
317 

Java and Real Time Storage Applications 
Gary Mueller 
195 Garnet St 

Broomfield, CO 80020-2203 
garymueller@qwest.net  
Tel: +1-303-465-4279  
Janet Borzuchowski  

Storage Technology Corporation 
2270 South 88th Street 

M. S. 4272 
Louisville CO 80028 

janetborzuchowsk@qwest.net 
 Tel: +1-303-673-8297  

 
Abstract 
Storage systems have storage devices which run real time embedded software.  Most 
storage devices use C and occasionally C++ to manage and control the storage device.  
Software for the storage device must meet the time and resource constraints of the storage 
device.  The prevailing wisdom in the embedded world is that objects and in particular 
Java only work for simple problems and can not handle REAL problems, are too slow 
and can not handle time critical processing and are too big and can’t fit in memory 
constrained systems. 
 
Even though Java's roots are in the embedded application area, Java is more widely used 
in the desktop and enterprise environment.  Use of Java in embedded real time 
environments where performance and size constraints rule is much less common.   
 
Java vendors offer a dizzying array of options, products and choices for real time storage 
applications.  Four main themes emerge when using Java in a real time storage 
application; compiling Java, executing Java with a software Java Virtual Machine (JVM), 
executing Java with a hardware JVM and replacing a real time operating system (RTOS) 
with a JVM. 
 
The desktop and enterprise environment traditionally run Java using a software JVM that 
has been ported to a particular platform.  The JVM runs as a task or process hosted by the 
platform operating system.  With the performance and memory available on most 
workstations and personal computers, running an application on a software JVM is not an 
issue. However, many desktop and enterprise applications are not faced with the critical 
time and space constraints of an embedded application.  Because of these constraints, 
running an embedded application on a software JVM incurs the additional overhead of 
software running software.  Although it might be possible to run some embedded 
applications on a software JVM because of the tremendous speed of some processors, for 
most embedded applications, this configuration will not met timing or space constraints. 
 
For a real-time storage application, running a JVM in software is typically only used for 
tasks which are not time critical.  Typical tasks include hardware configuration, 



318 

maintenance and diagnostics, or upgrading or loading new code.  For these tasks, a 
software JVM can meet the performance and space requirements.  The software JVM 
typically runs as a low priority task.  Other time critical tasks are written in C or C++ and 
do not use the intermediary JVM. 
 
Compiled Java is an acceptable option since the JVM is eliminated and the functionality 
of the JVM such as garbage collection is wrapped into a set of runtime libraries.  
Compiling Java gives you the benefit of an object-oriented language without the 
performance penalty of an interpreted language. 
 
The ultimate in speed and performance is attained when the JVM is cast in silicon.  
Several hardware vendors are planning or currently offering coprocessors or custom 
chips that execute Java directly in hardware.  
 
Since the JVM provides the runtime environment for Java, in essence an operating 
system, one interesting approach is to use the JVM as a replacement for a RTOS. 
  
This paper discusses the advantages and disadvantages of each approach as well as 
specific experiences of  using Java in a commercial tape drive project. 
 
1 Why Java for Real Time Storage Systems? 
Java is an object-oriented language which gives you all the advantages of object 
technology, including faster delivery to market, more maintainable code, and easier 
adaptation to change.  Java enforces the discipline of object design.  Using Java in an 
embedded environment presents several challenges.  Embedded applications have both 
functional and timing requirements and run in resource constrained environments.  Java 
must meet the performance and space requirements of the embedded application.  Some 
questions to answer include: 
 

• Space the final frontier, will the JVM and class libraries fit? 
• Performance, can the JVM run fast enough to meet hard real time deadlines? 
• Scheduling, is the JVM deterministic and can non-deterministic tasks, such as 

garbage collection be scheduled? 
 
2 Java Basics 
Java is both a language and an environment which supports compilation and execution of 
the language.   
 
Java, the language, supports single inheritance, polymorphism and other object concepts. 
Java is compiled to an intermediate language, Java byte codes, the assembly language for 
the JVM.  The output of the Java compiler is a class file, which contains the Java 
bytecodes. 
 
Java, the environment, is a virtual machine that has been ported to many operating 
systems and processors.  The JVM interprets and executes the Java bytecodes and is 
usually written in C or C++.   The JVM loads the Java class with a class loader, links the 
class files, verifies the bytes in a class file for correctness, prepares the class files for 



319 

execution, initializes the class, resolves method references and determines when to 
garbage collect unused classes.  A typical Java environment is shown in Figure 1. 
 
 
 
 
 

Figure 1 - Java Runtime Environment 

3 Flavors or Java for Embedded Systems 
There are four flavors of Java for embedded systems: 

• Software Java Virtual Machine 
• Compiled Java  
• Hardware Java Virtual Machine 
• Java as a Real Time Operating System 
 

3.1 Software Java Virtual Machine 
A software JVM is an application, process or task that typically is hosted by another 
operating system.  Software JVMs are typically used for desktop or enterprise 
applications.  Most desktop applications execute Java using a JVM running as a process 
or task on the desktop.  Browsers execute Java with a JVM in the browser.  This is the 
classic use of Java. 
 
Since Java is interpreted by another program, the software JVM, there is a concern about 
the performance of the application which the JVM is executing.  In particular, embedded 
applications must execute within specific time frames.  Executing the embedded 
application on the JVM which itself is being executed raises the question of how fast the 
embedded application is executing and whether it can meet its required deadlines.  One 
might speculate that there may exist embedded applications which given enough 
hardware horsepower will meet their required deadlines with a software JVM. 
 
For those embedded applications which rely on and use a RTOS, a software JVM could 
be executed as a set of tasks or processes on the RTOS.  Assuming the JVM tasks have a 
sufficient priority, some non real-time or slow real time embedded application tasks 
could be run using a software JVM such as: 

• Hardware configuration 

Java ByteCode Class Libraries Java Source 

Java Virtual Machine 

Operating System 

Hardware 

Java Compiler 



320 

• Maintenance and diagnostics 
• Code upgrades and loads  

This method of executing Java is typical for desktop and enterprise applications where 
performance, although a concern, is not a driving factor.  An example of this flavor of 
Java is WindRiver® Personal JWorks™ [1]. 
 
3.1.1 WindRiver® Personal JWorks™ 
As shown in Figure 2, Personal JWorks includes the PersonalJava Core Libraries, the 
JVM, the VxWorks Real Time Operating System (RTOS), the Supporting Native 
Libraries, a board support package (BSP) and device drivers for the particular processor 
and RTOS. 
 
The PersonalJava Core Libraries include the applet, awt, beans, io, lang, math, net, rmi, 
security, sql, text and utl packages.  The Personal JWorks application environment is 
based on the Java Development Kit 1.1.8 and adds security as specified in the Java 2 
Software Development Kit, version 1.2. 
 
Personal JWorks supports and fully implements the Abstract Windowing Toolkit 
(AWT) and fully supports the Java AWT graphics system.  The WindRiver Media 
Library (WindML) glues the Personal JWorks environment to an applications graphics 
hardware.  WindML supports 2D graphics primitives, fonts and provides audio and video 
support. 



321 

Personal JWorks uses a software JVM that runs as a set of tasks on VxWorks®.  Using 
the Java Native Interface (JNI), JVM services such as thread and memory management 
(garbage collection), synchronization mechanisms, networking and graphics are mapped 
to VxWorks tasks through the Supporting Native Libraries.  As a result, the VxWorks 
scheduler is able to prioritize and preempt the Java threads in the  

Figure 2- Personal JWorks™ Architecture 

 
same way as it does VxWorks tasks. Although Personal JWorks does not provide real-
time response, any VxWorks native task placed at a higher priority than a Java thread will 
execute without impact.  Personal JWorks thus retains the determinism of VxWorks®.  
Using the JNI, Personal JWorks applications can access any C/C++ function in the 
VxWorks operating system including system calls. 
 
3.2 Compiled Java 
Compiled Java removes the environment portion of Java and treats Java as a language.  
Java is simply compiled to either native code or to an intermediate language such as C or 
C++.   Compiled Java provides the benefit of an object-oriented language without the 
performance penalty of an interpreted language.  Garbage collection and other JVM 
services are implemented through runtime libraries. Two examples of compiled Java are 
the Gnu Compiler for Java and WindRiver® Diab™ FastJ®. 
 
3.2.1 Gnu Compiler for Java™(gcj) 
Java applications are compiled and linked with the gcj runtime library, libgcj.  The libgcj 
supplies the core classes, the garbage collector and the bytecode interpreter.  The libgcj 
must be ported to the processor in your environment.  The gcj allows three types of 
compiling: 

PersonalJava 3.1
CoreLibraries

JVM

Lightweight
JDK 1.1.8AWT

Supporting Native Libraries WindML 2.0

VxWorks 5.4

BSP/Device Drivers



322 

• Java source code to native machine code 
• Java source code to Java bytecode 
• Java bytecode to native machine code 
 

3.2.2 WindRiver® Diab™ FastJ® 
FastJ compiles C, C++ and Java source code to native machine code.  As shown in 
Figure 3, the FastJ compiler compiles, optimizes and generates assembly code for the 
desired target CPU and runtime environment using the Global Optimizer, Code Selector 
and Code Generator.  External assembly source code and external libraries may be 
assembled and linked with the C, C++ and Java code. To reduce code size only needed 
core libraries may be configured.  The Assembler together with the Linker produce an 
ELF format executable image for the desired processor.  
 
FastJ supports three memory management options: 

• Explicit memory management, similar to C/C++, eliminates garbage 
collection. 

• Standard, non-incremental garbage collection, runs when memory is low or 
explicitly called. 

• Preemptive, incremental garbage collection, runs as a preemptable, low 
priority background task. 

Figure 3 - FastJ® Compiler Architecture 

 
 

C Source C++ Source Java Source

C Parser C++ Parser Java Parser

Global Optimizer

Code Selector

Code Generator

Assembler

Linker Archiver

Common Back End

ELF Executable File
(Native Machine Code) CPU

Run-Time
Profile Info

CPU-Specific
 Info

Libraries

Assembly Source



323 

3.3 Hardware JVM 
The ultimate in performance is achieved by executing or running the JVM in hardware.   
The JVM is implemented in silicon as either a co-processor or separate processor on a 
custom chip.  Specially designed or custom hardware is required which directly executes 
the Java bytecodes.  This is similar to assembly code being executed on a particular 
processor.  Several chip vendors including ARM from England, Ajile from the United 
States, Vulcan Machines LTD from England and NTT Docomo from Japan offer 
hardware JVMs. [2] 

Several variations of the hardware theme are currently available.  Some hardware 
implementations use a co-processor to execute Java bytecodes.  Other implementations 
use specialized hardware, which is called when Java bytecodes are detected.  An example 
of a hardware JVM is the ARM® Jazelle™[3]. 
 
3.3.1 ARM® Jazelle™ 
Jazelle is a product from ARM®, which includes a hardware JVM for the ARM® 
family of processors and a runtime environment to support Java applications.  The 
Jazelle runtime architecture, as shown in Figure 4, allows Java applications to access 
the Java Class libraries available in the particular Java development kit, either the Java 2 
Enterprise, Standard or Micro Edition.  Each edition of Java has a virtual machine which 
executes the Java bytecodes.  Jazelle currently supports the pJava, KVM and CVM 
virtual machines. Jazelle provides a Java Technology Enabling Kit for porting other 
VM’s.   
 
The Jazelle Supporting Code replaces the Java virtual machine interpreter loop and 
enables execution of the Java bytecodes directly in hardware.  A condition bit in a new 
ARM instruction  puts the processor in the Java state.  The processor then executes the 
Java byte code directly in hardware.  Jazelle supports execution of both Java bytecodes 
and ARM® machine codes.  This allows existing application written in C and C++ to 
continue to execute alongside the Java applications.  The main difference between a 
software JVM such as Personal JWorks and a hardware JVM such as Jazelle is how 
the Java bytecodes are executed.  In Personal JWorks, the bytecodes are translated to 
native machine code and then executed.  With Jazelle, the bytecodes are executed 
directly in hardware. 
 



324 

Since the JVM must be supported by the underlying RTOS, Jazelle also supports 
WindowsCE, SymbianOS, PalmOS, Linux and many real time and proprietary operating 
systems. 

 

Figure 4 - Jazelle™ Run-Time Architecture 
 
3.4 Java as a Real Time Operating System 
An interesting variation is viewing the JVM as an operating system.  The JVM is the 
RTOS.  Since the JVM is essentially a machine, simulated or executed on another 
machine, it makes sense to eliminate the other machine and execute the JVM directly on 
hardware.  An example of this is Jbed™ from Esmertec [4]. 
 

Java Application
Native

ApplicationNetwork Graphics Remote
Methods

Native
Methods

C
la

ss
Lo

ad
er

G
ar

ba
ge

C
ol

le
ct

or

Pr
oc

es
s M

an
ag

er

M
em

or
y

M
an

ag
er

Jazelle™ Support Code

Native
Operating

System

Jazelle™ Enabled ARM®
P

Class
Libraries

Java
VM

Ve
rif

ie
r



325 

3.4.1 Esmertec ™ 
Jbed combines the JVM and a real time operating system into a single entity. Jbed 
has a four layer architecture.  The Java applications have access to lang, io, util as well as 
the connection framework in the javax.microedition package and is PersonalJava 3.0 
(JDK 1.1) compliant.  As shown in Figure 5, Jbed supports many of the popular  

Figure 5 - Jbed™ Run-Time Architecture 
 
Internet protocols such as HTTP, TFTP, TCP/IP, PPP and UDP.  JVM services such as 
garbage collection (GC) are supported without the intermediary JVM.  Jbed does not 
execute or interpret Java bytecode.  Instead, bytecode is translated into fast machine code 
prior to downloading or upon class loading with the Way Ahead of Time compiler and 
the Target Bytecode Compiler (TBCC).  This avoids the speed and size penalty of a 
JVM, yet stills provides advanced Java features such as dynamic code loading and 
automatic garbage collection.  Jbed extends the Java thread package to provide priority 
based scheduling using the earliest deadline first algorithm.  A device driver support 
package supports driver development in Java.  Thus, the entire application including 
device drivers can be written in Java.  
 
4 On the Road to Java 
The 9840 and 9940 family of StorageTek tape drives use an ARM7® 32 bit processor, 
with 2-4MB of RAM for loading the code image. A 32MB - 64MB data buffer is used for 
data transfer and the drives support the SCSI, ESCON, and Fibre Channel interfaces.   
Specialized Application Specific Integrated Circuits (ASICs) are used to control the tape 
drive.  All of the code is written in C with Vertex serving as the RTOS. 
 

com.jbed.* java.* javac.* javax.microedition.*

Java Applications

Http
Protocol

Tftp
Protocol TBCC GC Log Debug

Agent......

Net Drivers I/O DriversKernel/Run-time

Network
Device

Base
Hardware

I/O
Device



326 

C++ and object design have been introduced into the time critical tape microcode.   
Initially, the classes have been written in C++ and are mirrored in Java for unit testing.  
The Java classes form the basis for a hardware simulator. 
 
Since FastJ™ is similar to current development environment, FastJ™ will be the first 
step to introducing Java in our real time system.  It is the least disruptive and does not 
require hardware changes. FastJ will be used to compile the Java classes used in the 
hardware simulator and tape microcode.  Since the current RTOS is old, the next step will 
be to investigate Jbed™ which is a Java RTOS, a combination of hardware/software.  
Finally, since Jazelle™ requires hardware changes, the last step will be Jazelle™. 
 
5 Summary 
Recently, there has been a resurgence in the use of Java for embedded systems.  Options 
ranging from software Java Virtual Machines offered by real time operating system 
vendors to chip vendors developing Java chips are available to the embedded storage 
developer.  Java will be used in the next generation Personal Digital Assistants (PDA), 
such as the Palm Pilot, and in the next generation of mobile phones. 
 
We believe that Java has now become a viable option for building real-time storage 
applications.  Issues involving the space, performance and scheduling problems of Java 
for embedded systems are being solved.  Almost daily, a new vendor or company 
announces its plan for Java in the embedded environment.  With the many options 
available, at least one flavor of embedded Java will work for your application. 
 
6 References 
[1] WindRiver web site - http://www.windriver.com   

[2] EE Times, January 29,2001, “Java Vendors set to skirmish over cellular”, page 1 

[3] EE Times, October 16, 2001, “ARM tweaks CPU schemes to run Java”, page 20  

[4] JavaPro, February, 2002, “A Comfortable Jbed”, page 72 
 


