming 
media servers), which use large files.  
Note that NFS v2 and v3 throughput 
figures that we measured were very close 
to each other. Even though NFS 3 
implements Asynchronous writes, NFS 2 
clients under the Linux use write caching and by default run with synchronous writes 
set to off. This hides the RPC latency of NFS from client applications. However, we 
wanted to compare against real world performance and hence we tried to measure 
against the fastest NFS performance possible.  
From a glance at the throughputs for read and re-write tests, it appears that DirectNFS 
performance comes close to matching the performance of both ReiserFS as well as ext2. 
This can be accounted for by the metadata cache, which contains logical to physical 
block translations, and improves the performance of DirectNFS, bringing it close to 
ext2 and in some cases surpassing it (this is because the mapping function for the cache 
is less expensive than the corresponding lookup operation in EXT2 or ReiserFS). We 
also examined the effect of record size on performance. Figure 11 is a comparative 
graph for the read operation for various file systems with fixed file size but with varying 
record size.  We did not observe any significant effect of record size on throughput of 
any of the file systems under consideration. This is most likely due to the pre-fetching 
in the VFS layer. 
 

If we look closely at the performance 
relative to NFS2 or NFS3, we see that 
the performance improvements that are 
achieved are significant, and are 2 to 3 
times that of the Linux implementation 
of NFS.  
There are two measures of goodness for 
a network file system, the first is the 
throughput that each client can expect 
from the file system, and the second is 
the server scalability. DirectNFS 
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addresses both of them by increasing the client throughput by a factor of 2 to 3 as 
compared with competing NAS technologies like NFS, and increases the server 
scalability significantly by reducing CPU utilization at the server. 
A look at Figure 12 shows the relative CPU utilization of DirectNFS with NFS. The 
tests that were carried out were sequential read, sequential reread, sequential write, and 
sequential rewrite. Now, if we look at the NFS performance, we can conclude that NFS 
(with a single client running Iozone tests on a file of size 1GB) requires a mean CPU 
utilization of more 
than 20%. Thus, the 
scalability of the 
server is limited to the 
number of clients that 
access the NFS server 
at any point of time. 
However, a look at the 
DirectNFS numbers 
for the same test 
conditions shows a 
radically different 
scenario. One can see 
that there is an initial 
period where the CPU 
utilization is roughly at an average of 10%, with a peak utilization of 20%. This is 
because of aggressive pre-fetching of metadata by the DirectNFS client during the start 
of file I/O. This accounts for the lower CPU utilization on the server when servicing a 
DirectNFS client as compared to a NFS client.  
Thus, it can be seen that the CPU utilization is significantly lower than NFS utilization 
for the same one client setup that we used to measure NFS utilization. This indicates 
that the DirectNFS metadata server may scale better than NFS servers. 
Another key parameter by which scalability can be judged is the amount of network 
traffic, expressed in terms of the number of RPCs that are required for a given operation 
to take place. A measurement of the number of RPCs that are required to run the given 
set of tests reveals that DirectNFS uses about a tenth of the total number that is required 
for NFS. This can be explained by the fact that the number of metadata requests in 
DirectNFS is drastically lower than NFS because of write allocation gathering and the 
metadata pre-fetching performed by the client. This makes the data-metadata split 
attractive, as this considerably reduces the traffic on the network and makes DirectNFS 
a lot more scalable.  
Overall, DirectNFS performs significantly better than NFS for all of the tests, 
outperforming it by a factor of 2 to 3. 
DirectNFS has been designed to counter network bottlenecks and ‘store-and-forward’ 
overheads on NAS servers. So, the server CPU and I/O subsystem are no longer the 
bottleneck. Introducing parallelism to storage access also means that the system will 
scale as the available bandwidth for the storage network increases. Isolating storage 
traffic on to a separate network allows for better utilization of the messaging network by 

Figure 12: CPU utilization figures for a single client setup 
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other network application protocols. 
6. Future Work 

1. Client Side Disk Caching: To further improve performance, the size of the 
cache that holds the physical block translations should be made as large as 
possible. To overcome the memory size limitations that we will come across 
when dealing with large files and clients with multiple such workloads, the 
block translations can be stored on disk. Thus, the limitation that currently exists 
on the number of cacheable translations increases greatly, helping us to achieve 
greater scalability. 

2. Volume metadata caching: When the metadata server receives a 
GETBLKLIST request, the DirectNFS filter uses the physical file system’s 
bmap operation to obtain the physical block numbers for the requested byte 
range. Normally, the block buffer cache would cache the most frequently used 
blocks in the storage system. Servers normally have a large amount of RAM, 
and we feel that caching the entire metadata for the file volume is feasible. In 
fact, for a file system formatted with 4KB-sized blocks, the cost of caching all 
the physical block numbers of the volume is about 1MB per GB. 

 

7. Related Work 
There are some interesting existing systems in the distributed File Systems space. 
Storage Tank [17] follows a similar approach for moving the data access path away 
from the server. However, the design of Storage Tank lacks the portability of 
DirectNFS. This is because DirectNFS uses a portable approach leveraging the ability 
of a code generator like FiST to drastically reduce the porting of the file system to 
multiple platforms. Many cluster file systems such as the Veritas Cluster File System 
[18] are layered above and integrated with a proprietary physical file system. CMU’s 
Network Attached Secure Disks requires Intelligent Devices, which embed some file 
system functionality in the Storage devices thus handling various issues like security, 
scalability and object management. NASD addresses the security aspects of a SAN 
based file system well, but the need for manufacturers to incorporate these changes into 
disks highlights the problem associated with this approach.  
 Other similar work in the area includes Frangipani/Petal, Tivoli’s SANergy [19] and 
EMC’s Celerra[20]. 
 
8. Conclusion 
 
DirectNFS presents an optimum blend of NAS and SAN storage technologies. It uses 
traditional distributed file system protocols such as NFS for meta-data access, with 
extensions for direct data access using SANs.  The end result is a distributed file system 
that scales much better at high loads and has a data throughput that is a factor of 2 to 3 
better than existing NAS protocols. In fact, this performance was comparable to that of 
a local file system.  
The portable design of DirectNFS makes it relatively simple to port to other operating 
systems. In the future, we plan to port DirectNFS to other platforms such as HP-UX, 
Windows2000 and FreeBSD and add CIFS compatibility. 
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