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Abstract 
Many large-scale data-intensive applications need to use tape library to manage large data 
sets, thus it is critical to study the online access techniques of tape library. The focus of 
this paper is on efficient tape-resident jobs scheduling, which is the key technique for 
improving performance of tape storage systems. We present several scheduling 
algorithms for tape-resident jobs, discuss the effectiveness of scheduling policies under 
cache-limited and cache-unlimited condition, and show the results of simulation 
experiments.  
 
1 Introduction 
Many data repositories are expected to become huge, possibly counted by terabytes in 
size. Examples of such repositories include terabyte-level Telecommunications Call 
Detail Warehouse, petabyte-level Digital Libraries, exabyte-level National Medical 
Insurance Records, Zettabyte-level Spatial and Terrestrial Database and video and Audio 
Data Archives[1][2]. The management of such large data sets requires the use of tertiary 
storage, typically implemented by using tape libraries. As a result, accessing, analyzing, 
mining, and other data-intensive applications can comprise of many tape-resident jobs 
that retrieve either wholly, or in part, data from tapes. 
 
Tape library is characterized by (1) the use of removable tape media and a robot arm, (2) 
sequential access of data, and (3) the performance bottleneck caused by tape access. 
Tape-resident job usually consists of more than one request, each of which must be 
completed before the job is finished, and uses disk cache space to store the data of its 
completed requests. To improve the performance of tape-resident jobs, we have to 
consider the following two problems -- the accessing latency of tape library, and the 
capacity limitation of disk cache for storing the retrieved data from tapes. 
 
Previous studies mostly focus on the request scheduling of tape library to improve 
performance of robotic storage library[3][4][5][6]. But our goal is to schedule the jobs 
consisting of a set of requests to minimize the completion time of the whole job. A study 
closely related to ours is the one in which the scheduling problem of tape-resident jobs is 
reduced to well-known flow-shop scheduling[7]. However, it doesn’t consider the 
optimal scheduling of tape libraries. 
 
In this paper, we will introduce better scheduling strategies for executing tape-resident 
jobs. We will discuss how to improve the performance of tape-resident jobs by optimized 
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I/O performance of tape library, and discuss the effectiveness of scheduling policies 
under cache-limited condition or cache-unlimited condition by simulation study. Section 
2 gives the scheduling problem description of tape-resident jobs. The scheduling 
algorithms will be presented in Section 3 and the simulation results for performance 
comparison of scheduling algorithms will be given in Section 4. Finally, Section 5 
concludes the paper. 
 
2 Problem Description 
A tape-resident job consists of a set of requests, each of which is a read operation for a 
set of continuous blocks on a tape. We assume that the requests are independent of one 
another, that is, requests don’t need to be executed in some forced order. The reason is 
that the access of tape library is much slower than that of disk, if processor begins to 
execute the job before the data involved in by its requests are all loaded into disk cache, 
then the job is possibly blocked for waiting unloaded requests. So we reduce the 
execution principle of tape-resident jobs to a simple form, that is, the job doesn’t begin to 
execute until the data of its requests are all loaded into disk. This assumption means that 
the data of requests may be loaded by any order. The following Fig.1 is the description 
model of tape-resident jobs. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Since a job of several requests may involve more than one tapes, combining jobs that 
access the same media will make system process as much requests as possible in a tape 
schedule. One problem is that if jobs are not properly scheduled, the disk cache may be 
run out quickly. Therefore, it is critical to study the correlation between tape drive 
utilization and disk capacity limitation for tape-resident job scheduling. To do so, we 
consider the following optimization policies when designing tape-resident job scheduling 
algorithms: 

• To improve the I/O performance of tape library 
• To reduce resident time of data of jobs on disk cache 
• To coordinate the input and output throughput of jobs to or from disk cache 

 
3 Scheduling Algorithmic Issues 
We study our scheduling problems under two kinds of restrictive conditions respectively: 
cache-limited and cache-unlimited. The former means the selection of scheduling policies 
must take the available space on disk cache into consideration, and the later assumes that 
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there is enough space of disk cache for scheduling. We first present five scheduling 
algorithms under the second condition, and then discuss these algorithms with the first 
condition of constraint. The algorithms focus on two key points: tape selection policy, 
and scheduling list creation (a scheduling list is an ordered list of requests for a selected 
tape). 
 
(1) FCFS (First Come First Service). This algorithm services the jobs in the order of 
arrival, and always chooses the tape that the first request in job wait queue accesses to for 
next execution. The scheduling list of selected tape includes all requests that belong to the 
job and access the selected tape. These requests will be executed within one sweep of the 
tape. 
 
(2) Max-EBW (Maximum Effective BandWidth). This policy improves the scheduling 
of tape-resident job in maximizing I/O performance of tape library. It always chooses the 
tape with maximum effective bandwidth for the next execution. The effective bandwidth 
of a tape is defined to be the total number of bytes transferred from the tape divided by 
the number of seconds consumed to perform this tape schedule.  
 
(3) FCFS-PICKUP. This algorithm uses simplest tape selection policy--FCFS, namely, 
it always selects the tape to be accessed by the first request of a job in the wait queue, and 
then the algorithm inserts all requests of other jobs in the wait queue that will access the 
selected tape into its scheduling list, which is called the PICKUP policy for scheduling 
list creation. 
 
(4) DYN-PICKUP. This algorithm has similar tape selection and scheduling list creation 
as FCFS-PICKUP. Besides this, it particularly considers the new arrival jobs. When the 
requests belonging to a new arrival jobs are trying to access the blocks on online tape that 
the tape head will pass over during the current sweep, they will be inserted into the 
running scheduling list. This is the dynamic policy for scheduling list creation. 
 
(5) TUNING-PICKUP. This algorithm makes FCFS-PICKUP scheduling tunable. It 
uses PICKUP intension factor F, which indicates that PICKUP scheduling is only 
applied among the first F waiting jobs in the job wait queue, to tune the scale of 
scheduling list. Obviously, larger F means both larger cache occupation, and quicker 
response time. The selection of proper F value is the difficult point of this algorithm. 
Currently, we determine the F value by simulation experiments. A proper method for F 
value selection will be studied. 
 
Above algorithms have different cache requirement: FCFS needs least cache space; 
TUNING-PICKUP may tune the size of cache occupation by changing PICKUP 
intension factor F; and other algorithms use more cache space than FCFS, but are not able 
to tune cache requirement. The comparison details of above algorithms will be given in 
next section. 
 
4 Simulation Study 
In this section, we give two groups of simulation results, each of which consists of two 
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figures: average response time of jobs and maximum cache requirement of jobs. The 
simulation parameters of tape library are based on Exabyte 220 tape library with two 
Eliant 820 drives and twenty EXABTYE 8mm tapes. In addition, we assume that the job 
arrival is stochastic and follows Poisson distribution. Each job averagely consists of 8 
requests that have the average size of 64M bytes. We also assume that the disk cache 
should at least meet the maximum storage requirement of any job. The jobs are 
independent of one another. 
 
Fig.1a and Fig.1b show response time and cache occupation curves for all algorithms 
except for TUNING-PICKUP. From the graphs we can observe that FCFS has least cache 
occupation but longest response time, and other algorithms significantly improve the 
average response time of tape-resident jobs by optimizing I/O performance of tape library. 
This performance improvement from tape library optimization has an associated cost in 
terms of storage space. The Figure also indicates that FCFS-PICKUP is the best 
scheduling policy. The reason is that it uses FCFS policy to speed up job output from 
disk cache while it takes advantage of PICKUP policy to improve I/O performance of 
tape library. Although the time performance of DYN-PICKUP policy is slightly better 
than that of FCFS-PICKUP, but its cache occupation is much higher than FCFS-PICKUP 
and Max-EBW. Its heavier workload creates proportionally larger storage requirement.  
 

Fig. 1a  Comparison of response time
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Fig.1b Comparison of cache occupation
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The next simulation experiment explores the correlation between response time and 
cache space for FCFS-PICKUP algorithm and TUNING-PICKUP algorithm. We use 
PICKUP intension factor F to tune the size of cache occupation. This is very helpful in 
achieving a reasonable response time for tape-resident jobs when cache space is limited. 
Fig2a and Fig.2b illustrate when properly tuned, the time performance of 
TUNING-PICKUP is close to that of Max-EBW, but its space occupation is significantly 
reduced. 
 
5 Conclusions 
This paper discusses some efficient scheduling algorithms for tape-resident jobs. Our 
contributions include: (1) incorporate optimal I/O scheduling policies of tape library into 
the scheduling of tape-resident jobs so as to improve performance of tape-resident jobs 
by increasing the data throughput of tape library processing; (2) design better algorithm 
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FCFS-PICKUP for cache-unlimited system and TUNING-PICKUP for cache-limited 
system. The future work is to give a practical evaluation method for PICKUP intension 
factor F so that we may simply select factor F value for TUNING_PICKUP algorithm 
according to both workload and cache size. 
 

Fig. 2a  The comparison of response time
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Fig. 2b The comparison of cache
occupation
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