
305

Efficiently Scheduling Tape-resident Jobs∗
Jing Shi, Chunxiao Xing, Lizhu Zhou

Department of Computer Science and Technology
Tsinghua University

Beijing 100084, P.R.China
Shijing@mails.tsinghua.edu.cn, {xingcx, dcszlz}@tsinghua.edu.cn

Tel: +86-10-62789150
Abstract
Many large-scale data-intensive applications need to use tape library to manage large data
sets, thus it is critical to study the online access techniques of tape library. The focus of
this paper is on efficient tape-resident jobs scheduling, which is the key technique for
improving performance of tape storage systems. We present several scheduling
algorithms for tape-resident jobs, discuss the effectiveness of scheduling policies under
cache-limited and cache-unlimited condition, and show the results of simulation
experiments.

1 Introduction
Many data repositories are expected to become huge, possibly counted by terabytes in
size. Examples of such repositories include terabyte-level Telecommunications Call
Detail Warehouse, petabyte-level Digital Libraries, exabyte-level National Medical
Insurance Records, Zettabyte-level Spatial and Terrestrial Database and video and Audio
Data Archives[1][2]. The management of such large data sets requires the use of tertiary
storage, typically implemented by using tape libraries. As a result, accessing, analyzing,
mining, and other data-intensive applications can comprise of many tape-resident jobs
that retrieve either wholly, or in part, data from tapes.

Tape library is characterized by (1) the use of removable tape media and a robot arm, (2)
sequential access of data, and (3) the performance bottleneck caused by tape access.
Tape-resident job usually consists of more than one request, each of which must be
completed before the job is finished, and uses disk cache space to store the data of its
completed requests. To improve the performance of tape-resident jobs, we have to
consider the following two problems -- the accessing latency of tape library, and the
capacity limitation of disk cache for storing the retrieved data from tapes.

Previous studies mostly focus on the request scheduling of tape library to improve
performance of robotic storage library[3][4][5][6]. But our goal is to schedule the jobs
consisting of a set of requests to minimize the completion time of the whole job. A study
closely related to ours is the one in which the scheduling problem of tape-resident jobs is
reduced to well-known flow-shop scheduling[7]. However, it doesn’t consider the
optimal scheduling of tape libraries.

In this paper, we will introduce better scheduling strategies for executing tape-resident
jobs. We will discuss how to improve the performance of tape-resident jobs by optimized

∗ This research is sponsored by the National Grand Fundamental Research 973 Program of China under Grant
No.G1999032704

306

I/O performance of tape library, and discuss the effectiveness of scheduling policies
under cache-limited condition or cache-unlimited condition by simulation study. Section
2 gives the scheduling problem description of tape-resident jobs. The scheduling
algorithms will be presented in Section 3 and the simulation results for performance
comparison of scheduling algorithms will be given in Section 4. Finally, Section 5
concludes the paper.

2 Problem Description
A tape-resident job consists of a set of requests, each of which is a read operation for a
set of continuous blocks on a tape. We assume that the requests are independent of one
another, that is, requests don’t need to be executed in some forced order. The reason is
that the access of tape library is much slower than that of disk, if processor begins to
execute the job before the data involved in by its requests are all loaded into disk cache,
then the job is possibly blocked for waiting unloaded requests. So we reduce the
execution principle of tape-resident jobs to a simple form, that is, the job doesn’t begin to
execute until the data of its requests are all loaded into disk. This assumption means that
the data of requests may be loaded by any order. The following Fig.1 is the description
model of tape-resident jobs.

Since a job of several requests may involve more than one tapes, combining jobs that
access the same media will make system process as much requests as possible in a tape
schedule. One problem is that if jobs are not properly scheduled, the disk cache may be
run out quickly. Therefore, it is critical to study the correlation between tape drive
utilization and disk capacity limitation for tape-resident job scheduling. To do so, we
consider the following optimization policies when designing tape-resident job scheduling
algorithms:

• To improve the I/O performance of tape library
• To reduce resident time of data of jobs on disk cache
• To coordinate the input and output throughput of jobs to or from disk cache

3 Scheduling Algorithmic Issues
We study our scheduling problems under two kinds of restrictive conditions respectively:
cache-limited and cache-unlimited. The former means the selection of scheduling policies
must take the available space on disk cache into consideration, and the later assumes that

Drive-1

Drive-2

Drive-n
Poisson
batch
arrival

Fig. 1 The description model of tape-resident jobs

Processor

Job wait queue

Job-1 Job-2 Job-3

Tape library

Disk cache

Request

307

there is enough space of disk cache for scheduling. We first present five scheduling
algorithms under the second condition, and then discuss these algorithms with the first
condition of constraint. The algorithms focus on two key points: tape selection policy,
and scheduling list creation (a scheduling list is an ordered list of requests for a selected
tape).

(1) FCFS (First Come First Service). This algorithm services the jobs in the order of
arrival, and always chooses the tape that the first request in job wait queue accesses to for
next execution. The scheduling list of selected tape includes all requests that belong to the
job and access the selected tape. These requests will be executed within one sweep of the
tape.

(2) Max-EBW (Maximum Effective BandWidth). This policy improves the scheduling
of tape-resident job in maximizing I/O performance of tape library. It always chooses the
tape with maximum effective bandwidth for the next execution. The effective bandwidth
of a tape is defined to be the total number of bytes transferred from the tape divided by
the number of seconds consumed to perform this tape schedule.

(3) FCFS-PICKUP. This algorithm uses simplest tape selection policy--FCFS, namely,
it always selects the tape to be accessed by the first request of a job in the wait queue, and
then the algorithm inserts all requests of other jobs in the wait queue that will access the
selected tape into its scheduling list, which is called the PICKUP policy for scheduling
list creation.

(4) DYN-PICKUP. This algorithm has similar tape selection and scheduling list creation
as FCFS-PICKUP. Besides this, it particularly considers the new arrival jobs. When the
requests belonging to a new arrival jobs are trying to access the blocks on online tape that
the tape head will pass over during the current sweep, they will be inserted into the
running scheduling list. This is the dynamic policy for scheduling list creation.

(5) TUNING-PICKUP. This algorithm makes FCFS-PICKUP scheduling tunable. It
uses PICKUP intension factor F, which indicates that PICKUP scheduling is only
applied among the first F waiting jobs in the job wait queue, to tune the scale of
scheduling list. Obviously, larger F means both larger cache occupation, and quicker
response time. The selection of proper F value is the difficult point of this algorithm.
Currently, we determine the F value by simulation experiments. A proper method for F
value selection will be studied.

Above algorithms have different cache requirement: FCFS needs least cache space;
TUNING-PICKUP may tune the size of cache occupation by changing PICKUP
intension factor F; and other algorithms use more cache space than FCFS, but are not able
to tune cache requirement. The comparison details of above algorithms will be given in
next section.

4 Simulation Study
In this section, we give two groups of simulation results, each of which consists of two

308

figures: average response time of jobs and maximum cache requirement of jobs. The
simulation parameters of tape library are based on Exabyte 220 tape library with two
Eliant 820 drives and twenty EXABTYE 8mm tapes. In addition, we assume that the job
arrival is stochastic and follows Poisson distribution. Each job averagely consists of 8
requests that have the average size of 64M bytes. We also assume that the disk cache
should at least meet the maximum storage requirement of any job. The jobs are
independent of one another.

Fig.1a and Fig.1b show response time and cache occupation curves for all algorithms
except for TUNING-PICKUP. From the graphs we can observe that FCFS has least cache
occupation but longest response time, and other algorithms significantly improve the
average response time of tape-resident jobs by optimizing I/O performance of tape library.
This performance improvement from tape library optimization has an associated cost in
terms of storage space. The Figure also indicates that FCFS-PICKUP is the best
scheduling policy. The reason is that it uses FCFS policy to speed up job output from
disk cache while it takes advantage of PICKUP policy to improve I/O performance of
tape library. Although the time performance of DYN-PICKUP policy is slightly better
than that of FCFS-PICKUP, but its cache occupation is much higher than FCFS-PICKUP
and Max-EBW. Its heavier workload creates proportionally larger storage requirement.

Fig. 1a Comparison of response time

0

5000

10000

15000

20000

25000

0 2. 4 4. 8 7. 2 9. 6 12
Jobs per hour

M
ea

n
re

sp
on

se
 ti

m
e

(s
)

Max-EBW
FCFS
FCFS-PICKUP
DYN-PICKUP

Fig.1b Comparison of cache occupation

0

10000

20000

30000

40000

50000

0 2. 4 4. 8 7. 2 9. 6 12
Jobs per hour

M
ax

im
um

 c
ac

he
 o

cc
up

at
io

n
(M

by
te

s)

Max-EBW
FCFS
FCFS-PICKUP
DYN-PICKUP

The next simulation experiment explores the correlation between response time and
cache space for FCFS-PICKUP algorithm and TUNING-PICKUP algorithm. We use
PICKUP intension factor F to tune the size of cache occupation. This is very helpful in
achieving a reasonable response time for tape-resident jobs when cache space is limited.
Fig2a and Fig.2b illustrate when properly tuned, the time performance of
TUNING-PICKUP is close to that of Max-EBW, but its space occupation is significantly
reduced.

5 Conclusions
This paper discusses some efficient scheduling algorithms for tape-resident jobs. Our
contributions include: (1) incorporate optimal I/O scheduling policies of tape library into
the scheduling of tape-resident jobs so as to improve performance of tape-resident jobs
by increasing the data throughput of tape library processing; (2) design better algorithm

309

FCFS-PICKUP for cache-unlimited system and TUNING-PICKUP for cache-limited
system. The future work is to give a practical evaluation method for PICKUP intension
factor F so that we may simply select factor F value for TUNING_PICKUP algorithm
according to both workload and cache size.

Fig. 2a The comparison of response time

500

5500

10500

15500

20500

25500

4. 8 7. 2 9. 6 12
Jobs per hour

M
ea

n
re

sp
on

se
 ti

m
e

(s
)

Max-EBW
FCFS-PICKUP
TUNING-PICKUP

Fig. 2b The comparison of cache
occupation

4000

9000

14000

19000

24000

29000

34000

39000

4. 8 7. 2 9. 6 12
Jobs per hour

M
ax

im
um

 c
ac

he
oc

cu
pa

tio
n

(M
by

te
s)

Max-EBW
FCFS-PICKUP
TUNIBG-PICKUP

Reference
[1] Cariño F., Kaufmann A. and Kostamaa P., Are you ready for Yottabytes?, In Proc. of

17th IEEE symp. on Mass Storage Systems in Cooperation with the 8th NASA GSFC
conf. on Mass Storage Systems and Technologies, pp. 476-485, Match 2000

[2] John Jensen, John Kinsfather and Parmesh Dwivedi. Data Volume Proliferation in the
21st Century--The Challenges Faced by the NOAA National Data Centers (NNDC),
In Proc. of 17th IEEE symp. on Mass Storage Systems in Cooperation with the 8th
NASA GSFC conf. on Mass Storage Systems and Technologies, pp. 335-350, Match
2000

[3] Bruce K.Hillyer and Avi Silberschatz， Random I/O Scheduling in Online Tertiary
Storage Systems，In Proc. of the 1996 ACM SIGMOD Inter. Conf. on Management of
Data, pp195-204, Canada, Jun 3-6 1996

[4] Bruce K. Hillyer, Rajeev Rastogi and Avi Silberschatz, Scheduling and Data
Replication to Improve Tape Jukebox Performance, ICDE’99, pp. 532-541, 1999

[5] Toshihiro NEMOTO and Masaru KITSUEGAWA，Scalable Tape Archiver for
Satellite Image Database and its Performance Analysis with Access Logs—Hot
Declustering and Hot Replication--，In Proc. of 16th IEEE symp. on Mass Storage
Systems in Cooperation with the 7th NASA GSFC conf. on Mass Storage Systems and
Technologies, pp. 59-71, 1999

[6] Shi Jing and Zhou Lizhu, Dynamic Scheduling and Tuning to Improve Online Tape
Library Performance, In Proceedings of the 6th International Conference for Younger
Computer Scientists (ICYCS’2001), pages120-124, Oct. 2001

[7] Sachin More, S. Muthukrishnan and Elizabeth Shriver, Efficiently Sequencing
Tape-resident Jobs, In Eighteenth ACM Symposium on Principles of Database
Systems, 1999

310

