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Abstract 
The iSCSI protocol provides access to SCSI devices over a TCP transport. Using the 
iSCSI protocol enables one to build a Storage Area Network using standard Ethernet 
infrastructure and standard networking management tools. This paper outlines how we 
implemented a family of iSCSI initiators on a common core. The initially supported 
initiators were on the Windows NT and the Linux Operating Systems. Code for a version 
of the Linux iSCSI initiator has been released as Open Source. Initial testing indicates 
that iSCSI can provide reasonable performance relative to traditional storage 
environments. 
 
1. Introduction 
 
1.0 SANs and iSCSI 
Storage Area Networks (SANs) provide a way for multiple hosts to access a shared pool 
of remote storage resources. Traditional SANs are built using FibreChannel technology 
[1] running the FCP protocol to carry SCSI commands over the FibreChannel network. 
Two separate network infrastructures are needed in an environment that uses a Local 
Area Network (LAN) for usual network activity and a SAN for shared remote: an 
Ethernet (or equivalent) infrastructure (running TCP and similar protocols) for usual 
LAN activity, and a FibreChannel infrastructure (running FCP protocol) for the SAN 
activity. iSCSI [2] is a protocol that carries SCSI commands over the TCP protocol [3]. 
iSCSI enables access to remote storage devices using TCP over standard LAN 
infrastructures. Using iSCSI dispenses with the need for a separate FibreChannel 
infrastructure and the need for a separate set of FibreChannel management tools. The 
difference between a traditional SAN and a possible iSCSI setup is depicted in the 
following figure. 
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1.1 iSCSI Overview 
The iSCSI protocol [2] is a mapping of the SCSI remote procedure invocation model (see 
SAM2 [4]) over the TCP protocol [3]. Communication between the initiator and target 
occurs over one or more TCP connections.  The TCP connections carry control messages, 
SCSI commands, parameters and data within iSCSI Protocol Data Units (iSCSI PDUs).  
The group of TCP connections that link an initiator with a target form a "session". The 
SCSI layer builds SCSI CDBs (Command Descriptor Blocks) and relays them with the 
remaining command execute parameters to the iSCSI layer. The iSCSI layer builds iSCSI 
PDUs and sends them over one of the session's TCP connections. 
 
1.2 Design Goals 
We designed and implemented a family of iSCSI initiators. Initial testing was performed 
against an IBM TotalStorage 200i disk controller using a standard 100Mbit Ethernet 
network connection. A major design goal of our initiators was to allow for multiple 
Operating Systems to work on the same common code base. Each operating system has 
its own set of interfaces for the SCSI subsystem and for its TCP transport. However, the 
implementation of the iSCSI specification should be common to all operating systems. 
When we upgrade to a different level of the iSCSI specification, only the common core 
needs to change, while the OS-dependent code should remain more or less intact. 
 
Additional design considerations of our initiators included: 
- Allow the initiator to simultaneously use devices from multiple target machines. 
- Utilize multiple TCP connections between and iSCSI initiator and target.  
- Utilize multiple processors if running on an SMP (Symmetric Multiprocessor). 
 
 
 
 



299 

1.3 Design Assumptions 
The common core was designed and written using some basic assumptions about the 
Operating System (OS) on which it would be run. We assumed that the base Operating 
System would have the following features: 
- Support for multiple threads in the kernel. 
- Reading/writing from TCP can be easily abstracted into a single read/write 

function call. 
- Some SCSI commands might be (re-) issued from inside the scsi completion 

routine, thus possibly running at some priority level for which we may not block. 
- Task Management requests may arrive at some priority level, and hence we must 

provide an implementation that does not block, if requested. 
 
We also had in mind a certain layering of the SCSI subsystem that seems to be prevalent 
in a number of Operating Systems. In both the Linux and Windows NT operating systems 
there are 3 layers to the SCSI subsystem. There is one high-level (class) driver for each 
type of SCSI device: disk, tape, CD, etc. There is a mid-level (port) driver that has 
common code for all types of devices, which takes care of command timeouts and 
serialization of commands. The low-level (miniport) driver is specific to an adapter, and 
must provide a queuecommand() or dispatch() routine that is used by the mid-level 
driver. This 3-level layering is essentially the model that is presented in the Common 
Access Method [5]. 
 
 
2.   Implementation Details 
 
2.1 Data Type and Function Abstractions 
In order to build a common core, we abstracted the basic Operating System dependent 
data types and services that we would need to use, and defined these individually for each 
Operating System on which we implemented the iSCSI initiator driver. The basic data 
types that we defined are described here with their corresponding Linux (2.2) definitions. 
 
typedef spinlock_t  iscsiLock_t; /* basic spin lock */ 
typedef struct wait_queue*  iscsiEvent_t; /* sleep event */ 
typedef uchar   iscsiIrql_t; /* interrupt level */ 
typedef struct scsi_cmnd  SCB_t;  /* SCSI Command Block */ 
typedef struct {  /* TCP connection descriptor */ 
 struct sockaddr_in sin; 
 struct socket  *sock; 
 iscsiEvent_t  event; 
} iscsiSock_t; 
 
The basic services that must be provided by each Operating System and their 
corresponding Linux implementation are: 
 
#define iscsiOSmalloc(size) kmalloc(size, GFP_KERNEL) 
#define iscsiOSlock(lock, irql) spin_lock_irqsave(lock, (*irql)) 
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#define iscsiOSunlock(lock, irql) spin_unlock_irqrestore(lock, irql) 
#define iscsiOSsleep(event) sleep_on(event) 
#define iscsiOSwakeup(event) wake_up(event) 
 
The common core uses these macros, which enable us to write code that is common to 
multiple platforms. The common core must also call some functions to perform TCP 
operations. Their prototypes are given below. 
 
s32 iscsiOSreadFromConnection(iscsiSock_t *sock, void *buffer, u32 len, u32 offset); 
s32 iscsiOSwriteToConnection(iscsiSock_t *sock, void *header, u32 headerLen, void 
*buffer, u32 len, u32 offset); 
s32 iscsiOSmakeConnection(u32 addr, u16 portNum, iscsiSock_t *isock); 
void iscsiOScompleteCommand(SCB_t *scb, u32 status); 
 
The core provides a number of routines that the OS-dependent layer can call. The 
prototypes of the main core functions are given below. 
 
s32 iscsiCoreCreateSession(u32 addr, u16 portNum, u32 nConnections, uchar 
*loginParams, u32 loginParamsLen); 
s32 iscsiCoreEnterCmdInQ(SCB_t *scb, void *cdb, u32 cdbLen,  u32 sessionhandle, 
iscsiLUN_t lun, void *data, u32 datalen, u32 flags); 
u32 iscsiCoreResetDevice(u32 sessionHandle, SCB_t *scb, iscsiLUN_t lun); 
 
The OS-dependent code calls iscsiCoreEnterCmdInQ() for each command that it wants to 
send to the target. The core then takes over and processes the command, sending it to the 
target, receiving a response from the target, and reporting the results back to the OS-
dependent code by calling the iscsiOScompleteCommand() function. 
 
2.2 Common Core General Structure 
For each session established by the initiator (i.e. for each target), the initiator maintains a 
queue of items that must be sent to the target. We call this queue the command queue. 
The initiator also maintains a dedicated command queue handler thread to read items 
from this queue and to send them to the target. 
 
The initiator maintains state of each command that has been sent to a target. This state 
information is saved in a table, indexed by an Initiator Task Tag. The target may send 
status or R2T (Ready to Transfer) PDUs to the initiator relating to a particular command. 
The Initiator Task Tag is used to easily look up the relevant information in the table. 
 
For each TCP connection (even if we have multiple connections for a single session) the 
initiator maintains a dedicated thread to read from that TCP connection. The use of 
separate threads to read from each TCP connection and to send out messages allows us to 
better exploit the CPUs while waiting for data to arrive or be sent over a network 
connection. A read thread posts a read request on its TCP connection to receive an iSCSI 
header. The thread waits until data has arrived and has been placed in its buffer. The read 
thread parses the iSCSI header to determine how much additional data follows the 
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header. The read thread then posts a read request for the data of specified length, 
providing an appropriate buffer into which the data is to be placed. The read thread then 
performs whatever processing is needed to handle the PDU.  
 
2.3 Implementation Lessons 
In this section we briefly discuss some problems we encountered and lessons we learned 
in our implementation. 
 
Windows NT expects command completion to occur from within an interrupt handler. 
Since we did not have any real hardware of our own, and all of our internal threads ran at 
regular priority, we broke a basic assumption of the Windows NT SCSI subsystem. We 
had to artificially create an interrupt in order to get the Windows NT SCSI subsystem to 
complete the processing of commands that were handled by our driver. 
 
Linux also expects commands to be completed in a type of interrupt handler. A certain 
lock must be obtained and interrupts must be blocked when calling the Linux SCSI 
command completion handler. 
 
In Linux, SCSI commands might be issued from within an interrupt handler. The call to 
iscsiCoreEnterCmdInQ() might therefore be called from within an interrupt handler, and 
any locks that we obtain in that routine must be safe to obtain and contend with an 
interrupt handler. It is therefore necessary to block interrupts whenever we obtain locks 
that may also be obtained at interrupt level inside the iscsiCoreEnterCmdInQ() function.  
 
There is an inherent problem in mounting and unmounting iSCSI disks automatically 
upon reboot. In general, when the system first tries to mount its file systems, the network 
isn't yet up, thus preventing us from reaching our iSCSI disks. Also, the disk cannot 
automatically unmount cleanly during shutdown since by the time the system tries to 
sync its disks the network may already be gone. 
 
2.4 Performance 
We performed some preliminary measurements of iSCSI performance versus a directly 
attached IDE disk. We ran the IOTEST benchmark [7] on Linux for different sized block 
transfers and compared the results. The following graph shows the relative number of 
read operations between the iSCSI and local IDE disk. 
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For small data transfers iSCSI outperformed the local IDE disk by about 30%, despite the 
network overhead. This is due to the higher performance SCSI disks on the TotalStorage 
200i target. Using the TotalStorage 200i SCSI disk locally outperformed iSCSI by about 
3% for small transfers. For large data transfers, the network overhead started to take on a 
larger and larger impact, causing the iSCSI performance to be up to 12% worse than the 
local IDE disk. This is apparently due to the numerous interrupts needed for the 
packaging and processing of many small TCP packets for a large data transfer. This 
phenomenon should be alleviated when using Network Interface Cards (NICs) that 
offload the TCP processing, thereby reducing the number of interrupts that must be 
handled by the host. 
 
3. Related Work 
Network Storage is becoming more and more common, allowing remote hosts to more 
easily access remote and shared data. A number of studies have been performed that 
show that IP attached network storage can provide reasonable performance relative to 
FibreChannel and other storage environments. See, for example, [8] [9] [10].  
  
Other early iSCSI initiator drivers have been made available as Open Source [6]. Some of 
these early implementations support a fixed target with a single TCP connection. Some of 
these implementations were written and tested for uniprocessors, and could not take 
advantage of the multiple processors in an SMP. Our implementation has the distinction 
of allowing multiple targets, multiple TCP connections within each session to a target, 
and the ability to fully exploit SMP machines. The performance achieved on a 
uniprocessor by the other software iSCSI initiator implementations that we tested 
(against the same target) were essentially the same as for our initiator. 
 
4. Future Work 
A version of our Linux initiator has been released as Open Source [11]. We continue to 
revise our driver to keep up with changes in the iSCSI specification as it evolves. Over 
time, we are adding additional features that are defined in the specification. We intend to 
perform comprehensive performance measurements and adjust our driver accordingly. 
 
5. Conclusion 
We implemented a family of iSCSI initiators utilizing a common core. We outlined our 
basic design objectives and how we implemented our initiators. When we upgraded to a 
newer version of the iSCSI specification, we were able to perform the necessary changes 
to the common core to correspond to the new iSCSI specification, while the OS-
dependent parts of the code remained essentially unchanged. Our implementation allows 
multiple targets, multiple TCP connections within each session to a target, and the ability 
to exploit SMP machines. Using the IBM TotalStorage 200i target, iSCSI significantly 
outperforms the local IDE disk for small data transfers, but lags behind IDE for large data 
transfers, apparently due to the extra overhead of network  interrupts. 
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